Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 554(7690): 112-117, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364875

RESUMO

Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and dosage-dependent effects on craniofacial development. Taken together, our findings illustrate how disruption in general regulators that compromise nucleolar homeostasis can result in tissue-selective malformations.


Assuntos
Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Dano ao DNA , DNA Ribossômico/metabolismo , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/patologia , Estresse Fisiológico , Animais , Apoptose , Benzotiazóis/farmacologia , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Cromatina/metabolismo , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA/deficiência , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Disostose Mandibulofacial/embriologia , Camundongos , Naftiridinas/farmacologia , Crista Neural/enzimologia , Crista Neural/patologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Fenótipo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Helicases/metabolismo , RNA Polimerase I/antagonistas & inibidores , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Crânio/patologia , Estresse Fisiológico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Xenopus , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência
2.
Dev Biol ; 456(2): 164-178, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472116

RESUMO

The coordination of growth during development establishes proportionality within and among the different anatomic structures of organisms. Innate memory of this proportionality is preserved, as shown in the ability of regenerating structures to return to their original size. Although the regulation of this coordination is incompletely understood, mutant analyses of zebrafish with long-finned phenotypes have uncovered important roles for bioelectric signaling in modulating growth and size of the fins and barbs. To date, long-finned mutants identified are caused by hypermorphic mutations, leaving unresolved whether such signaling is required for normal development. We isolated a new zebrafish mutant, schleier, with proportional overgrowth phenotypes caused by a missense mutation and loss of function in the K+-Cl- cotransporter Kcc4a. Creation of dominant negative Kcc4a in wild-type fish leads to loss of growth restriction in fins and barbs, supporting a requirement for Kcc4a in regulation of proportion. Epistasis experiments suggest that Kcc4a and the two-pore potassium channel Kcnk5b both contribute to a common bioelectrical signaling response in the fin. These data suggest that an integrated bioelectric signaling pathway is required for the coordination of size and proportion during development.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Tamanho do Órgão/fisiologia , Simportadores/metabolismo , Nadadeiras de Animais/metabolismo , Animais , Tamanho Celular , Feminino , Masculino , Mutação/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Cloreto de Potássio/metabolismo , Regeneração , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Cotransportadores de K e Cl-
3.
PLoS Genet ; 10(5): e1004364, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24875294

RESUMO

Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC) patients causes benign cartilage tumors on the bone surface (exostoses) and within bones (enchondromas). To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the data are consistent with paracrine signaling from SHP2-deficient cells causing SHP2-sufficient cells to be incorporated into the lesions.


Assuntos
Cartilagem/metabolismo , Diferenciação Celular/genética , Comunicação Parácrina/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Cartilagem/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese/genética , Condroma/genética , Condroma/patologia , Condromatose/genética , Condromatose/patologia , Exostose/genética , Exostose/patologia , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/patologia , Lâmina de Crescimento , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Osteogênese/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
4.
Am J Hum Genet ; 90(6): 1108-15, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22658544

RESUMO

Congenital lipomatous overgrowth with vascular, epidermal, and skeletal anomalies (CLOVES) is a sporadically occurring, nonhereditary disorder characterized by asymmetric somatic hypertrophy and anomalies in multiple organs. We hypothesized that CLOVES syndrome would be caused by a somatic mutation arising during early embryonic development. Therefore, we employed massively parallel sequencing to search for somatic mosaic mutations in fresh, frozen, or fixed archival tissue from six affected individuals. We identified mutations in PIK3CA in all six individuals, and mutant allele frequencies ranged from 3% to 30% in affected tissue from multiple embryonic lineages. Interestingly, these same mutations have been identified in cancer cells, in which they increase phosphoinositide-3-kinase activity. We conclude that CLOVES is caused by postzygotic activating mutations in PIK3CA. The application of similar sequencing strategies will probably identify additional genetic causes for sporadically occurring, nonheritable malformations.


Assuntos
Anormalidades Múltiplas/genética , Lipoma/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Adolescente , Catálise , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases , Análise Mutacional de DNA , Feminino , Humanos , Hipertrofia , Lactente , Lipoma/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Genéticos , Mosaicismo
5.
Methods ; 62(3): 185-96, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23748111

RESUMO

The ability to identify a phenotype causing mutation is essential for successful use of mutagenesis screens in many model organisms. Mapping mutations was for a long time a bottleneck in zebrafish research, as the standard method for mapping and identification of mutations was time consuming and expensive. The development of new sequencing technologies in the last couple of years has enabled the rapid and cost-effective sequencing of whole genomes. This has led to the establishment of new strategies for mapping and identification of mutations in several model organisms. The application of these techniques to the zebrafish model, with its large genome and the high level of variation in and between strains, was not trivial. Several techniques have been developed recently, taking the specific characteristics of the zebrafish genome into account. Here we give an overview on how to plan a mapping experiment, detail the critical parameters and discuss available tools for mapping and identification of mutations in zebrafish using next-generation sequencing. Using these methods, zebrafish mutants can now be mapped in a couple of weeks for a fraction of the costs. The increased efficiency of identification of mutations in the zebrafish broadens the utility of the model and allows for systematic analysis of gene function in a vertebrate model.


Assuntos
Cromossomos/química , Genoma , Mutação , Polimorfismo de Nucleotídeo Único , Software , Peixe-Zebra/genética , Algoritmos , Animais , Mapeamento Cromossômico , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Fenótipo
6.
PLoS Genet ; 7(4): e1002050, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21533187

RESUMO

Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a "second hit," that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome.


Assuntos
Encondromatose/genética , Exostose Múltipla Hereditária/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Cromossomos Humanos/genética , Variações do Número de Cópias de DNA , Encondromatose/patologia , Éxons , Deleção de Genes , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Perda de Heterozigosidade , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Análise de Sequência de DNA
7.
Mamm Genome ; 24(1-2): 54-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23179633

RESUMO

Cranial base growth plates are important centers of longitudinal growth in the skull and are responsible for the proper anterior placement of the face and the stimulation of normal cranial vault development. We report that the presphenoidal synchondrosis (PSS), a midline growth plate of the cranial base, closes in the DBA/2J mouse strain but not in other common inbred strains. We investigated the genetics of PSS closure in DBA/2J mice by evaluating F1, F1 backcross, and/or F1 intercross offspring from matings with C57BL/6J and DBA/1J mice, whose PSS remain open. We observed that PSS closure is genetically determined, but not inherited as a simple Mendelian trait. Employing a genome-wide SNP array, we identified a region on chromosome 11 in the C57BL/6J strain that affected the frequency of PSS closure in F1 backcross and F1 intercross offspring. The equivalent region in the DBA/1J strain did not affect PSS closure in F1 intercross offspring. We conclude that PSS closure in the DBA/2J strain is complex and modified by different loci when outcrossed with C57BL/6J and DBA/1J mice.


Assuntos
DNA/isolamento & purificação , Desenvolvimento Embrionário/genética , Fusão Gênica , Padrões de Herança , Crânio/embriologia , Alelos , Animais , Mapeamento Cromossômico , Cromossomos/genética , Cromossomos/metabolismo , Cruzamentos Genéticos , DNA/genética , Feminino , Ligação Genética , Genômica/métodos , Genótipo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Repetições de Microssatélites , Modelos Animais , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
8.
Cell Death Differ ; 28(7): 2083-2094, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33574585

RESUMO

Inappropriate activation of the p53 transcription factor is thought to contribute to the developmental phenotypes in a range of genetic syndromes. Whether p53 activation drives these developmental phenotypes by triggering apoptosis, cell cycle arrest, or other p53 cellular responses, however, has remained elusive. As p53 hyperactivation in embryonic neural crest cells (NCCs) drives a number of phenotypes, including abnormal craniofacial and neuronal development, we investigate the basis for p53 action in this context. We show that p53-driven developmental defects are associated with the induction of a robust pro-apoptotic transcriptional signature. Intriguingly, however, deleting Puma or Caspase9, which encode key components of the intrinsic apoptotic pathway, does not rescue craniofacial, neuronal or pigmentation defects triggered by p53 hyperactivation in NCCs. Immunostaining analyses for two key apoptosis markers confirm that deleting Puma or Caspase9 does indeed impair p53-hyperactivation-induced apoptosis in NCCs. Furthermore, we demonstrate that p53 hyperactivation does not trigger a compensatory dampening of cell cycle progression in NCCs upon inactivation of apoptotic pathways. Together, our results indicate that p53-driven craniofacial, neuronal and pigmentation defects can arise in the absence of apoptosis and cell cycle arrest, suggesting that p53 hyperactivation can act via alternative pathways to trigger developmental phenotypes.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Caspase 9/metabolismo , Embrião de Mamíferos/patologia , Crista Neural/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crista Neural/metabolismo , Fenótipo , Transdução de Sinais
9.
Dev Cell ; 56(14): 2089-2102.e11, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34242585

RESUMO

In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Extremidades/embriologia , Haploinsuficiência , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Padronização Corporal , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Fenótipo , Ribossomos/metabolismo
10.
Dev Cell ; 56(7): 976-984.e3, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33823136

RESUMO

Axon remodeling through sprouting and pruning contributes to the refinement of developing neural circuits. A prominent example is the pruning of developing sensory axons deprived of neurotrophic support, which is mediated by a caspase-dependent (apoptotic) degeneration process. Distal sensory axons possess a latent apoptotic pathway, but a cell body-derived signal that travels anterogradely down the axon is required for pathway activation. The signaling mechanisms that underlie this anterograde process are poorly understood. Here, we show that the tumor suppressor P53 is required for anterograde signaling. Interestingly loss of P53 blocks axonal but not somatic (i.e., cell body) caspase activation. Unexpectedly, P53 does not appear to have an acute transcriptional role in this process and instead appears to act in the cytoplasm to directly activate the mitochondrial apoptotic pathway in axons. Our data support the operation of a cytoplasmic role for P53 in the anterograde death of developing sensory axons.


Assuntos
Axônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Axônios/enzimologia , Axônios/metabolismo , Caspases/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Camundongos , Domínios Proteicos , Células Receptoras Sensoriais/enzimologia , Células Receptoras Sensoriais/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína bcl-X/antagonistas & inibidores
11.
Cell Death Differ ; 27(1): 297-309, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31164717

RESUMO

The Siva protein, named after the Hindu God of Destruction, plays important roles in apoptosis in various contexts, including downstream of death receptor activation or p53 tumor suppressor engagement. The function of Siva in organismal development and homeostasis, however, has remained uncharacterized. Here, we generate Siva knockout mice to characterize the physiological function of Siva in vivo. Interestingly, we find that Siva deficiency causes early embryonic lethality accompanied by multiple phenotypes, including developmental delay, abnormal neural tube closure, and defective placenta and yolk sac formation. Examination of Siva expression during embryogenesis shows that Siva is expressed in both embryonic and extra-embryonic tissues, including within the mesoderm, which may explain the vascular defects observed in the placenta and yolk sac. The embryonic phenotypes caused by Siva loss are not rescued by p53 deficiency, nor do they resemble those of p53 null embryos, suggesting that the embryonic function of Siva is not related to the p53 pathway. Moreover, loss of the Ripk3 necroptosis protein does not rescue the observed lethality or developmental defects, suggesting that Siva may play a non-apoptotic role in development. Collectively, these studies reveal a key role for Siva in proper embryonic development.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Desenvolvimento Embrionário , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Embrião de Mamíferos/irrigação sanguínea , Embrião de Mamíferos/metabolismo , Feminino , Genes Letais , Coração/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Tubo Neural/anormalidades , Fenótipo , Placenta/irrigação sanguínea , Gravidez , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Saco Vitelino/irrigação sanguínea
12.
J Mol Cell Biol ; 11(3): 200-211, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624728

RESUMO

While it is well appreciated that loss of the p53 tumor suppressor protein promotes cancer, growing evidence indicates that increased p53 activity underlies the developmental defects in a wide range of genetic syndromes. The inherited or de novo mutations that cause these syndromes affect diverse cellular processes, such as ribosome biogenesis, DNA repair, and centriole duplication, and analysis of human patient samples and mouse models demonstrates that disrupting these cellular processes can activate the p53 pathway. Importantly, many of the developmental defects in mouse models of these syndromes can be rescued by loss of p53, indicating that inappropriate p53 activation directly contributes to their pathogenesis. A role for p53 in driving developmental defects is further supported by the observation that mouse strains with broad p53 hyperactivation, due to mutations affecting p53 pathway components, display a host of tissue-specific developmental defects, including hematopoietic, neuronal, craniofacial, cardiovascular, and pigmentation defects. Furthermore, germline activating mutations in TP53 were recently identified in two human patients exhibiting bone marrow failure and other developmental defects. Studies in mice suggest that p53 drives developmental defects by inducing apoptosis, restraining proliferation, or modulating other developmental programs in a cell type-dependent manner. Here, we review the growing body of evidence from mouse models that implicates p53 as a driver of tissue-specific developmental defects in diverse genetic syndromes.


Assuntos
Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Morte Celular/genética , Morte Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Mutação/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética
13.
Dev Cell ; 50(2): 212-228.e6, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31178404

RESUMO

Inappropriate activation of the p53 transcription factor contributes to numerous developmental syndromes characterized by distinct constellations of phenotypes. How p53 drives exquisitely specific sets of symptoms in diverse syndromes, however, remains enigmatic. Here, we deconvolute the basis of p53-driven developmental syndromes by leveraging an array of mouse strains to modulate the spatial expression pattern, temporal profile, and magnitude of p53 activation during embryogenesis. We demonstrate that inappropriate p53 activation in the neural crest, facial ectoderm, anterior heart field, and endothelium induces distinct spectra of phenotypes. Moreover, altering the timing and degree of p53 hyperactivation substantially affects the phenotypic outcomes. Phenotypes are associated with p53-driven cell-cycle arrest or apoptosis, depending on the cell type, with gene expression programs, rather than extent of mitochondrial priming, largely governing the specific response. Together, our findings provide a critical framework for decoding the role of p53 as a mediator of diverse developmental syndromes.


Assuntos
Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Mitocôndrias/patologia , Crista Neural/patologia , Análise Espaço-Temporal , Proteína Supressora de Tumor p53/fisiologia , Animais , Apoptose , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Pontos de Checagem do Ciclo Celular , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Crista Neural/metabolismo , Fenótipo
14.
Front Genet ; 9: 473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459807

RESUMO

The chromatin remodeling protein CHD7 is critical for proper formation of the mammalian inner ear. Humans with heterozygous pathogenic variants in CHD7 exhibit CHARGE syndrome, characterized by hearing loss and inner ear dysplasia, including abnormalities of the semicircular canals and Mondini malformations. Chd7 Gt/+ heterozygous null mutant mice also exhibit dysplastic semicircular canals and hearing loss. Prior studies have demonstrated that reduced Chd7 dosage in the ear disrupts expression of genes involved in morphogenesis and neurogenesis, yet the relationships between these changes in gene expression and otic patterning are not well understood. Here, we sought to define roles for CHD7 in global regulation of gene expression and patterning in the developing mouse ear. Using single-cell multiplex qRT-PCR, we analyzed expression of 192 genes in FAC sorted cells from Pax2Cre;mT/mGFP wild type and Chd7 Gt/+ mutant microdissected mouse otocysts. We found that Chd7 haploinsufficient otocysts exhibit a relative enrichment of cells adopting a neuroblast (vs. otic) transcriptional identity compared with wild type. Additionally, we uncovered disruptions in pro-sensory and pro-neurogenic gene expression with Chd7 loss, including genes encoding proteins that function in Notch signaling. Our results suggest that Chd7 is required for early cell fate decisions in the developing ear that involve highly specific aspects of otic patterning and differentiation.

15.
Bone Res ; 6: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29644115

RESUMO

Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor (OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2 (encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-loxP"-mediated gene excision. SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, qRT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.

16.
Cell Death Differ ; 24(4): 575-579, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28211873

RESUMO

The p53 tumor suppressor is a member of a multi-protein family, including the p63 and p73 transcription factors. These proteins can bind to the same consensus sites in DNA and activate the same target genes, suggesting that there could be functional redundancy between them. Indeed, double mutant mice heterozygous for any two family member-encoding genes display enhanced cancer phenotypes relative to single heterozygous mutants. However, whether the family members play redundant roles during embryonic development has remained largely unexplored. Although p53-/-; p73-/- mice are born and manifest phenotypes characteristic of each of the single mutants, the consequences of combined deficiency of p63 and either p53 or p73 have not been elucidated. To examine the functional overlap of p53 family members during development, we bred and analyzed compound mutant embryo phenotypes. We discovered that double knockout embryos and five allele knockout embryos only displayed obvious defects accounted for by loss of single p53 family members. Surprisingly, at mid-gestation (E11), we identified a single viable triple knockout embryo that appeared grossly normal. Together, these results suggest that the p53 family is not absolutely required for early embryogenesis and that p53 family members are largely non-redundant during early development.


Assuntos
Proteína Supressora de Tumor p53/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Camundongos , Camundongos Knockout , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transativadores/deficiência , Transativadores/genética , Transativadores/metabolismo , Proteína Tumoral p73/deficiência , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
17.
Curr Protoc Mol Biol ; 104: 7.13.1-7.13.33, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24510885

RESUMO

Whole-genome sequencing (WGS) has been used in many invertebrate model organisms as an efficient tool for mapping and identification of mutations affecting particular morphological or physiological processes. However, the application of WGS in highly polymorphic, larger genomes of vertebrates has required new experimental and analytical approaches. As a consequence, a wealth of different analytical tools has been developed. As the generation and analysis of data stemming from WGS can be unwieldy and daunting to researchers not accustomed to many common bioinformatic analyses and Unix-based computational tools, we focus on how to manage and analyze next-generation sequencing datasets without an extensive computational infrastructure and in-depth bioinformatic knowledge. Here we describe methods for the analysis of WGS for use in mapping and identification of mutations in the zebrafish. We stress key elements of the experimental design and the analytical approach that allow the use of this method across different sequencing platforms and in different model organisms with annotated genomes.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Peixe-Zebra/genética , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Análise Mutacional de DNA/métodos , Bases de Dados de Ácidos Nucleicos , Biblioteca Gênica , Ligação Genética , Software
18.
Sci Transl Med ; 5(211): 211ra158, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24225945

RESUMO

Osteoporosis pseudoglioma syndrome (OPPG) is a rare genetic disease that produces debilitating effects in the skeleton. OPPG is caused by mutations in LRP5, a WNT co-receptor that mediates osteoblast activity. WNT signaling through LRP5, and also through the closely related receptor LRP6, is inhibited by the protein sclerostin (SOST). It is unclear whether OPPG patients might benefit from the anabolic action of sclerostin neutralization therapy (an approach currently being pursued in clinical trials for postmenopausal osteoporosis) in light of their LRP5 deficiency and consequent osteoblast impairment. To assess whether loss of sclerostin is anabolic in OPPG, we measured bone properties in a mouse model of OPPG (Lrp5(-/-)), a mouse model of sclerosteosis (Sost(-/-)), and in mice with both genes knocked out (Lrp5(-/-);Sost(-/-)). Lrp5(-/-);Sost(-/-) mice have larger, denser, and stronger bones than do Lrp5(-/-) mice, indicating that SOST deficiency can improve bone properties via pathways that do not require LRP5. Next, we determined whether the anabolic effects of sclerostin depletion in Lrp5(-/-) mice are retained in adult mice by treating 17-week-old Lrp5(-/-) mice with a sclerostin antibody for 3 weeks. Lrp5(+/+) and Lrp5(-/-) mice each exhibited osteoanabolic responses to antibody therapy, as indicated by increased bone mineral density, content, and formation rates. Collectively, our data show that inhibiting sclerostin can improve bone mass whether LRP5 is present or not. In the absence of LRP5, the anabolic effects of SOST depletion can occur via other receptors (such as LRP4/6). Regardless of the mechanism, our results suggest that humans with OPPG might benefit from sclerostin neutralization therapies.


Assuntos
Osso e Ossos/fisiopatologia , Modelos Animais de Doenças , Glicoproteínas/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Osteogênese Imperfeita/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Desenvolvimento Ósseo , Glicoproteínas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Knockout , Tamanho do Órgão
19.
Genetics ; 190(3): 1017-24, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22174069

RESUMO

The generation and analysis of mutants in zebrafish has been instrumental in defining the genetic regulation of vertebrate development, physiology, and disease. However, identifying the genetic changes that underlie mutant phenotypes remains a significant bottleneck in the analysis of mutants. Whole-genome sequencing has recently emerged as a fast and efficient approach for identifying mutations in nonvertebrate model organisms. However, this approach has not been applied to zebrafish due to the complicating factors of having a large genome and lack of fully inbred lines. Here we provide a method for efficiently mapping and detecting mutations in zebrafish using these new parallel sequencing technologies. This method utilizes an extensive reference SNP database to define regions of homozygosity-by-descent by low coverage, whole-genome sequencing of pooled DNA from only a limited number of mutant F(2) fish. With this approach we mapped each of the five different zebrafish mutants we sequenced and identified likely causative nonsense mutations in two and candidate mutations in the remainder. Furthermore, we provide evidence that one of the identified mutations, a nonsense mutation in bmp1a, underlies the welded mutant phenotype.


Assuntos
Mapeamento Cromossômico , Genoma , Mutação , Peixe-Zebra/genética , Animais , Bases de Dados de Ácidos Nucleicos , Biblioteca Gênica , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA