Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216370

RESUMO

The repair of severe nerve injuries requires an autograft or conduit to bridge the gap and avoid axon dispersion. Several conduits are used routinely, but their effectiveness is comparable to that of an autograft only for short gaps. Understanding nerve regeneration within short conduits could help improve their efficacy for longer gaps. Since Schwann cells are known to migrate on endothelial cells to colonize the "nerve bridge", the new tissue spontaneously forming to connect the injured nerve stumps, here we aimed to investigate whether this migratory mechanism drives Schwann cells to also proceed within the nerve conduits used to repair large nerve gaps. Injured median nerves of adult female rats were repaired with 10 mm chitosan conduits and the regenerated nerves within conduits were analyzed at different time points using confocal imaging of sequential thick sections. Our data showed that the endothelial cells formed a dense capillary network used by Schwann cells to migrate from the two nerve stumps into the conduit. We concluded that angiogenesis played a key role in the nerve conduits, not only by supporting cell survival but also by providing a pathway for the migration of newly formed Schwann cells.


Assuntos
Vasos Sanguíneos/fisiologia , Tecido Nervoso/fisiologia , Células de Schwann/fisiologia , Nervo Isquiático/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Vasos Sanguíneos/efeitos dos fármacos , Quitosana/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Feminino , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Tecido Nervoso/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ratos , Ratos Wistar , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Engenharia Tecidual/métodos
2.
Int J Mol Sci ; 22(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299037

RESUMO

Peripheral nerves are highly susceptible to injuries induced from everyday activities such as falling or work and sport accidents as well as more severe incidents such as car and motorcycle accidents. Many efforts have been made to improve nerve regeneration, but a satisfactory outcome is still unachieved, highlighting the need for easy to apply supportive strategies for stimulating nerve growth and functional recovery. Recent focus has been made on the effect of the consumed diet and its relation to healthy and well-functioning body systems. Normally, a balanced, healthy daily diet should provide our body with all the needed nutritional elements for maintaining correct function. The health of the central and peripheral nervous system is largely dependent on balanced nutrients supply. While already addressed in many reviews with different focus, we comprehensively review here the possible role of different nutrients in maintaining a healthy peripheral nervous system and their possible role in supporting the process of peripheral nerve regeneration. In fact, many dietary supplements have already demonstrated an important role in peripheral nerve development and regeneration; thus, a tailored dietary plan supplied to a patient following nerve injury could play a non-negotiable role in accelerating and promoting the process of nerve regeneration.


Assuntos
Dieta , Regeneração Nervosa , Nutrientes/farmacologia , Traumatismos dos Nervos Periféricos/terapia , Nervos Periféricos/citologia , Animais , Humanos , Nervos Periféricos/efeitos dos fármacos , Recuperação de Função Fisiológica
3.
Mol Cell Neurosci ; 77: 87-94, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27989735

RESUMO

Deficits in neuronal migration during development in the central nervous system may contribute to psychiatric diseases. The ligand neuregulin1 (NRG1) and its receptor ErbB4 are genes conferring susceptibility to schizophrenia, playing a key role in the control of neuronal migration both during development and adulthood. Several NRG1 and ErbB4 isoforms were identified, which deeply differ in their characteristics. Here we focused on the four ErbB4 isoforms and the two NRG1 isoforms differing in their EGF-like domain, namely α and ß. We hypothesized that these isoforms, which are differently regulated in schizophrenic patients, could play different roles in neuronal migration. Our hypothesis was strengthened by the observation that both NRG1α and NRG1ß and the four ErbB4 isoforms are expressed in the medial and lateral ganglionic eminences and in the cortex during development in rat. We analysed in vitro the signal transduction pathways activated by the different ErbB4 isoforms following the treatment with soluble recombinant NRG1α or NRG1ß and the ability to stimulate migration. Our data show that two ErbB4 isoforms, namely JMa-cyt2 and JMb-cyt1, following NRG1α and NRG1ß treatment, strongly activate AKT phosphorylation, conferring high migratory activity to neuronal progenitors, thus demonstrating that both NRG1α and NRG1ß can play a role in neuronal migration.


Assuntos
Movimento Celular , Células-Tronco Neurais/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-4/metabolismo , Animais , Linhagem Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Hipotálamo/citologia , Hipotálamo/embriologia , Hipotálamo/metabolismo , Células-Tronco Neurais/fisiologia , Neuregulina-1/genética , Neurogênese , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptor ErbB-4/genética
4.
Eur J Neurosci ; 43(3): 351-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26061116

RESUMO

The peripheral nervous system has an intrinsic capability to regenerate, crucially related to the ability of Schwann cells (SC) to create a permissive environment, for example, through production of regeneration-promoting neurotrophic factors. Survival, proliferation, migration and differentiation of SC into a myelinating phenotype during development and after injury is regulated by different Neuregulin1 (NRG1) isoforms. This study investigates the expression of different NRG1 isoforms and of their ErbB receptors in distal rat median nerve samples under regenerating conditions after a mild (crush) and more severe (end-to-end repair) injury and under degenerating condition. The expression of the NRG1/ErbB system was evaluated at mRNA and protein level, and demonstrated to be specific for distinct and consecutive phases following nerve injury and regeneration or the progress in degeneration. For the first time a detailed analysis of expression profiles not only of soluble and transmembrane NRG1 isoforms, but also of alpha and beta as well as type a, b and c isoforms is presented. The results of mRNA and protein expression pattern analyses were related to nerve ultrastructure changes evaluated by electron microscopy. In particular, transmembrane NRG1 isoforms are differentially regulated and proteolytically processed under regeneration and degeneration conditions. Soluble NRG1 isoforms alpha and beta, as well as type a and b, are strongly upregulated during axonal regrowth, while type c NRG1 isoform is downregulated. This is accompanied by an upregulation of ErbB receptors. This accurate regulation suggests that each molecule plays a specific role that could be clinically exploited to improve nerve regeneration.


Assuntos
Receptores ErbB/metabolismo , Regeneração Nervosa , Neuregulina-1/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Regulação para Cima , Animais , Células Cultivadas , Receptores ErbB/genética , Feminino , Neuregulina-1/genética , Traumatismos dos Nervos Periféricos/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Células de Schwann/metabolismo , Células de Schwann/patologia
5.
Int J Mol Sci ; 16(6): 12925-42, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26062130

RESUMO

Electrospun fibrous substrates mimicking extracellular matrices can be prepared by electrospinning, yielding aligned fibrous matrices as internal fillers to manufacture artificial nerves. Gelatin aligned nano-fibers were prepared by electrospinning after tuning the collector rotation speed. The effect of alignment on cell adhesion and proliferation was tested in vitro using primary cultures, the Schwann cell line, RT4-D6P2T, and the sensory neuron-like cell line, 50B11. Cell adhesion and proliferation were assessed by quantifying at several time-points. Aligned nano-fibers reduced adhesion and proliferation rate compared with random fibers. Schwann cell morphology and organization were investigated by immunostaining of the cytoskeleton. Cells were elongated with their longitudinal body parallel to the aligned fibers. B5011 neuron-like cells were aligned and had parallel axon growth when cultured on the aligned gelatin fibers. The data show that the alignment of electrospun gelatin fibers can modulate Schwann cells and axon organization in vitro, suggesting that this substrate shows promise as an internal filler for the design of artificial nerves for peripheral nerve reconstruction.


Assuntos
Axônios/fisiologia , Gelatina/química , Nanofibras/química , Regeneração Nervosa , Células de Schwann/fisiologia , Animais , Axônios/efeitos dos fármacos , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Gelatina/farmacologia , Regeneração Tecidual Guiada/métodos , Ratos , Células de Schwann/efeitos dos fármacos
6.
Biomedicines ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35740318

RESUMO

BACKGROUND: Somatic nerve injuries are a rising problem leading to disability associated with neuropathic pain commonly reported as mechanical allodynia (MA) and hyperalgesia. These symptoms are strongly dependent on specific processes in the dorsal root ganglia (DRG). Neurodynamic treatment (NDT), consisting of selective uniaxial nerve repeated tension protocols, effectively reduces pain and disability in neuropathic pain patients even though the biological mechanisms remain poorly characterized. We aimed to define, both in vivo and ex vivo, how NDT could promote nerve regeneration and modulate some processes in the DRG linked to MA and hyperalgesia. METHODS: We examined in Wistar rats, after unilateral median and ulnar nerve crush, the therapeutic effects of NDT and the possible protective effects of NDT administered for 10 days before the injury. We adopted an ex vivo model of DRG organotypic explant subjected to NDT to explore the selective effects on DRG cells. RESULTS: Behavioural tests, morphological and morphometrical analyses, and gene and protein expression analyses were performed, and these tests revealed that NDT promotes nerve regeneration processes, speeds up sensory motor recovery, and modulates mechanical pain by affecting, in the DRG, the expression of TACAN, a mechanosensitive receptor shared between humans and rats responsible for MA and hyperalgesia. The ex vivo experiments have shown that NDT increases neurite regrowth and confirmed the modulation of TACAN. CONCLUSIONS: The results obtained in this study on the biological and molecular mechanisms induced by NDT will allow the exploration, in future clinical trials, of its efficacy in different conditions of neuropathic pain.

7.
J Clin Med ; 10(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920209

RESUMO

As a consequence of trauma or surgical interventions on peripheral nerves, scar tissue can form, interfering with the capacity of the nerve to regenerate properly. Scar tissue may also lead to traction neuropathies, with functional dysfunction and pain for the patient. The search for effective antiadhesion products to prevent scar tissue formation has, therefore, become an important clinical challenge. In this review, we perform extensive research on the PubMed database, retrieving experimental papers on the prevention of peripheral nerve scarring. Different parameters have been considered and discussed, including the animal and nerve models used and the experimental methods employed to simulate and evaluate scar formation. An overview of the different types of antiadhesion devices and strategies investigated in experimental models is also provided. To successfully evaluate the efficacy of new antiscarring agents, it is necessary to have reliable animal models mimicking the complications of peripheral nerve scarring and also standard and quantitative parameters to evaluate perineural scars. So far, there are no standardized methods used in experimental research, and it is, therefore, difficult to compare the results of the different antiadhesion devices.

8.
Sci Rep ; 11(1): 13277, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168249

RESUMO

Nerves are subjected to tensile forces in various paradigms such as injury and regeneration, joint movement, and rehabilitation treatments, as in the case of neurodynamic treatment (NDT). The NDT induces selective uniaxial repeated tension on the nerve and was described to be an effective treatment to reduce pain in patients. Nevertheless, the biological mechanisms activated by the NDT promoting the healing processes of the nerve are yet still unknown. Moreover, a dose-response analysis to define a standard protocol of treatment is unavailable. In this study, we aimed to define in vitro whether NDT protocols could induce selective biological effects on sensory and motor neurons, also investigating the possible involved molecular mechanisms taking a role behind this change. The obtained results demonstrate that NDT induced significant dose-dependent changes promoting cell differentiation, neurite outgrowth, and neuron survival, especially in nociceptive neurons. Notably, NDT significantly upregulated PIEZO1 gene expression. A gene that is coding for an ion channel that is expressed both in murine and human sensory neurons and is related to mechanical stimuli transduction and pain suppression. Other genes involved in mechanical allodynia related to neuroinflammation were not modified by NDT. The results of the present study contribute to increase the knowledge behind the biological mechanisms activated in response to NDT and to understand its efficacy in improving nerve regenerational physiological processes and pain reduction.


Assuntos
Neurônios Motores/fisiologia , Modalidades de Fisioterapia , Células Receptoras Sensoriais/fisiologia , Apoptose , Linhagem Celular , Expressão Gênica , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Técnicas In Vitro , Neurônios Motores/metabolismo , Células Receptoras Sensoriais/metabolismo
9.
Sci Rep ; 10(1): 11666, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32647273

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Neural Regen Res ; 14(6): 1079-1084, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30762022

RESUMO

Nerve regeneration after delayed nerve repair is often unsuccessful. Indeed, the expression of genes associated with regeneration, including neurotrophic and gliotrophic factors, is drastically reduced in the distal stump of chronically transected nerves; moreover, Schwann cells undergo atrophy, losing their ability to sustain regeneration. In the present study, to provide a three-dimensional environment and trophic factors supporting Schwann cell activity and axon re-growth, we combined the use of an effective conduit (a chitosan tube) with a promising intraluminal structure (fresh longitudinal skeletal muscle fibers). This enriched conduit was used to repair a 10-mm rat median nerve gap after 3-month delay and functional and morphometrical analyses were performed 4 months after nerve reconstruction. Our data show that the enriched chitosan conduit is as effective as the hollow chitosan conduit in promoting nerve regeneration, and its efficacy is not statistically different from the autograft, considered the "gold standard" technique for nerve reconstruction. Since hollow tubes not always lead to good results after long defects (> 20 mm), we believe that the conduit enriched with fresh muscle fibers could be a promising strategy to repair longer gaps, as muscle fibers create a favorable three-dimensional environment and release trophic factors. All procedures were approved by the Bioethical Committee of the University of Torino and by the Italian Ministry of Health (approval number: 864/2016/PR) on September 14, 2016.

11.
Sci Rep ; 8(1): 5047, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29568012

RESUMO

Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat superficial digitorum flexor muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1ß isoforms play a key role in the muscle reaction to injury. Indeed, in vitro experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1ß treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Neuregulina-1/genética , Receptor ErbB-2/genética , Animais , Sobrevivência Celular/genética , Denervação/métodos , Regulação da Expressão Gênica , Humanos , Músculo Esquelético/lesões , Músculo Esquelético/inervação , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Junção Neuromuscular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Receptores Colinérgicos/genética , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia
12.
Biomed Res Int ; 2018: 9175248, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30009176

RESUMO

Muscle-in-vein conduit is successfully employed for repairing nerve injuries: the vein prevents muscle fiber dispersion, while the muscle prevents the vein collapse and creates a favorable environment for Schwann cell migration and axon regrowth. However, it requires microsurgical skills. In this study we show a simple strategy to improve the performance of a chitosan hollow tube by the introduction of fresh skeletal muscle fibers. The hypothesis is to overcome the technical issue of the muscle-in-vein preparation and to take advantage of fiber muscle properties to create an easy and effective conduit for nerve regeneration. Rat median nerve gaps were repaired with chitosan tubes filled with skeletal muscle fibers (muscle-in-tube graft), hollow chitosan tubes, or autologous nerve grafts. Our results demonstrate that the fresh skeletal muscle inside the conduit is an endogenous source of soluble Neuregulin 1, a key factor for Schwann cell survival and dedifferentiation, absent in the hollow tube during the early phase of regeneration. However, nerve regeneration assessed at late time point was similar to that obtained with the hollow tube. To conclude, the muscle-in-tube graft is surgically easy to perform and we suggest that it might be a promising strategy to repair longer nerve gap or for secondary nerve repair, situations in which Schwann cell atrophy is a limiting factor for recovery.


Assuntos
Quitosana , Regeneração Nervosa , Animais , Fibras Musculares Esqueléticas , Músculo Esquelético , Ratos , Células de Schwann , Nervo Isquiático
13.
Exp Biol Med (Maywood) ; 243(4): 370-374, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29350067

RESUMO

Neuregulin1 (NRG1) is a growth factor playing a pivotal role in peripheral nerve development through the activation of the transmembrane co-receptors ErbB2-ErbB3. Soluble NRG1 isoforms, mainly secreted by Schwann cells, are strongly and transiently up-regulated after acute peripheral nerve injury, thus suggesting that they play a crucial role also in the response to nerve damage. Here we show that in the rat experimental model of the peripheral demyelinating neuropathy Charcot-Marie-Tooth 1A (CMT1A) the expression of the different NRG1 isoforms (soluble, type α and ß, type a and b) is strongly up-regulated, as well as the expression of NRG1 co-receptors ErbB2-ErbB3, thus showing that CMT1A nerves have a gene expression pattern highly reminiscent of injured nerves. Because it has been shown that high concentrations of soluble NRG1 negatively affect myelination, we suggest that soluble NRG1 over-expression might play a negative role in the pathogenesis of CMT1A disease, and that a therapeutic approach, aimed to interfere with NRG1 activity, might be beneficial for CMT1A patients. Further studies will be necessary to test this hypothesis in animal models and to evaluate NRG1 expression in human patients. Impact statement Charcot-Marie-Tooth1A (CMT1A) is one of the most frequent inherited neurological diseases, characterized by chronic demyelination of peripheral nerves, for which effective therapies are not yet available. It has been recently proposed that the treatment with soluble Neuregulin1 (NRG1), a growth factor released by Schwann cells immediately after acute nerve injury, might be effective in CMT1A treatment. However, the expression of the different isoforms of endogenous NRG1 in CMT1A nerves has not been yet investigated. In this preliminary study, we demonstrate that different isoforms of soluble NRG1 are strongly over-expressed in CMT1A nerves, thus suggesting that a therapeutic approach based on NRG1 treatment should be carefully reconsidered. If soluble NRG1 is over-expressed also in human CMT1A nerves, a therapeutic approach aimed to inhibit (instead of stimulate) the signal transduction pathways driven by NRG1 might be fruitfully developed. Further studies will be necessary to test these hypotheses.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Neuregulina-1/sangue , Regulação para Cima , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ratos Sprague-Dawley , Receptor ErbB-2/análise , Receptor ErbB-3/análise , Células de Schwann/metabolismo
14.
Anat Rec (Hoboken) ; 301(10): 1668-1677, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29710414

RESUMO

Nerve guidance channels facilitate nerve regeneration and represent an attractive alternative to nerve graft. Actually, nano- and microstructured biomaterials for nerve reconstruction have gained much attention, thanks to recent discoveries about topography effects on cell behavior and morphology. Electrospun fibres have been proposed as filler or structural component for nerve guidance channels, principally due to their similarity with extracellular matrices which facilitate nerve regeneration. Among several tested biomaterials, gelatin has been used to prepare fibres able to support Schwann cell migration and neurite outgrowth. In this work, the effects of gelatin fibre size on axon elongation and Schwann cell migration have been tested using dorsal root ganglia cultures. Moreover, we analyzed how fibres might affect the expression of specific neuronal subtype markers in sensory neuron cultures and how the combined effect of substrate and biological cues affects neurite growth and gene expression. Data show that fibre topography differentially affects both neurite outgrowth and gene expression and suggest that fibre size and topography associated to specific growth factor exposure might be used to select neuron subpopulations and favor the axonal growth of specific neurons. Anat Rec, 301:1668-1677, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Nanofibras , Fatores de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Alicerces Teciduais , Animais , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Gânglios Espinais/citologia , Neuritos/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Cultura Primária de Células , Ratos Wistar
15.
J Neurosurg ; 127(4): 843-856, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28059646

RESUMO

OBJECTIVE Multiple factors may affect functional recovery after peripheral nerve injury, among them the lesion site and the interval between the injury and the surgical repair. When the nerve segment distal to the lesion site undergoes chronic degeneration, the ensuing regeneration (when allowed) is often poor. The aims of the current study were as follows: 1) to examine the expression changes of the neuregulin 1/ErbB system during long-term nerve degeneration; and 2) to investigate whether a chronically denervated distal nerve stump can sustain nerve regeneration of freshly axotomized axons. METHODS This study used a rat surgical model of delayed nerve repair consisting of a cross suture between the chronically degenerated median nerve distal stump and the freshly axotomized ulnar proximal stump. Before the suture, a segment of long-term degenerated median nerve stump was harvested for analysis. Functional, morphological, morphometric, and biomolecular analyses were performed. RESULTS The results showed that neuregulin 1 is highly downregulated after chronic degeneration, as well as some Schwann cell markers, demonstrating that these cells undergo atrophy, which was also confirmed by ultrastructural analysis. After delayed nerve repair, it was observed that chronic degeneration of the distal nerve stump compromises nerve regeneration in terms of functional recovery, as well as the number and size of regenerated myelinated fibers. Moreover, neuregulin 1 is still downregulated after delayed regeneration. CONCLUSIONS The poor outcome after delayed nerve regeneration might be explained by Schwann cell impairment and the consequent ineffective support for nerve regeneration. Understanding the molecular and biological changes occurring both in the chronically degenerating nerve and in the delayed nerve repair may be useful to the development of new strategies to promote nerve regeneration. The results suggest that neuregulin 1 has an important role in Schwann cell activity after denervation, indicating that its manipulation might be a good strategy for improving outcome after delayed nerve repair.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos/fisiopatologia , Células de Schwann , Animais , Denervação , Feminino , Degeneração Neural , Neuregulina-1/fisiologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA