Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
EMBO J ; 41(20): e111318, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36102610

RESUMO

Post-translational modifications by ubiquitin-like proteins (UBLs) are essential for nearly all cellular processes. Ubiquitin-related modifier 1 (Urm1) is a unique UBL, which plays a key role in tRNA anticodon thiolation as a sulfur carrier protein (SCP) and is linked to the noncanonical E1 enzyme Uba4 (ubiquitin-like protein activator 4). While Urm1 has also been observed to conjugate to target proteins like other UBLs, the molecular mechanism of its attachment remains unknown. Here, we reconstitute the covalent attachment of thiocarboxylated Urm1 to various cellular target proteins in vitro, revealing that, unlike other known UBLs, this process is E2/E3-independent and requires oxidative stress. Furthermore, we present the crystal structures of the peroxiredoxin Ahp1 before and after the covalent attachment of Urm1. Surprisingly, we show that urmylation is accompanied by the transfer of sulfur to cysteine residues in the target proteins, also known as cysteine persulfidation. Our results illustrate the role of the Uba4-Urm1 system as a key evolutionary link between prokaryotic SCPs and the UBL modifications observed in modern eukaryotes.


Assuntos
Ubiquitina , Ubiquitinas , Anticódon , Proteínas de Transporte/metabolismo , Cisteína , Peroxirredoxinas , Enxofre/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
2.
EMBO J ; 39(19): e105087, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901956

RESUMO

The chemical modification of tRNA bases by sulfur is crucial to tune translation and to optimize protein synthesis. In eukaryotes, the ubiquitin-related modifier 1 (Urm1) pathway is responsible for the synthesis of 2-thiolated wobble uridine (U34 ). During the key step of the modification cascade, the E1-like activating enzyme ubiquitin-like protein activator 4 (Uba4) first adenylates and thiocarboxylates the C-terminus of its substrate Urm1. Subsequently, activated thiocarboxylated Urm1 (Urm1-COSH) can serve as a sulfur donor for specific tRNA thiolases or participate in ubiquitin-like conjugation reactions. Structural and mechanistic details of Uba4 and Urm1 have remained elusive but are key to understand the evolutionary branch point between ubiquitin-like proteins (UBL) and sulfur-relay systems. Here, we report the crystal structures of full-length Uba4 and its heterodimeric complex with its substrate Urm1. We show how the two domains of Uba4 orchestrate recognition, binding, and thiocarboxylation of the C-terminus of Urm1. Finally, we uncover how the catalytic domains of Uba4 communicate efficiently during the reaction cycle and identify a mechanism that enables Uba4 to protect itself against self-conjugation with its own product, namely activated Urm1-COSH.


Assuntos
Nucleotidiltransferases/química , RNA de Transferência/química , Enxofre/química , Sulfurtransferases/química , Ubiquitinas/química , Humanos , Nucleotidiltransferases/metabolismo , RNA de Transferência/metabolismo , Enxofre/metabolismo , Sulfurtransferases/metabolismo , Ubiquitinas/metabolismo
3.
BMC Plant Biol ; 24(1): 55, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238701

RESUMO

BACKGROUND: This study examines the biological implications of an overlap between two sequences in the Arabidopsis genome, the 3'UTR of the PHOT2 gene and a putative AT5G58150 gene, encoded on the complementary strand. AT5G58150 is a probably inactive protein kinase that belongs to the transmembrane, leucine-rich repeat receptor-like kinase family. Phot2 is a membrane-bound UV/blue light photoreceptor kinase. Thus, both proteins share their cellular localization, on top of the proximity of their loci. RESULTS: The extent of the overlap between 3'UTR regions of AT5G58150 and PHOT2 was found to be 66 bp, using RACE PCR. Both the at5g58150 T-DNA SALK_093781C (with insertion in the promoter region) and 35S::AT5G58150-GFP lines overexpress the AT5G58150 gene. A detailed analysis did not reveal any substantial impact of PHOT2 or AT5G58150 on their mutual expression levels in different light and osmotic stress conditions. AT5G58150 is a plasma membrane protein, with no apparent kinase activity, as tested on several potential substrates. It appears not to form homodimers and it does not interact with PHOT2. Lines that overexpress AT5G58150 exhibit a greater reduction in lateral root density due to salt and osmotic stress than wild-type plants, which suggests that AT5G58150 may participate in root elongation and formation of lateral roots. In line with this, mass spectrometry analysis identified proteins with ATPase activity, which are involved in proton transport and cell elongation, as putative interactors of AT5G58150. Membrane kinases, including other members of the LRR RLK family and BSK kinases (positive regulators of brassinosteroid signalling), can also act as partners for AT5G58150. CONCLUSIONS: AT5G58150 is a membrane protein that does not exhibit measurable kinase activity, but is involved in signalling through interactions with other proteins. Based on the interactome and root architecture analysis, AT5G58150 may be involved in plant response to salt and osmotic stress and the formation of roots in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regiões 3' não Traduzidas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Fosforilação , Plantas/genética , Proteínas Quinases/genética
4.
Mol Cell Biochem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743322

RESUMO

Aging is the most important risk factor for the development of cardiovascular diseases. Senescent cells release plethora of factors commonly known as the senescence-associated secretory phenotype, which can modulate the normal function of the vascular wall. It is currently not well understood if and how endothelial cell senescence can affect adventitial niche. The aim of this study was to characterize oxidative stress-induced endothelial cells senescence and identify their paracrine effects on the primary cell type of the adventitia, the fibroblasts. Human aortic endothelial cells (HAEC) were treated with hydrogen peroxide to induce premature senescence. Mass spectrometry analysis identified several proteomic changes in senescent HAEC with top upregulated secretory protein growth differentiation factor 15 (GDF-15). Treatment of the human adventitial fibroblast cell line (hAdv cells) with conditioned medium (CM) from senescent HAEC resulted in alterations in the proteome of hAdv cells identified in mass spectrometry analysis. Majority of differentially expressed proteins in hAdv cells treated with CM from senescent HAEC were involved in the uptake and metabolism of lipoproteins, mitophagy and ferroptosis. We next analyzed if some of these changes and pathways might be regulated by GDF-15. We found that recombinant GDF-15 affected some ferroptosis-related factors (e.g. ferritin) and decreased oxidative stress in the analyzed adventitial fibroblast cell line, but it had no effect on erastin-induced cell death. Contrary, silencing of GDF-15 in hAdv cells was protective against this ferroptotic stimuli. Our findings can be of importance for potential therapeutic strategies targeting cell senescence or ferroptosis to alleviate vascular diseases.

5.
Cancer Cell Int ; 23(1): 2, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604669

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. The molecules (proteins, metabolites) secreted by tumors affect their extracellular milieu to support cancer progression. If secreted in amounts detectable in plasma, these molecules can also serve as useful, minimal invasive biomarkers. The knowledge of ccRCC tumor microenvironment is fragmentary. In particular, the links between ccRCC transcriptome and the composition of extracellular milieu are weakly understood. In this study, we hypothesized that ccRCC transcriptome is reprogrammed to support alterations in tumor microenvironment. Therefore, we comprehensively analyzed ccRCC extracellular proteomes and metabolomes as well as transcriptomes of ccRCC cells to find molecules contributing to renal tumor microenvironment. METHODS: Proteomic and metabolomics analysis of conditioned media isolated from normal kidney cells as well as five ccRCC cell lines was performed using mass spectrometry, with the following ELISA validation. Transcriptomic analysis was done using microarray analysis and validated using real-time PCR. Independent transcriptomic and proteomic datasets of ccRCC tumors were used for the analysis of gene and protein expression as well as the level of the immune infiltration. RESULTS: Renal cancer secretome contained 85 proteins detectable in human plasma, consistently altered in all five tested ccRCC cell lines. The top upregulated extracellular proteins included SPARC, STC2, SERPINE1, TGFBI, while downregulated included transferrin and DPP7. The most affected extracellular metabolites were increased 4-hydroxy-proline, succinic acid, cysteine, lactic acid and downregulated glutamine. These changes were associated with altered expression of genes encoding the secreted proteins (SPARC, SERPINE1, STC2, DPP7), membrane transporters (SLC16A4, SLC6A20, ABCA12), and genes involved in protein trafficking and secretion (KIF20A, ANXA3, MIA2, PCSK5, SLC9A3R1, SYTL3, and WNTA7). Analogous expression changes were found in ccRCC tumors. The expression of SPARC predicted the infiltration of ccRCC tumors with endothelial cells. Analysis of the expression of the 85 secretome genes in > 12,000 tumors revealed that SPARC is a PanCancer indicator of cancer-associated fibroblasts' infiltration. CONCLUSIONS: Transcriptomic reprogramming of ccRCC supports the changes in an extracellular milieu which are associated with immune infiltration. The proteins identified in our study represent valuable cancer biomarkers detectable in plasma.

6.
Appl Microbiol Biotechnol ; 106(1): 349-367, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34913994

RESUMO

In this research, we were interested in answering a question whether subjecting a Yarrowia lipolytica strain overproducing a recombinant secretory protein (rs-Prot) to pre-optimized stress factors may enhance synthesis of the rs-Prot. Increased osmolarity (3 Osm kg-1) was the primary stress factor implemented alone or in combination with decreased temperature (20 °C), known to promote synthesis of rs-Prots. The treatments were executed in batch bioreactor cultures, and the cellular response was studied in terms of culture progression, gene expression and global proteomics, to get insight into molecular bases underlying an awaken reaction. Primarily, we observed that hyperosmolarity executed by high sorbitol concentration does not enhance synthesis of the rs-Prot but increases its transcription. Expectedly, hyperosmolarity induced synthesis of polyols at the expense of citric acid synthesis and growth, which was severely limited. A number of stress-related proteins were upregulated, including heat-shock proteins (HSPs) and aldo-keto reductases, as observed at transcriptomics and proteomics levels. Concerted downregulation of central carbon metabolism, including glycolysis, tricarboxylic acid cycle and fatty acid synthesis, highlighted redirection of carbon fluxes. Elevated abundance of HSPs and osmolytes did not outbalance the severe limitation of protein synthesis, marked by orchestrated downregulation of translation (elongation factors, several aa-tRNA synthetases), amino acid biosynthesis and ribosome biogenesis in response to the hyperosmolarity. Altogether we settled that increased osmolarity is not beneficial for rs-Prots synthesis in Y. lipolytica, even though some elements of the response could assist this process. Insight into global changes in the yeast proteome under the treatments is provided. KEY POINTS: • Temp enhances, but Osm decreases rs-Prots synthesis by Y. lipolytica. • Enhanced abundance of HSPs and osmolytes is overweighted by limited translation. • Global proteome under Osm, Temp and Osm Temp treatments was studied.


Assuntos
Yarrowia , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Proteômica , Proteínas Recombinantes/genética , Yarrowia/genética
7.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408771

RESUMO

Proteins are ubiquitous macromolecules that display a vast repertoire of chemical and enzymatic functions, making them suitable candidates for chemosignals, used in intraspecific communication. Proteins are present in the skin gland secretions of vertebrates but their identity, and especially, their functions, remain largely unknown. Many lizard species possess femoral glands, i.e., epidermal organs primarily involved in the production and secretion of chemosignals, playing a pivotal role in mate choice and intrasexual communication. The lipophilic fraction of femoral glands has been well studied in lizards. In contrast, proteins have been the focus of only a handful of investigations. Here, we identify and describe inter-individual expression patterns and the functionality of proteins present in femoral glands of male sand lizards (Lacerta agilis) by applying mass spectrometry-based proteomics. Our results show that the total number of proteins varied substantially among individuals. None of the identified femoral gland proteins could be directly linked to chemical communication in lizards, although this result hinges on protein annotation in databases in which squamate semiochemicals are poorly represented. In contrast to our expectations, the proteins consistently expressed across individuals were related to the immune system, antioxidant activity and lipid metabolism as their main functions, showing that proteins in reptilian epidermal glands may have other functions besides chemical communication. Interestingly, we found expression of the Major Histocompatibility Complex (MHC) among the multiple and diverse biological processes enriched in FGs, tentatively supporting a previous hypothesis that MHC was coopted for semiochemical function in sand lizards, specifically in mate recognition. Our study shows that mass spectrometry-based proteomics are a powerful tool for characterizing and deciphering the role of proteins secreted by skin glands in non-model vertebrates.


Assuntos
Lagartos , Animais , Humanos , Sistema Imunitário/metabolismo , Metabolismo dos Lipídeos , Lagartos/metabolismo , Masculino , Feromônios/metabolismo , Proteômica
8.
Neurochem Res ; 46(8): 2097-2111, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34024016

RESUMO

Although antipsychotics are routinely used in the treatment of schizophrenia for the last decades, their precise mechanism of action is still unclear. In this study, we investigated changes in the PC12 cells' proteome under the influence of clozapine, risperidone, and haloperidol to identify protein pathways regulated by antipsychotics. Analysis of the protein profiles in two time points: after 12 and 24 h of incubation with drugs revealed significant alterations in 510 proteins. Further canonical pathway analysis revealed an inhibition of ciliary trophic factor signaling after treatment with haloperidol and showed a decrease in acute phase response signaling in the risperidone group. Interestingly, all tested drugs have caused changes in PC12 proteome which correspond to inhibition of cytokines: tumor necrosis factor (TNF) and transforming growth factor beta 1 (TGF-ß1). We also found that the 12-h incubation with clozapine caused up-regulation of protein kinase A signaling and translation machinery. After 24 h of treatment with clozapine, the inhibition of the actin cytoskeleton signaling and Rho proteins signaling was revealed. The obtained results suggest that the mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) play a central role in the signal transduction of clozapine.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Antipsicóticos/farmacologia , Clozapina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Reação de Fase Aguda/metabolismo , Animais , Fator Neurotrófico Ciliar/metabolismo , Haloperidol/farmacologia , Células PC12 , Proteoma/metabolismo , Ratos , Risperidona/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
9.
Cell Mol Life Sci ; 77(23): 4899-4919, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893310

RESUMO

Obesity is considered a serious chronic disease, associated with an increased risk of developing cardiovascular diseases, non-alcoholic fatty liver disease and type 2 diabetes. Monocyte chemoattractant protein-1-induced protein-1 (MCPIP1) is an RNase decreasing stability of transcripts coding for inflammation-related proteins. In addition, MCPIP1 plays an important role in the regulation of adipogenesis in vitro by reducing the expression of key transcription factors, including C/EBPß. To elucidate the role of MCPIP1 in adipocyte biology, we performed RNA-Seq and proteome analysis in 3T3-L1 adipocytes overexpressing wild-type (WTMCPIP1) and the mutant form of MCPIP1 protein (D141NMCPIP1). Our RNA-Seq analysis followed by confirmatory Q-RT-PCR revealed that elevated MCPIP1 levels in 3T3-L1 adipocytes upregulated transcripts encoding proteins involved in signal transmission and cellular remodeling and downregulated transcripts of factors involved in metabolism. These data are consistent with our proteomic analysis, which showed that MCPIP1 expressing adipocytes exhibit upregulation of proteins involved in cellular organization and movement and decreased levels of proteins involved in lipid and carbohydrate metabolism. Moreover, MCPIP1 adipocytes are characterized by decreased level of insulin receptor, reduced insulin-induced Akt phosphorylation, as well as depleted Glut4 level and impaired glucose uptake. Overexpression of Glut4 in 3T3-L1 cells expressed WTMCPIP1 rescued adipogenesis. Interestingly, we found decreased level of MCPIP1 along with an increase in body mass index in subcutaneous adipose tissue. The presented data show a novel role of MCPIP1 in modulating insulin sensitivity in adipocytes. Overall, our findings demonstrate that MCPIP1 is an important regulator of adipogenesis and adipocyte metabolism.


Assuntos
Adipócitos/metabolismo , Adipogenia , Genômica , Ribonucleases/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Insulina/farmacologia , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Mutação/genética , Obesidade/metabolismo , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Ribonucleases/genética , Transdução de Sinais/efeitos dos fármacos , Magreza/metabolismo , Fatores de Transcrição/genética , Transcriptoma/genética
10.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201710

RESUMO

High temperature stress leads to complex changes to plant functionality, which affects, i.a., the cell wall structure and the cell wall protein composition. In this study, the qualitative and quantitative changes in the cell wall proteome of Brachypodium distachyon leaves in response to high (40 °C) temperature stress were characterised. Using a proteomic analysis, 1533 non-redundant proteins were identified from which 338 cell wall proteins were distinguished. At a high temperature, we identified 46 differentially abundant proteins, and of these, 4 were over-accumulated and 42 were under-accumulated. The most significant changes were observed in the proteins acting on the cell wall polysaccharides, specifically, 2 over- and 12 under-accumulated proteins. Based on the qualitative analysis, one cell wall protein was identified that was uniquely present at 40 °C but was absent in the control and 24 proteins that were present in the control but were absent at 40 °C. Overall, the changes in the cell wall proteome at 40 °C suggest a lower protease activity, lignification and an expansion of the cell wall. These results offer a new insight into the changes in the cell wall proteome in response to high temperature.


Assuntos
Brachypodium/metabolismo , Parede Celular/metabolismo , Temperatura Alta , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Estresse Fisiológico , Brachypodium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteoma/análise , Proteômica
11.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202855

RESUMO

Protein content of extracellular vesicles (EVs) can modulate different processes during carcinogenesis. Novel proteomic strategies have been applied several times to profile proteins present in exosomes released by urothelial bladder cancer (UBC) cells. However, similar studies have not been conducted so far on another population of EVs, i.e., ectosomes. In the present study we used a shotgun nanoLC-MS/MS proteomic approach to investigate the protein content of ectosomes released in vitro by T-24 UBC cells and HCV-29 normal ureter epithelial cells. In addition, cancer-promoting effects exerted by UBC-derived ectosomes on non-invasive cells in terms of cell proliferation and migratory properties were assessed. In total, 1158 proteins were identified in T-24-derived ectosomes, while HCV-29-derived ectosomes contained a lower number of 259 identified proteins. Qualitative analysis revealed 938 proteins present uniquely in T-24-derived ectosomes, suggesting their potential applications in bladder cancer management as diagnostic and prognostic biomarkers. In addition, T-24-derived ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of the identified cancer-promoting molecules. The present study provided a focused identification of biologically relevant proteins in UBC-derived ectosomes, confirming their role in UBC development and progression, and their applicability for further biomarker-oriented studies in preclinical or clinical settings.


Assuntos
Exossomos/metabolismo , Proteoma , Proteômica , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores Tumorais , Carcinoma de Células de Transição/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Cromatografia Líquida , Biologia Computacional/métodos , Progressão da Doença , Vesículas Extracelulares/metabolismo , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem
12.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672341

RESUMO

Accumulating evidence suggests that six proteases encoded in the spl operon of a dangerous human pathogen, Staphylococcus aureus, may play a role in virulence. Interestingly, SplA, B, D, and E have complementary substrate specificities while SplF remains to be characterized in this regard. Here, we describe the prerequisites of a heterologous expression system for active SplF protease and characterize the enzyme in terms of substrate specificity and its structural determinants. Substrate specificity of SplF is comprehensively profiled using combinatorial libraries of peptide substrates demonstrating strict preference for long aliphatic sidechains at the P1 subsite and significant selectivity for aromatic residues at P3. The crystal structure of SplF was provided at 1.7 Å resolution to define the structural basis of substrate specificity of SplF. The obtained results were compared and contrasted with the characteristics of other Spl proteases determined to date to conclude that the spl operon encodes a unique extracellular proteolytic system.


Assuntos
Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Metionina/metabolismo , Modelos Moleculares , Peptídeo Hidrolases/genética , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato
13.
Circ Res ; 122(2): 296-309, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29118058

RESUMO

RATIONALE: Extracellular vesicles (EVs) are tiny membrane-enclosed droplets released by cells through membrane budding or exocytosis. The myocardial reparative abilities of EVs derived from induced pluripotent stem cells (iPSCs) have not been directly compared with the source iPSCs. OBJECTIVE: To examine whether iPSC-derived EVs can influence the biological functions of cardiac cells in vitro and to compare the safety and efficacy of iPSC-derived EVs (iPSC-EVs) and iPSCs for cardiac repair in vivo. METHODS AND RESULTS: Murine iPSCs were generated, and EVs isolated from culture supernatants by sequential centrifugation. Atomic force microscopy, high-resolution flow cytometry, real-time quantitative RT-PCR, and mass spectrometry were used to characterize EV morphology and contents. iPSC-EVs were enriched in miRNAs and proteins with proangiogenic and cytoprotective properties. iPSC-EVs enhanced angiogenic, migratory, and antiapoptotic properties of murine cardiac endothelial cells in vitro. To compare the cardiac reparative capacities in vivo, vehicle, iPSCs, and iPSC-EVs were injected intramyocardially at 48 hours after a reperfused myocardial infarction in mice. Compared with vehicle-injected mice, both iPSC- and iPSC-EV-treated mice exhibited improved left ventricular function at 35 d after myocardial infarction, albeit iPSC-EVs rendered greater improvement. iPSC-EV injection also resulted in reduction in left ventricular mass and superior perfusion in the infarct zone. Both iPSCs and iPSC-EVs preserved viable myocardium in the infarct zone, whereas reduction in apoptosis was significant with iPSC-EVs. iPSC injection resulted in teratoma formation, whereas iPSC-EV injection was safe. CONCLUSIONS: iPSC-derived EVs impart cytoprotective properties to cardiac cells in vitro and induce superior cardiac repair in vivo with regard to left ventricular function, vascularization, and amelioration of apoptosis and hypertrophy. Because of their acellular nature, iPSC-EVs represent a safer alternative for potential therapeutic applications in patients with ischemic myocardial damage.


Assuntos
Vesículas Extracelulares/fisiologia , Vesículas Extracelulares/transplante , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Traumatismo por Reperfusão Miocárdica/terapia , Animais , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/transplante , Resultado do Tratamento
14.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331267

RESUMO

Cutaneous melanoma (CM) is an aggressive type of skin cancer for which effective biomarkers are still needed. Recently, the protein content of extracellular vesicles (ectosomes and exosomes) became increasingly investigated in terms of its functional role in CM and as a source of novel biomarkers; however, the data concerning the proteome of CM-derived ectosomes is very limited. We used the shotgun nanoLC-MS/MS approach to the profile protein content of ectosomes from primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) CM cell lines. Additionally, the effect exerted by CM ectosomes on recipient cells was assessed in terms of cell proliferation (Alamar Blue assay) and migratory properties (wound healing assay). All cell lines secreted heterogeneous populations of ectosomes enriched in the common set of proteins. A total of 1507 unique proteins were identified, with many of them involved in cancer cell proliferation, migration, escape from apoptosis, epithelial-mesenchymal transition and angiogenesis. Isolated ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of different cancer-promoting molecules. Taken together, these results confirm the significant role of ectosomes in several biological processes leading to CM development and progression, and might be used as a starting point for further studies exploring their diagnostic and prognostic potential.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Melanoma/metabolismo , Proteômica , Neoplasias Cutâneas/metabolismo , Espectrometria de Massas em Tandem , Biomarcadores , Linhagem Celular Tumoral , Cromatografia Líquida , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Melanoma Maligno Cutâneo
15.
Int J Mol Sci ; 20(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382537

RESUMO

Cancer cells are known to release extracellular vesicles that often promote disease development and progression. The present study investigated the protein content and glycosylation pattern of ectosomes released in vitro by a human primary uveal melanoma Mel202 cell line. Ectosomes released by Mel202 cells were isolated from conditioned media using sequential centrifugation, and a nano-LC-MS/MS approach was used to determine their protein content. Subsequently, proteins from ectosomes, the whole cell extracts, and the membrane fractions were probed with a panel of lectins using Western blotting and flow cytometry to reveal characteristic glycan structures. As many as 2527 unique proteins were identified, and many of them are known to be involved in cancer cell proliferation and altered metabolism, tumor invasion, metastasis, or drug resistance. Lectin-based studies revealed a distinct glycosylation pattern between Mel202-derived ectosomes and the parental cell membranes. Selective enrichment of ectosomal proteins with bisected complex type N-glycans and α2,6-linked sialic acids may be significant for ectosome formation and sequestration. Differences in the surface glycosylation of Mel202 cells and ectosomes supports recent findings that the budding of ectosomes occurs within strictly determined fragments of the plasma membrane, and thus ectosomes contain a unique protein and glycan composition.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Melanoma/metabolismo , Proteoma/metabolismo , Neoplasias Uveais/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/patologia , Micropartículas Derivadas de Células/patologia , Glicosilação , Humanos , Melanoma/patologia , Neoplasias Uveais/patologia
16.
Acta Vet Hung ; 67(2): 224-240, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31238736

RESUMO

The aim of this study was to evaluate the epidemiology, clinical and laboratory characteristics of canine lymphomas as well as some aspects of treatment outcomes. The study was conducted on Boxer dogs with lymphoma diagnosed by cytology and immunocytochemistry (CD3 and CD79 alpha). During the study period, lymphoma was diagnosed in 63 Boxers; 86.8% were T-cell (based on the Kiel classification: small clear cell lymphoma, pleomorphic small cell lymphoma, pleomorphic mixed T-cell lymphoma, pleomorphic large T-cell lymphoma, lymphoblastic lymphoma/acute lymphoblastic leukaemia) and 13.2% were B-cell lymphomas (according to the Kiel classification: B-cell chronic lymphocytic leukaemia, centroblastic/centroblastic polymorphic lymphoma). Overall survival (OS) was significantly longer in dogs with low-grade than with high-grade lymphoma (median OS of 6.8 and 4.7 months, respectively; P = 0.024). OS was not influenced by WHO clinical stage, WHO clinical substage, presence of splenomegaly, early administration of glucocorticoids or the time from the first presentation to the beginning of chemotherapy. There are no significant differences in clinical and laboratory parameters between low-grade and high-grade lymphomas. Boxer dogs are predisposed to T-cell lymphoma, with a predominance of high-grade tumour, especially pleomorphic, mixed small and large T-cell subtype. It is possible that Boxer dogs may respond less favourably to chemotherapy than patients of other breeds.


Assuntos
Linfoma de Células B/veterinária , Linfoma de Células T/veterinária , Animais , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Doenças do Cão/patologia , Cães , Feminino , Linfoma de Células B/diagnóstico , Linfoma de Células B/epidemiologia , Linfoma de Células B/patologia , Linfoma de Células T/diagnóstico , Linfoma de Células T/epidemiologia , Linfoma de Células T/patologia , Masculino , Polônia/epidemiologia
17.
BMC Neurosci ; 19(1): 55, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208879

RESUMO

BACKGROUND: The long-term effects of psychotropic drugs are associated with the reversal of disease-related alterations through the reorganization and normalization of neuronal connections. Molecular factors that trigger drug-induced brain plasticity remain only partly understood. Doublecortin-like kinase 1 (Dclk1) possesses microtubule-polymerizing activity during synaptic plasticity and neurogenesis. However, the Dclk1 gene shows a complex profile of transcriptional regulation, with two alternative promoters and exon splicing patterns that suggest the expression of multiple isoforms with different kinase activities. RESULTS: Here, we applied next-generation sequencing to analyze changes in the expression of Dclk1 gene isoforms in the brain in response to several psychoactive drugs with diverse pharmacological mechanisms of action. We used bioinformatics tools to define the range and levels of Dclk1 transcriptional regulation in the mouse nucleus accumbens and prefrontal cortex. We also sought to investigate the presence of DCLK1-derived peptides using mass spectrometry. We detected 15 transcripts expressed from the Dclk1 locus (FPKM > 1), including 2 drug-regulated variants (fold change > 2). Drugs that act on serotonin receptors (5-HT2A/C) regulate a subset of Dclk1 isoforms in a brain-region-specific manner. The strongest influence was observed for the mianserin-induced expression of an isoform with intron retention. The drug-activated expression of novel alternative Dclk1 isoforms was validated using qPCR. The drug-regulated isoform contains genetic variants of DCLK1 that have been previously associated with schizophrenia and hyperactivity disorder in humans. We identified a short peptide that might originate from the novel DCLK1 protein product. Moreover, protein domains encoded by the regulated variant indicate their potential involvement in the negative regulation of the canonical DCLK1 protein. CONCLUSIONS: In summary, we identified novel isoforms of the neuroplasticity-related gene Dclk1 that are expressed in the brain in response to psychotropic drug treatments.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Cérebro/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Psicotrópicos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Cérebro/metabolismo , Biologia Computacional , Quinases Semelhantes a Duplacortina , Masculino , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae
18.
Stem Cells ; 33(9): 2748-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26031404

RESUMO

Microvesicles (MVs) are membrane-enclosed cytoplasmic fragments released by normal and activated cells that have been described as important mediators of cell-to-cell communication. Although the ability of human induced pluripotent stem cells (hiPSCs) to participate in tissue repair is being increasingly recognized, the use of hiPSC-derived MVs (hiPSC-MVs) in this regard remains unknown. Accordingly, we investigated the ability of hiPSC-MVs to transfer bioactive molecules including mRNA, microRNA (miRNA), and proteins to mature target cells such as cardiac mesenchymal stromal cells (cMSCs), and we next analyzed effects of hiPSC-MVs on fate and behavior of such target cells. The results show that hiPSC-MVs derived from integration-free hiPSCs cultured under serum-free and feeder-free conditions are rich in mRNA, miRNA, and proteins originated from parent cells; however, the levels of expression vary between donor cells and MVs. Importantly, we found that transfer of hiPSC components by hiPSC-MVs impacted on transcriptome and proteomic profiles of target cells as well as exerted proliferative and protective effects on cMSCs, and enhanced their cardiac and endothelial differentiation potential. hiPSC-MVs also transferred exogenous transcripts from genetically modified hiPSCs that opens new perspectives for future strategies to enhance MV content. We conclude that hiPSC-MVs are effective vehicles for transferring iPSC attributes to adult somatic cells, and hiPSC-MV-mediated horizontal transfer of RNAs and proteins to injured tissues may be used for therapeutic tissue repair. In this study, for the first time, we propose a new concept of use of hiPSCs as a source of safe acellular bioactive derivatives for tissue regeneration.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Micropartículas Derivadas de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos
19.
J Neurochem ; 132(6): 657-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25475647

RESUMO

For over the last 50 years, the molecular mechanism of anti-psychotic drugs' action has been far from clear. While risperidone is very often used in clinical practice, the most efficient known anti-psychotic drug is clozapine (CLO). However, the biochemical background of CLO's action still remains elusive. In this study, we performed comparative proteomic analysis of rat cerebral cortex following chronic administration of these two drugs. We observed significant changes in the expression of cytoskeletal, synaptic, and regulatory proteins caused by both antipsychotics. Among other proteins, alterations in collapsin response mediator proteins, CRMP2 and CRMP4, were the most spectacular consequences of treatment with both drugs. Moreover, risperidone increased the level of proteins involved in cell proliferation such as fatty acid-binding protein-7 and translin-associated factor X. CLO significantly up-regulated the expression of visinin-like protein 1, neurocalcin δ and mitochondrial, stomatin-like protein 2, the calcium-binding proteins regulating calcium homeostasis, and the functioning of ion channels and receptors. Using two-dimensional differential electrophoresis, we demonstrate that chronic treatment the healthy rats with anti-psychotics, clozapine and risperidone, induce changes in expression of cytoskeletal, synaptic, and regulatory proteins in the cerebral cortex. While risperidone increases the level of proteins regulating cell proliferation, namely, fatty acid-binding protein-7 and translin-associated factor X, the clozapine significantly up-regulates calcium sensors, i.e., visinin-like protein 1 and neurocalcin δ. 2D DIGE, Differential in Gel Electrophoresis; Cy2, Cy3, and Cy5 are cyanine dyes.


Assuntos
Cálcio/fisiologia , Córtex Cerebral/fisiologia , Clozapina/farmacologia , Citoesqueleto/genética , Proteômica , Risperidona/farmacologia , Animais , Antipsicóticos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Masculino , Proteômica/métodos , Ratos , Ratos Wistar
20.
BMC Microbiol ; 15: 197, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26438063

RESUMO

BACKGROUND: Candida parapsilosis and C. tropicalis increasingly compete with C. albicans-the most common fungal pathogen in humans-as causative agents of severe candidiasis in immunocompromised patients. In contrast to C. albicans, the pathogenic mechanisms of these two non-albicans Candida species are poorly understood. Adhesion of Candida yeast to host cells and the extracellular matrix is critical for fungal invasion of hosts. METHODS: The fungal proteins involved in interactions with extracellular matrix proteins were isolated from mixtures of ß-1,3-glucanase- or ß-1,6-glucanase-extractable cell wall-associated proteins by use of affinity chromatography and chemical cross-linking methods, and were further identified by liquid chromatography-coupled tandem mass spectrometry. RESULTS: In the present study, we characterized the binding of three major extracellular matrix proteins--fibronectin, vitronectin and laminin--to C. parapsilosis and C. tropicalis pseudohyphae. The major individual compounds of the fungal cell wall that bound fibronectin, vitronectin and laminin were found to comprise two groups: (1) true cell wall components similar to C. albicans adhesins from the Als, Hwp and Iff/Hyr families; and (2) atypical (cytoplasm-derived) surface-exposed proteins, including malate synthase, glucose-6-phosphate isomerase, 6-phosphogluconate dehydrogenase, enolase, fructose-1,6-bisphosphatase, transketolase, transaldolase and elongation factor 2. DISCUSSION: The adhesive abilities of two investigated non-albicans Candida species toward extracellular matrix proteins were comparable to those of C. albicans suggesting an important role of this particular virulence attribute in the pathogenesis of infections caused by C. tropicalis and C. parapsilosis. CONCLUSIONS: Our results reveal new insight into host-pathogen interactions during infections by two important, recently emerging, fungal pathogens.


Assuntos
Candida/metabolismo , Parede Celular/metabolismo , Fibronectinas/metabolismo , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Laminina/metabolismo , Vitronectina/metabolismo , Cromatografia de Afinidade , Cromatografia Líquida , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA