Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Anal Chem ; 96(18): 7014-7021, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659215

RESUMO

Membrane-based lateral flow immunoassays (LFAs) have been employed as early point-of-care (POC) testing tools in clinical settings. However, the varying membrane properties, uncontrollable sample transport in LFAs, visual readout, and required large sample volumes have been major limiting factors in realizing needed sensitivity and desirable precise quantification. Addressing these challenges, we designed a membrane-free system in which the desirable three-dimensional (3D) structure of the detection zone is imitated and used a small pump for fluid flow and fluorescence as readout, all the while maintaining a one-step assay protocol. A hydrogel-like protein-polyelectrolyte complex (PPC) within a polyelectrolyte multilayer (PEM) was developed as the test line by complexing polystreptavidin (pSA) with poly(diallyldimethylammonium chloride) (PDDA), which in turn was layered with poly(acrylic acid) (PAA) resulting in a superior 3D streptavidin-rich test line. Since the remainder of the microchannel remains material-free, good flow control is achieved, and with the total volume of 20 µL, 7.5-fold smaller sample volumes can be used in comparison to conventional LFAs. High sensitivity with desirable reproducibility and a 20 min total assay time were achieved for the detection of NT-proBNP in plasma with a dynamic range of 60-9000 pg·mL-1 and a limit of detection of 56 pg·mL-1 using probe antibody-modified fluorescence nanoparticles. While instrument-free visual detection is no longer possible, the developed lateral flow channel platform has the potential to dramatically expand the LFA applicability, as it overcomes the limitations of membrane-based immunoassays, ultimately improving the accuracy and reducing the sample volume so that finger-prick analyses can easily be done in a one-step assay for analytes present at very low concentrations.


Assuntos
Biomarcadores , Compostos de Amônio Quaternário , Humanos , Imunoensaio/métodos , Biomarcadores/análise , Biomarcadores/sangue , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/análise , Limite de Detecção , Resinas Acrílicas/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/sangue , Polietilenos/química , Poliestirenos/química
2.
Anal Bioanal Chem ; 416(9): 2097-2106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38082134

RESUMO

Laser-induced graphene (LIG) has received much attention in recent years as a possible transducer material for electroanalytical sensors. Its simplicity of fabrication and good electrochemical performance are typically highlighted. However, we found that unmodified and untreated LIG electrodes had a limited shelf-life for certain electroanalytical applications, likely due to the adsorption of adventitious hydrocarbons from the storage environment. Electrode responses did not change immediately after exposure to ambient conditions but over longer periods of time, probably due to the immense specific surface area of the LIG material. LIG shelf-life is seldomly discussed prominently in the literature, yet overall trends for solutions to this challenge can be identified. Such findings from the literature regarding the long-term storage stability of LIG electrodes, pure and modified, are discussed here along with explanations for likely protective mechanisms. Specifically, applying a protective coating on LIG electrodes after manufacture is possibly the easiest method to preserve electrode functionality and should be identified as a trend for well-performing LIG electrodes in the future. Furthermore, suggested influences of the accompanying LIG microstructure/morphology on electrode characteristics are evaluated.

3.
Anal Bioanal Chem ; 416(13): 3107-3115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589616

RESUMO

Through enabling whole blood detection in point-of-care testing (POCT), sedimentation-based plasma separation promises to enhance the functionality and extend the application range of lateral flow assays (LFAs). To streamline the entire process from the introduction of the blood sample to the generation of quantitative immune-fluorescence results, we combined a simple plasma separation technique, an immunoreaction, and a micropump-driven external suction control system in a polymer channel-based LFA. Our primary objective was to eliminate the reliance on sample-absorbing separation membranes, the use of active separation forces commonly found in POCT, and ultimately allowing finger prick testing. Combining the principle of agglutination of red blood cells with an on-device sedimentation-based separation, our device allows for the efficient and fast separation of plasma from a 25-µL blood volume within a mere 10 min and overcomes limitations such as clogging, analyte adsorption, and blood pre-dilution. To simplify this process, we stored the agglutination agent in a dried state on the test and incorporated a filter trench to initiate sedimentation-based separation. The separated plasma was then moved to the integrated mixing area, initiating the immunoreaction by rehydration of probe-specific fluorophore-conjugated antibodies. The biotinylated immune complex was subsequently trapped in the streptavidin-rich detection zone and quantitatively analyzed using a fluorescence microscope. Normalized to the centrifugation-based separation, our device demonstrated high separation efficiency of 96% and a yield of 7.23 µL (= 72%). Furthermore, we elaborate on its user-friendly nature and demonstrate its proof-of-concept through an all-dried ready-to-go NT-proBNP lateral flow immunoassay with clinical blood samples.


Assuntos
Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Humanos , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/isolamento & purificação , Fragmentos de Peptídeos/sangue , Testes Imediatos , Imunoensaio/métodos , Imunoensaio/instrumentação , Desenho de Equipamento
4.
Anal Bioanal Chem ; 416(15): 3487-3500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38240795

RESUMO

Multiplexing is a relevant strategy for biosensors to improve accuracy and decision-making due to the increased amount of simultaneously obtained information. Liposomes offer unique benefits for label-based multiplexing since a variety of different marker molecules can be encapsulated, leading to intrinsic signal amplification and enabling a variety of detection formats. We successfully developed an electrochemical (EC) liposome-based platform technology for the simultaneous detection of at least three analytes by studying parameters to ensure specific and sensitive bioassay performance. Influenza A and B and SARS-CoV-2 sequences served as model system in a standard sandwich hybridization assay. Studies included encapsulants, probe distribution on liposomes and capture beads, assay setup and interferences between liposomes to also ensure a generalization of the platform. Ruthenium hexamine(III), potassium hexacyanoferrate(II) and m-carboxy luminol, when encapsulated separately into a liposome, provided desirable long-term stability of at least 12 months and no cross-signals between liposomes. Through the optimization process, low limits of detections of 1.6 nmol L-1, 125 pmol L-1 and 130 pmol L-1, respectively, were achieved in a multiplexed assay setup, which were similar to singleplex assays. Non-specific interactions were limited to 25.1%, 7.6% and 7.5%, respectively, through sequential liposome incubations and singleplex capture bead designs. Here, ruthenium hexamine liposomes had only mediocre performance so that low overall signal strength translated into higher LODs and worse specificity. A different marker such as ferroin may be an option in the future. The identification of further electrochemical markers will provide new opportunities for liposomes to function as multiplex, orthogonal or internal standard labels in electrochemical bioassays.


Assuntos
Técnicas Eletroquímicas , Vírus da Influenza B , Limite de Detecção , Lipossomos , SARS-CoV-2 , Lipossomos/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Técnicas Eletroquímicas/métodos , Humanos , Vírus da Influenza B/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Técnicas Biossensoriais/métodos , Influenza Humana/diagnóstico , Influenza Humana/virologia , COVID-19/diagnóstico , COVID-19/virologia
5.
Anal Bioanal Chem ; 416(10): 2411-2422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459191

RESUMO

Point-of-care sensors targeting blood marker analysis must be designed to function with very small volumes since acquiring a blood sample through a simple, mostly pain-free finger prick dramatically limits the sample size and comforts the patient. Therefore, we explored the potential of converting a conventional lateral flow assay (LFA) for a significant biomarker into a self-contained and compact polymer channel-based LFA to minimize the sample volume while maintaining the analytical merits. Our primary objective was to eliminate the use of sample-absorbing fleece and membrane materials commonly present in LFAs. Simultaneously, we concentrated on developing a ready-to-deploy one-step LFA format, characterized by dried reagents, facilitating automation and precise sample transport through a pump control system. We targeted the detection of the heart failure biomarker NT-proBNP in only 15 µL human whole blood and therefore implemented strategies that ensure highly sensitive detection. The biosensor combines streptavidin-functionalized magnetic beads (MNPs) as a 3D detection zone and fluorescence nanoparticles as signal labels in a sandwich-based immunoassay. Compared to the currently commercialized LFA, our biosensor demonstrates comparable analytical performance with only a tenth of the sample volume. With a detection limit of 43.1 pg∙mL-1 and a mean error of 18% (n ≥ 3), the biosensor offers high sensitivity and accuracy. The integration of all-dried long-term stable reagents further enhances the convenience and stability of the biosensor. This lateral flow channel platform represents a promising advancement in point-of-care diagnostics for heart failure biomarkers, offering a user-friendly and sensitive platform for rapid and reliable testing with low finger-prick blood sample volumes.


Assuntos
Insuficiência Cardíaca , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Humanos , Limite de Detecção , Imunoensaio , Insuficiência Cardíaca/diagnóstico , Biomarcadores/análise , Fenômenos Magnéticos
6.
Anal Chem ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608282

RESUMO

Point-of-care (POC) diagnostics in particular focuses on the timely identification of harmful conditions close to the patients' needs. For future healthcare these diagnostics could be an invaluable tool especially in a digitalized or telemedicine-based system. However, while paper-based POC tests, with the most prominent example being the lateral flow assay (LFA), have been especially successful due to their simplicity and timely response, the COVID-19 pandemic highlighted their limitations, such as low sensitivity and ambiguous responses. This perspective discusses strategies that are currently being pursued to evolve such paper-based POC tests toward a superior diagnostic tool that provides high sensitivities, objective result interpretation, and multiplexing options. Here, we pinpoint the challenges with respect to (i) measurability and (ii) public applicability, exemplified with select cases. Furthermore, we highlight promising endeavors focused on (iii) increasing the sensitivity, (iv) multiplexing capability, and (v) objective evaluation to also ready the technology for integration with machine learning into digital diagnostics and telemedicine. The status quo in academic research and industry is outlined, and the likely highly relevant role of paper-based POC tests in future healthcare is suggested.

7.
Anal Bioanal Chem ; 415(1): 83-95, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36280625

RESUMO

Sensors, ranging from in vivo through to single-use systems, employ protective membranes or hydrogels to enhance sample collection or serve as filters, to immobilize or entrap probes or receptors, or to stabilize and enhance a sensor's lifetime. Furthermore, many applications demand specific requirements such as biocompatibility and non-fouling properties for in vivo applications, or fast and inexpensive mass production capabilities for single-use sensors. We critically evaluated how membrane materials and their deposition methods impact optical and electrochemical systems with special focus on analytical figures of merit and potential toward large-scale production. With some chosen examples, we highlight the fact that often a sensor's performance relies heavily on the deposition method, even though other methods or materials could in fact improve the sensor. Over the course of the last 5 years, most sensing applications within healthcare diagnostics included glucose, lactate, uric acid, O2, H+ ions, and many specific metabolites and markers. In the case of food safety and environmental monitoring, the choice of analytes was much more comprehensive regarding a variety of natural and synthetic toxicants like bacteria, pesticides, or pollutants and other relevant substances. We conclude that more attention must be paid toward deposition techniques as these may in the end become a major hurdle in a sensor's likelihood of moving from an academic lab into a real-world product.


Assuntos
Poluentes Ambientais , Hidrogéis , Polímeros , Glucose , Bactérias
8.
Anal Bioanal Chem ; 415(8): 1421-1435, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36754874

RESUMO

The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in 2019 caused an increased interest in neutralizing antibody tests to determine the immune status of the population. Standard live-virus-based neutralization assays such as plaque-reduction assays or pseudovirus neutralization tests cannot be adapted to the point-of-care (POC). Accordingly, tests quantifying competitive binding inhibition of the angiotensin-converting enzyme 2 (ACE2) receptor to the receptor-binding domain (RBD) of SARS-CoV-2 by neutralizing antibodies have been developed. Here, we present a new platform using sulforhodamine B encapsulating liposomes decorated with RBD as foundation for the development of both a fluorescent, highly feasible high-throughput (HTS) and a POC-ready neutralizing antibody assay. RBD-conjugated liposomes are incubated with serum and subsequently immobilized in an ACE2-coated plate or mixed with biotinylated ACE2 and used in test strip with streptavidin test line, respectively. Polyclonal neutralizing human antibodies were shown to cause complete binding inhibition, while S309 and CR3022 human monoclonal antibodies only caused partial inhibition, proving the functionality of the assay. Both formats, the HTS and POC assay, were then tested using 20 sera containing varying titers of neutralizing antibodies, and a control panel of sera including prepandemic sera and reconvalescent sera from respiratory infections other than SARS-CoV-2. Both assays correlated well with a standard pseudovirus neutralization test (r = 0.847 for HTS and r = 0.614 for POC format). Furthermore, excellent correlation (r = 0.868) between HTS and POC formats was observed. The flexibility afforded by liposomes as signaling agents using different dyes and sizes can hence be utilized in the future for a broad range of multianalyte neutralizing antibody diagnostics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Lipossomos , Anticorpos Antivirais , Sistemas Automatizados de Assistência Junto ao Leito , COVID-19/diagnóstico , Anticorpos Neutralizantes
9.
Mikrochim Acta ; 190(3): 91, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790481

RESUMO

Silver nanoparticles (AgNPs) have long been overshadowed by gold NPs' success in sensor and point-of-care (POC) applications. However, their unique physical, (electro)chemical, and optical properties make them excellently suited for such use, as long as their inherent higher instability toward oxidation is controlled. Recent advances in this field provide novel strategies that demonstrate that the AgNPs' inherent capabilities improve sensor performance and enable the specific detection of analytes at low concentrations. We provide an overview of these advances by focusing on the nanosized Ag (in the range of 1-100 nm) properties with emphasis on optical and electrochemical biosensors. Furthermore, we critically assess their potential for point-of-care sensors discussing advantages as well as limitations for each detection technique. We can conclude that, indeed, strategies using AgNP are ready for sensitive POC applications; however, research focusing on the simplification of assay procedures is direly needed for AgNPs to make the successful jump into actual applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície/métodos , Prata/química , Nanopartículas Metálicas/química , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas Biossensoriais/métodos
10.
Anal Bioanal Chem ; 414(1): 475-483, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33787969

RESUMO

Electrochemical immunosensors enable rapid analyte quantification in small sample volumes, and have been demonstrated to provide high sensitivity and selectivity, simple miniaturization, and easy sensor production strategies. As a point-of-care (POC) format, user-friendliness is equally important and most often not combinable with high sensitivity. As such, we demonstrate here that a sequence of metal oxidation and reduction, followed by stripping via differential pulse voltammetry (DPV), provides lowest limits of detection within a 2-min automatic measurement. In exchanging gold nanoparticles (AuNPs), which dominate in the development of POC sensors, with silver nanoparticles (AgNPs), not only better sensitivity was obtained, but more importantly, the assay protocol could be simplified to match POC requirements. Specifically, we studied both nanoparticles as reporter labels in a sandwich immunoassay with the blood protein biomarker NT-proBNP. For both kinds of nanoparticles, the dose-response curves easily covered the ng∙mL-1 range. The mean standard deviation of all measurements of 17% (n ≥ 4) and a limit of detection of 26 ng∙mL-1 were achieved using AuNPs, but their detection requires addition of HCl, which is impossible in a POC format. In contrast, since AgNPs are electrochemically less stable, they enabled a simplified assay protocol and provided even lower LODs of 4.0 ng∙mL-1 in buffer and 4.7 ng∙mL-1 in human serum while maintaining the same or even better assay reliability, storage stability, and easy antibody immobilization protocols. Thus, in direct comparison, AgNPs clearly outperform AuNPs in desirable POC electrochemical assays and should gain much more attention in the future development of such biosensors.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ouro , Humanos , Imunoensaio/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Prata
11.
Anal Bioanal Chem ; 414(10): 3231-3241, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34773470

RESUMO

Recent years have confirmed the ubiquitous applicability of lateral flow assays (LFA) in point-of-care testing (POCT). To make this technology available for low abundance analytes, strategies towards lower limits of detections (LOD), while maintaining the LFA's ease of use, are still being sought. Here, we demonstrate how liposomes can significantly improve the LOD of traditional gold nanoparticle (AuNP)-based assays while fully supporting a ready-to-use system for commercial application. We fine-tuned liposomes towards photometric and fluorescence performance on the synthesis level and applied them in an established interleukin 6 (IL-6) immunoassay normally using commercial AuNP labels. IL-6's low abundance (< 10 pg mL-1) and increasing relevance as prognostic marker for infections make it an ideal model analyte. It was found that liposomes with a high encapsulant load (150 mmol L-1 sulforhodamine B (SRB)) easily outperform AuNPs in photometric LFAs. Specifically, liposomes with 350 nm in diameter yield a lower LOD even in complex matrices such as human serum below the clinically relevant range (7 pg mL-1) beating AuNP by over an order of magnitude (81 pg mL-1). When dehydrated on the strip, liposomes maintained their signal performance for over a year even when stored at ambient temperature and indicate extraordinary stability of up to 8 years when stored as liquid. Whereas no LOD improvement was obtained by exploiting the liposomes' fluorescence, an extraordinary gain in signal intensity was achieved upon lysis which is a promising feature for high-resolution and low-cost detection devices. Minimizing the procedural steps by inherently fluorescent liposomes, however, is not feasible. Finally, liposomes are ready for commercial applications as they are easy to mass-produce and can simply be substituted for the ubiquitously used AuNPs in the POCT market.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Imunoensaio , Interleucina-6 , Lipossomos
12.
Anal Bioanal Chem ; 414(10): 3205-3217, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34617153

RESUMO

Sensitive and selective determination of protein biomarkers with high accuracy often remains a great challenge due to their existence in the human body at an exceptionally low concentration level. Therefore, sensing mechanisms that are easy to use, simple, and capable of accurate quantification of analyte are still in development to detect biomarkers at a low concentration level. To meet this end, we demonstrated a methodology to detect thrombin in serum at low concentration levels using polypyrrole (PPy)-palladium (Pd)nanoparticle-based hybrid transducers using liposomes encapsulated redox marker as a label. The morphology of Ppy-Pd composites was characterized by scanning electron microscopy, and the hybrid structure provided excellent binding and detection platform for thrombin detection in both buffer and serum solutions. For quantitative measurement of thrombin in PBS and serum, the change in current was monitored using differential pulse voltammetry, and the calculated limit of quantification (LOQ) and limit of detection (LOD) for the linear segment (0.1-1000 nM of thrombin) were 1.1 pM and 0.3 pM, in serum, respectively. The sensors also exhibited good stability and excellent selectivity towards the detection of thrombin, and thus make it a strong candidate for adopting its sensing applications in biomarker detection technologies.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanocompostos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Humanos , Limite de Detecção , Lipossomos , Paládio/química , Polímeros/química , Pirróis/química , Trombina/química
13.
Mikrochim Acta ; 189(11): 424, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255531

RESUMO

3D-carbon nanomaterials have proven to be high-performance transducers in electrochemical sensors but their integration into miniaturized devices is challenging. Herein, we develop printable freestanding laser-induced carbon nanofibers (f-LCNFs) with outstanding analytical performance that furthermore can easily allow such miniaturization through a paper-based microfluidic strategy. The f-LCNF electrodes were generated from electrospun polyimide nanofibers and one-step laser carbonization. A three-electrode system made of f-LCNFs exhibited a limit of detection (LOD) as low as 1 nM (S/N = 8) for anodic stripping analysis of silver ions, exhibiting the peak at ca. 100 mV vs f-LCNFs RE, without the need of stirring. The as-described system was implemented in miniaturized devices via wax-based printing, in which their electroanalytical performance was characterized for both outer- and inner-sphere redox markers and then applied to the detection of dopamine (the peak appeared at ca. 200 mV vs f-LCNFs RE) with a remarkable LOD of 55 pM. When modified with Nafion, the f-LCNFs were highly selective to dopamine even against high concentrations of uric and ascorbic acids. Especially the integration into closed microfluidic systems highlights the strength 3D porous structures provides excellent analytical performance paving the way for their translation to affordable lab-on-a-chip devices where mass-production capability, unsophisticated fabrication techniques, transfer-free, and customized electrode designs can be realized.


Assuntos
Carbono , Nanofibras , Carbono/química , Nanofibras/química , Técnicas Eletroquímicas/métodos , Dopamina/análise , Prata , Transdutores
14.
Mikrochim Acta ; 189(3): 117, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195801

RESUMO

Gold nanoparticle-catalyzed chemiluminescence (CL) of luminol is an attractive alternative to strategies relying on enzymes, as their aggregation leads to significantly enhanced CL signals. Consequently, analytes disturbing such aggregation will lead to an easy-to-quantify weakening of the signal. Based on this concept, a homogeneous aptamer-based assay for the detection of sulfadimethoxine (SDM) has been developed as a microfluidic CL flow-injection platform. Here, the efficient mixing of gold nanoparticles, aptamers, and analyte in short channel distances is of utmost importance, and two-dimensional (2D) and three-dimensional (3D) mixer designs made via Xurography were investigated. In the end, since 2D designs could not provide sufficient mixing, a laminated 3D 5-layer microfluidic mixer was developed and optimized with respect to mixing capability and observation by the charge-coupled device (CCD) camera. Furthermore, the performance of standard luminol and its more hydrophilic derivative m-carboxy luminol was studied identifying the hydrophilic derivative to provide tenfold more signal enhancement and reliable results. Finally, the novel detection platform was used for the specific detection of SDM via its aptamer and yielded a stunning dynamic range over 5 orders of magnitude (0.01-1000 ng/ml) and a limit of detection of 4 pg/ml. This new detection concept not only outperforms other methods for SDM detection, but can be suggested as a new flow-injection strategy for aptamer-based rapid and cost-efficient analysis in environmental monitoring and food safety.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Ouro , Luminescência , Medições Luminescentes/métodos , Microfluídica , Sulfadimetoxina
15.
Analyst ; 146(3): 997-1003, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33295341

RESUMO

Bearing multiple functionalities dramatically increases nanomaterial capabilities to enhance analytical assays by improving sensitivity, selectivity, sample preparation, or signal read-out strategies. Magnetic properties are especially desirable for nanoparticles and nanovesicles as they assist in negating diffusion limitations and improving separation capabilities. Here, we propose a microfluidic method that reliably labels functional nanovesicles while avoiding the risk of crosslinking that would lead to large conglomerates as typically observed in bulk reactions. Thus, the carboxy groups of bi-functional biotinylated fluorescent liposomes were activated in bulk. They were then covalently bound to amino group presenting magnetic beads immobilized through a magnetic field within microfluidic channels. Microfluidic design and coupling strategy optimization led to a 62% coupling efficiency when using 1 µm magnetic beads. The yield dropped to 13% with 30 nm magnetic nanoparticles (MNPs) likely due to crowding of the MNPs on the magnet. Finally, both populations of these tri-functional liposomes were applied to a biological binding assay demonstrating their superior performance under the influence of a magnetic field. The microfluidic functionalization strategy lends itself well for massively parallelized production of larger volumes and can be applied to micro- and nanosized vesicles and particles.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Separação Imunomagnética , Magnetismo , Imãs
16.
Chem Rev ; 119(13): 7996-8027, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31070892

RESUMO

The Internet of Things (IoT) is a megatrend that cuts across all scientific and engineering disciplines and establishes an integrating technical evolution to improve production efficiencies and daily human life. Linked machines and sensors use decision-making routines to work toward a common product or solution. Expanding this technical revolution into the value chain of complex areas such as agriculture, food production, and healthcare requires the implementation and connection of sophisticated (bio)analytical methods. Today, wearable sensors, monitors, and point-of-care diagnostic tests are part of our daily lives and improve patients' medical progression or athletes' monitoring capabilities that are already beyond imagination. Also, early contributions toward sensor networks and finally the IT revolution with wireless data collection and transmission via Bluetooth or smartphones have set the foundation to connect remote sensors and distributed analytical chemical services with centralized laboratories, cloud storage, and cloud computing. Here, we critically review those biosensor and chemosensor technologies and concepts used in an IoT setting or considered IoT-ready that were published in the period 2013-2018, while also pointing to those foundational concepts and ideas that arose over the last two decades. We focus on these sensors due to their unique ability to be remotely stationed and that easily function in networks and have made the greatest progress toward IoT integration. Finally, we highlight requirements and existing and future challenges and provide possible solutions important toward the vision of a seamless integration into a global analytical concept, which includes many more analytical techniques than sensors and includes foremost next-generation sequencing and separation principles coupled with MS detection.


Assuntos
Técnicas Biossensoriais/tendências , Técnicas de Química Analítica/tendências , Internet das Coisas/tendências , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Humanos , Sistemas Automatizados de Assistência Junto ao Leito/tendências
17.
Chem Rev ; 119(1): 120-194, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30247026

RESUMO

Electrochemical biosensors and associated lab-on-a-chip devices are the analytical system of choice when rapid and on-site results are needed in medical diagnostics and food safety, for environmental protection, process control, wastewater treatment, and life sciences discovery research among many others. A premier example is the glucose sensor used by diabetic patients. Current research focuses on developing sensors for specific analytes in these application fields and addresses challenges that need to be solved before viable commercial products can be designed. These challenges typically include the lowering of the limit of detection, the integration of sample preparation into the device and hence analysis directly within a sample matrix, finding strategies for long-term in vivo use, etc. Today, functional nanomaterials are synthesized, investigated, and applied in electrochemical biosensors and lab-on-a-chip devices to assist in this endeavor. This review answers many questions around the nanomaterials used, their inherent properties and the chemistries they offer that are of interest to the analytical systems, and their roles in analytical applications in the past 5 years (2013-2018), and it gives a quantitative assessment of their positive effects on the analyses. Furthermore, to facilitate an insightful understanding on how functional nanomaterials can be beneficial and effectively implemented into electrochemical biosensor-based lab-on-a-chip devices, seminal studies discussing important fundamental knowledge regarding device fabrication and nanomaterials are comprehensively included here. The review ultimately gives answers to the ultimate question: "Are they really needed or can bulk materials accomplish the same?" Finally, challenges and future directions are also discussed.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Dispositivos Lab-On-A-Chip , Nanoestruturas/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação
18.
Anal Bioanal Chem ; 413(3): 763-777, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32989512

RESUMO

Multi-analyte sensing using exclusively laser-induced graphene (LIG)-based planar electrode systems was developed for sweat analysis. LIG provides 3D structures of graphene, can be manufactured easier than any other carbon electrode also on large scale, and in form of electrodes: hence, it is predestinated for affordable, wearable point-of-care sensors. Here, it is demonstrated that LIG facilitates all three electrochemical sensing strategies (voltammetry, potentiometry, impedance) in a multi-analyte system for sweat analysis. A potentiometric potassium-ion-selective electrode in combination with an electrodeposited Ag/AgCl reference electrode (RE) enabled the detection of potassium ions in the entire physiologically relevant range (1 to 500 mM) with a fast response time, unaffected by the presence of main interfering ions and sweat-collecting materials. A kidney-shaped interdigitated LIG electrode enabled the determination of the overall electrolyte concentration by electrochemical impedance spectroscopy at a fixed frequency. Enzyme-based strategies with amperometric detection share a common RE and were realized with Prussian blue as electron mediator and biocompatible chitosan for enzyme immobilization and protection of the electrode. Using glucose and lactate oxidases, lower limits of detection of 13.7 ± 0.5 µM for glucose and 28 ± 3 µM for lactate were obtained, respectively. The sensor showed a good performance at different pH, with sweat-collecting tissues, on a model skin system and furthermore in synthetic sweat as well as in artificial tear fluid. Response time for each analytical cycle totals 75 s, and hence allows a quasi-continuous and simultaneous monitoring of all analytes. This multi-analyte all-LIG system is therefore a practical, versatile, and most simple strategy for point-of-care applications and has the potential to outcompete standard screen-printed electrodes. Graphical abstract.


Assuntos
Técnicas Eletroquímicas/instrumentação , Grafite/química , Eletrodos Seletivos de Íons , Sistemas Automatizados de Assistência Junto ao Leito , Suor/química , Técnicas Biossensoriais/instrumentação , Humanos , Lasers
19.
Mikrochim Acta ; 188(5): 159, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33829346

RESUMO

Laser-induced graphene (LIG) has emerged as a promising electrode material for electrochemical point-of-care diagnostics. LIG offers a large specific surface area and excellent electron transfer at low-cost in a binder-free and rapid fabrication process that lends itself well to mass production outside of the cleanroom. Various LIG micromorphologies can be generated when altering the energy input parameters, and it was investigated here which impact this has on their electroanalytical characteristics and performance. Energy input is well controlled by the laser power, scribing speed, and laser pulse density. Once the threshold of required energy input is reached a broad spectrum of conditions leads to LIG with micromorphologies ranging from delicate irregular brush structures obtained at fast, high energy input, to smoother and more wall like albeit still porous materials. Only a fraction of these LIG structures provided high conductance which is required for appropriate electroanalytical performance. Here, it was found that low, frequent energy input provided the best electroanalytical material, i.e., low levels of power and speed in combination with high spatial pulse density. For example, the sensitivity for the reduction of K3[Fe(CN)6] was increased almost 2-fold by changing fabrication parameters from 60% power and 100% speed to 1% power and 10% speed. These general findings can be translated to any LIG fabrication process independent of devices used. The simple fabrication process of LIG electrodes, their good electroanalytical performance as demonstrated here with a variety of (bio)analytically relevant molecules including ascorbic acid, dopamine, uric acid, p-nitrophenol, and paracetamol, and possible application to biological samples make them ideal and inexpensive transducers for electrochemical (bio)sensors, with the potential to replace the screen-printed systems currently dominating in on-site sensors used.


Assuntos
Técnicas Eletroquímicas/instrumentação , Grafite/química , Técnicas Eletroquímicas/métodos , Eletrodos , Lasers
20.
Anal Bioanal Chem ; 412(24): 6295-6305, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32072208

RESUMO

Magnetized liposome (magnetosomes) labels can overcome diffusion limitations in bioassays through fast and easy magnetic attraction. Our aim therefore was to advance the understanding of factors influencing their synthesis focusing on encapsulation strategies and synthesis parameters. Magnetosome synthesis is governed by the surface chemistry and the size of the magnetic nanoparticles used. We therefore studied the two possible magnetic labelling strategies, which are the incorporation of small, hydrophobic magnetic nanoparticles (MNPs) into the bilayer core (b-liposomes) and the entrapment of larger hydrophilic MNPs into the liposomes' inner cavity (i-liposomes). Furthermore, they were optimized and compared for application in a DNA bioassay. The major obstacles observed for each of these strategies were on the one hand the need for highly concentrated hydrophilic MNPs, which is limited by their colloidal stability and costs, and on the other hand the balancing of magnetic strength vs. size for the hydrophobic MNPs. In the end, both strategies yielded magnetosomes with good performance, which improved the limit of detection of a non-magnetic DNA hybridization assay by a factor of 3-8-fold. Here, i-liposomes with a magnetization yield of 5% could be further improved through a simple magnetic pre-concentration step and provided in the end an 8-fold improvement of the limit of detection compared with non-magnetic conditions. In the case of b-liposomes, Janus-like particles were generated during the synthesis and yielded a fraction of 15% magnetosomes directly. Surprisingly, further magnetic pre-concentration did not improve their bioassay performance. It is thus assumed that magnetosomes pull normal liposomes through the magnetic field towards the surface and the presence of more magnetosomes is not needed. The overall stability of magnetosomes during storage and magnetic action, their superior bioassay performance, and their adaptability towards size and surface chemistry of MNPs makes them highly valuable signal enhancers in bioanalysis and potential tools for bioseparations. Graphical abstract.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Corantes Fluorescentes/química , Lipossomos/química , Nanopartículas de Magnetita/química , Limite de Detecção , Hibridização de Ácido Nucleico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA