Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Mol Pharmacol ; 104(3): 115-131, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37316350

RESUMO

Acrylamide-derived compounds have been previously shown to act as modulators of members of the Cys-loop transmitter-gated ion channel family, including the mammalian GABAA receptor. Here we have synthesized and functionally characterized the GABAergic effects of a series of novel compounds (termed "DM compounds") derived from the previously characterized GABAA and the nicotinic α7 receptor modulator (E)-3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2). Fluorescence imaging studies indicated that the DM compounds increase apparent affinity to the transmitter by up to 80-fold in the ternary αßγ GABAA receptor. Using electrophysiology, we show that the DM compounds, and the structurally related (E)-3-furan-2-yl-N-phenylacrylamide (PAM-4), have concurrent potentiating and inhibitory effects that can be isolated and observed under appropriate recording conditions. The potentiating efficacies of the DM compounds are similar to those of neurosteroids and benzodiazepines (ΔG ∼ -1.5 kcal/mol). Molecular docking, functionally confirmed by site-directed mutagenesis experiments, indicate that receptor potentiation is mediated by interactions with the classic anesthetic binding sites located in the transmembrane domain of the intersubunit interfaces. Inhibition by the DM compounds and PAM-4 was abolished in the receptor containing the α1(V256S) mutation, suggestive of similarities in the mechanism of action with that of inhibitory neurosteroids. Functional competition and mutagenesis experiments, however, indicate that the sites mediating inhibition by the DM compounds and PAM-4 differ from those mediating the action of the inhibitory steroid pregnenolone sulfate. SIGNIFICANCE STATEMENT: We have synthesized and characterized the actions of novel acrylamide-derived compounds on the mammalian GABAA receptor. We show that the compounds have concurrent potentiating effects mediated by the classic anesthetic binding sites, and inhibitory actions that bear mechanistic resemblance to but do not share binding sites with, the inhibitory steroid pregnenolone sulfate.


Assuntos
Anestésicos , Neuroesteroides , Animais , Receptores de GABA-A/metabolismo , Acrilamida/farmacologia , Simulação de Acoplamento Molecular , Sítios de Ligação , Esteroides , Furanos/farmacologia , Mamíferos/metabolismo
2.
Anesth Analg ; 137(3): 691-701, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058425

RESUMO

BACKGROUND: The primary objective of this study was to characterize the pharmacological and behavioral activity of 2 novel compounds, DM497 [(E)-3-(thiophen-2-yl)- N -(p-tolyl)acrylamide] and DM490 [(E)-3-(furan-2-yl)- N -methyl- N -(p-tolyl)acrylamide], structural derivatives of PAM-2, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor (nAChR). METHODS: A mouse model of oxaliplatin-induced neuropathic pain (2.4 mg/kg, 10 injections) was used to test the pain-relieving properties of DM497 and DM490. To assess possible mechanisms of action, the activity of these compounds was determined at heterologously expressed α7 and α9α10 nAChRs, and voltage-gated N-type calcium channel (Ca V 2.2) using electrophysiological techniques. RESULTS: Cold plate tests indicated that 10 mg/kg DM497 was able to decrease neuropathic pain in mice induced by the chemotherapeutic agent oxaliplatin. In contrast, DM490 induced neither pro- nor antinociceptive activity but inhibited DM497's effect at equivalent dose (30 mg/kg). These effects are not a product of changes in motor coordination or locomotor activity. At α7 nAChRs, DM497 potentiated whereas DM490 inhibited its activity. In addition, DM490 antagonized the α9α10 nAChR with >8-fold higher potency than that for DM497. In contrast, DM497 and DM490 had minimal inhibitory activity at the Ca V 2.2 channel. Considering that DM497 did not increase the mouse exploratory activity, an indirect anxiolytic mechanism was not responsible for the observed antineuropathic effect. CONCLUSIONS: The antinociceptive activity of DM497 and the concomitant inhibitory effect of DM490 are mediated by opposing modulatory mechanisms on the α7 nAChR, whereas the involvement of other possible nociception targets such as the α9α10 nAChR and Ca V 2.2 channel can be ruled out.


Assuntos
Neuralgia , Receptor Nicotínico de Acetilcolina alfa7 , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acrilamida , Oxaliplatina , Regulação Alostérica , Analgésicos/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/prevenção & controle , Furanos/farmacologia , Furanos/uso terapêutico
3.
Molecules ; 29(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202651

RESUMO

The piperazine moiety is often found in drugs or in bioactive molecules. This widespread presence is due to different possible roles depending on the position in the molecule and on the therapeutic class, but it also depends on the chemical reactivity of piperazine-based synthons, which facilitate its insertion into the molecule. In this paper, we take into consideration the piperazine-containing drugs approved by the Food and Drug Administration between January 2011 and June 2023, and the synthetic methodologies used to prepare the compounds in the discovery and process chemistry are reviewed.


Assuntos
Piperazina , Estados Unidos , United States Food and Drug Administration
4.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770942

RESUMO

Positive allosteric modulators (PAMs), negative allosteric modulators (NAMs), silent agonists, allosteric activating PAMs and neutral or silent allosteric modulators are compounds capable of modulating the nicotinic receptor by interacting at allosteric modulatory sites distinct from the orthosteric sites. This survey is focused on the compounds that have been shown or have been designed to interact with nicotinic receptors as allosteric modulators of different subtypes, mainly α7 and α4ß2. Minimal chemical changes can cause a different pharmacological profile, which can then lead to the design of selective modulators. Experimental evidence supports the use of allosteric modulators as therapeutic tools for neurological and non-neurological conditions.


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/química , Regulação Alostérica , Sítio Alostérico
5.
J Enzyme Inhib Med Chem ; 35(1): 974-992, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32253945

RESUMO

Aiming to deepen the structure-activity relationships of the two P-glycoprotein (P-gp) modulators elacridar and tariquidar, a new series of amide and ester derivatives carrying a 6,7-dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline scaffold linked to different methoxy-substituted aryl moieties were synthesised. The obtained compounds were evaluated for their P-gp interaction profile and selectivity towards the two other ABC transporters, multidrug-resistance-associated protein-1 and breast cancer resistance protein, showing to be very active and selective versus P-gp. Two amide derivatives, displaying the best P-gp activity, were tested in co-administration with the antineoplastic drug doxorubicin in different cancer cell lines, showing a significant sensitising activity towards doxorubicin. The investigation on the chemical stability of the derivatives towards spontaneous or enzymatic hydrolysis, showed that amides are stable in both models while some ester compounds were hydrolysed in human plasma. This study allowed us to identify two chemosensitizers that behave as non-transported substrates and are characterised by different selectivity profiles.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ésteres/farmacologia , Neoplasias/tratamento farmacológico , Tetra-Hidroisoquinolinas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Amidas/síntese química , Amidas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/síntese química , Ésteres/química , Humanos , Estrutura Molecular , Neoplasias/metabolismo , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/química
6.
Molecules ; 25(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290281

RESUMO

A new series of N,N-bis(alkanol)amine aryl diesters was synthesized and studied as dual P-glycoprotein (P-gp) and carbonic anhydrase XII inhibitors (CA XII). These hybrids should be able to synergistically overcome P-gp mediated multidrug resistance (MDR) in cancer cells. It was reported that the efflux activity of P-gp could be modulated by CA XII, as the pH reduction caused by CA XII inhibition produces a significant decrease in P-gp ATPase activity. The new compounds reported here feature both P-gp and CA XII binding moieties. These hybrids contain a N,N-bis(alkanol)amine diester scaffold found in P-glycoprotein ligands and a coumarin or benzene sulfonamide moiety to target CA XII. Many compounds displayed a dual activity against P-gp and CA XII being active in the Rhd 123 uptake test on K562/DOX cells and in the hCA XII inhibition test. On LoVo/DOX cells, that overexpress both P-gp and CA XII, some coumarin derivatives showed a high MDR reversal effect in Rhd 123 uptake and doxorubicin cytotoxicity enhancement tests. In particular, compounds 7 and 8 showed higher activity than verapamil and were more potent on LoVo/DOX than on K562/DOX cells overexpressing only P-gp. They can be considered as valuable candidates for selective P-gp/CA XII inhibition in MDR cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Transporte Biológico , Inibidores da Anidrase Carbônica/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estabilidade de Medicamentos , Humanos , Células K562 , Estrutura Molecular , Relação Estrutura-Atividade
7.
Bioorg Med Chem ; 26(1): 50-64, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162309

RESUMO

In this study, a new series of heterodimers was synthesized. These derivatives are N,N-bis(alkanol)amine aryl esters or N,N-bis(ethoxyethanol)amine aryl esters carrying a methoxylated aryl residue combined with a flavone or chromone moiety. The new compounds were studied to evaluate their P-gp modulating activity on a multidrug-resistant leukemia cell line. Some of the new compounds show a good MDR reversing activity; interestingly this new series of compounds does not comply with the structure-activity relationships (SAR) outlined by previously synthesized analogs carrying different aromatic moieties. In the case of the compounds described in this paper, activity is linked to different features, in particular the characteristics of the spacer, which seem to be critical for the interaction with the pump. This fact indicates that the presence of a flavone or chromone residue influences the SAR of these series of products, and that flexible molecules can find different productive binding modes with the P-gp recognition site. These results support the synthesis of new compounds that might be useful leads for the development of drugs to control P-gp-dependent MDR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Aminas/farmacologia , Cromonas/farmacologia , Desenho de Fármacos , Ésteres/farmacologia , Flavonas/farmacologia , Aminas/síntese química , Aminas/química , Cromonas/química , Dimerização , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ésteres/síntese química , Ésteres/química , Flavonas/química , Humanos , Células K562 , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
J Enzyme Inhib Med Chem ; 33(1): 303-308, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29280407

RESUMO

Four human (h) carbonic anhydrase isoforms (CA, EC 4.2.1.1), hCA I, II, IV, and VII, were investigated for their activation profile with piperazines belonging to various classes, such as N-aryl-, N-alkyl-, N-acyl-piperazines as well as 2,4-disubstituted derivatives. As the activation mechanism involves participation of the activator in the proton shuttling between the zinc-coordinated water molecule and the external milieu, these derivatives possessing diverse basicity and different scaffolds were appropriate for being investigated as CA activators (CAAs). Most of these derivatives showed CA activating properties against hCA I, II, and VII (cytosolic isoforms) but were devoid of activity against the membrane-associated hCA IV. For hCA I, the KAs were in the range of 32.6-131 µM; for hCA II of 16.2-116 µM, and for hCA VII of 17.1-131 µM. The structure-activity relationship was intricate and not easy to rationalize, but the most effective activators were 1-(2-piperidinyl)-piperazine (KA of 16.2 µM for hCA II), 2-benzyl-piperazine (KA of 17.1 µM for hCA VII), and 1-(3-benzylpiperazin-1-yl)propan-1-one (KA of 32.6 µM for hCA I). As CAAs may have interesting pharmacologic applications in cognition and for artificial tissue engineering, investigation of new classes of activators may be crucial for this relatively new research field.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica IV/antagonistas & inibidores , Anidrase Carbônica I/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Piperazinas/farmacologia , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IV/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade
9.
Bioorg Med Chem ; 25(6): 1795-1803, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238510

RESUMO

The piperazine ring of the potent nootropic drug DM235 has been decorated with H-bond donor and acceptor groups (CH2OH, CH2OMe, CH2OCOMe, COOEt); the aim was to insert new functional groups, suitable for further chemical manipulation. The influence of these modifications on nootropic activity was assessed by means of the mouse passive avoidance test; some of the newly synthesized molecules (alcohol 7b, acetate 8b and ester 10d) showed interesting in vivo potency. This makes it possible to use these functional groups for adding other residues, in order to increase molecular diversity, or for anchoring a biotin group, to obtain compounds useful to capture the biological target. Moreover, the new compounds will improve our knowledge of structure activity relationships of this family of drugs.


Assuntos
Cognição/efeitos dos fármacos , Nootrópicos/farmacologia , Piperazinas/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Nootrópicos/química , Piperazinas/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
10.
Bioorg Med Chem Lett ; 25(8): 1700-1704, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25813160

RESUMO

A series of 2-phenyl- or 3-phenyl piperazines, structurally related to DM235 and DM232, two potent nootropic agents, have been prepared and tested in the mouse passive-avoidance test, to assess their ability to revert scopolamine-induced amnesia. Although the newly synthesized molecules were less potent than the parent compounds, some useful information has been obtained from structure-activity relationships. A small but significant enantioselectivity has been found for the most potent compound 5a.


Assuntos
Nootrópicos/química , Piperazinas/química , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Camundongos , Nootrópicos/farmacologia , Nootrópicos/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Pirróis/química , Estereoisomerismo , Relação Estrutura-Atividade
11.
Eur J Pharmacol ; 966: 176329, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38253116

RESUMO

The anxiolytic and sedative-like effects of 3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole (DM506), a non-hallucinogenic compound derived from ibogamine, were studied in mice. The behavioral effects were examined using Elevated O-maze and novelty suppressed feeding (NSFT) tests, open field test, and loss of righting reflex (LORR) test. The results showed that 15 mg/kg DM506 induced acute and long-lasting anxiolytic-like activity in naive and stressed/anxious mice, respectively. Repeated administration of 5 mg/kg DM506 did not cause cumulative anxiolytic activity or any side effects. Higher doses of DM506 (40 mg/kg) induced sedative-like activity, which was inhibited by a selective 5-HT2A receptor antagonist, volinanserin. Electroencephalography results showed that 15 mg/kg DM506 fumarate increased the transition from a highly alert state (fast γ wavelength) to a more synchronized deep-sleeping activity (δ wavelength), which is reflected in the sedative/anxiolytic activity in mice but without the head-twitch response observed in hallucinogens. The functional, radioligand binding, and molecular docking results showed that DM506 binds to the agonist sites of human 5-HT2A (Ki = 24 nM) and 5-HT2B (Ki = 16 nM) receptors and activates them with a potency (EC50) of 9 nM and 3 nM, respectively. DM506 was relatively less potent and behaved as a partial agonist (efficacy <80%) for both receptor subtypes compared to the full agonist DOI (2,5-dimethoxy-4-iodoamphetamine). Our study showed for the first time that the non-hallucinogenic compound DM506 induces anxiolytic- and sedative-like activities in naïve and stressed/anxious mice in a dose-, time-, and volinanserin-sensitive manner, likely through mechanisms involving 5-HT2A receptor activation.


Assuntos
Ansiolíticos , Fluorbenzenos , Piperidinas , Animais , Humanos , Camundongos , Ansiolíticos/farmacologia , Comportamento Animal , Hipnóticos e Sedativos/farmacologia , Simulação de Acoplamento Molecular , Receptor 5-HT2A de Serotonina , Serotonina/metabolismo
12.
Biomed Pharmacother ; 177: 116867, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38889634

RESUMO

The aim of this study was to determine the anti-hypersensitivity activity of novel non-hallucinogenic compounds derived from iboga alkaloids (i.e., ibogalogs), including tabernanthalog (TBG), ibogainalog (IBG), and ibogaminalog (DM506), using mouse models of neuropathic (Chronic Constriction Injury; CCI) and visceral pain (dextrane sulfate sodium; DSS). Ibogalogs decreased mechanical hyperalgesia and allodynia induced by CCI in a dose- and timeframe-dependent manner, where IBG showed the longest anti-hyperalgesic activity at a comparatively lower dose, whereas DM506 displayed the quickest response. These compounds also decreased hypersensitivity induced by colitis, where DM506 showed the longest activity. To understand the mechanisms involved in these effects, two approaches were utilized: ibogalogs were challenged with the 5-HT2A receptor antagonist ketanserin and the pharmacological activity of these compounds was assessed at the respective 5-HT2A, 5-HT6, and 5-HT7 receptor subtypes. The behavioral results clearly demonstrated that ketanserin abolishes the pain-relieving activity of ibogalogs without inducing any effect per se, supporting the concept that 5-HT2A receptor activation, but not inhibition, is involved in this process. The functional results showed that ibogalogs potently activate the 5-HT2A and 5-HT6 receptor subtypes, whereas they behave as inverse agonists (except TBG) at the 5-HT7 receptor. Considering previous studies showing that 5-HT6 receptor inhibition, but not activation, and 5-HT7 receptor activation, but not inhibition, relieved chronic pain, we can discard these two receptor subtypes as participating in the pain-relieving activity of ibogalogs. The potential involvement of 5-HT2B/2 C receptor subtypes was also ruled out. In conclusion, the anti-hypersensitivity activity of ibogalogs in mice is mediated by a mechanism involving 5-HT2A receptor activation.

13.
Neurochem Int ; 178: 105785, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838988

RESUMO

Opioid use disorder is a major public health crisis that is manifested by persistent drug-seeking behavior and high relapse frequency. Most of the available treatments rely on targeting opioid receptors using small molecules that do not provide sustained symptom alleviation. Psychoplastogens are a novel class of non-opioid drugs that produce rapid and sustained effects on neuronal plasticity, intended to produce therapeutic benefits. Ibogalogs are synthetic derivatives of iboga alkaloids that lack hallucinogenic or adverse side effects. In the current study, we examine the therapeutic potential of DM506, a novel ibogalog lacking any cardiotoxic or hallucinogenic effects, in cue-induced seeking behavior following heroin self-administration. At a single systemic dose of 40 mg/kg, DM506 significantly decreased cue-induced seeking in both male and female rats at abstinence day 1 (AD1) following heroin self-administration. Upon re-testing for cue-induced seeking at AD14, we found that males receiving DM506 continued to show decreased cue-induced seeking, an effect not observed in females. Since there is evidence of psychedelics influencing tonic GABA currents, and opioid and psychoplastogen-mediated neuroadaptations in the medial prefrontal cortex (PrL) underlying its functional effects, we performed patch-clamp recordings on PrL slices of drug-naïve rats with an acute application or chronic incubation with DM506. Tonic GABA current was decreased in slices incubated with DM506 for 2 h. qPCR analysis did not reveal any differences in the mRNA levels of GABAA receptor α and δ subunits at AD14 in heroin and saline self-administered animals that received vehicle or DM506 at AD1. Overall, our data indicate that DM506 attenuates cue-induced heroin seeking and inhibits tonic GABA current in the prelimbic cortex.

14.
Bioorg Med Chem ; 21(2): 456-65, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23245571

RESUMO

As a continuation of previous research on a new series of potent and efficacious P-gp-dependent multidrug resistant (MDR) reversers with a N,N-bis(cyclohexanol)amine scaffold, we have designed and synthesized several analogs by modulation of the two aromatic moieties linked through ester functions to the N,N-bis(cyclohexanol)amine, aiming to optimize activity and to extend structure-activity relationships (SAR) within the series. This scaffold, when esterified with two different aromatic carboxylic acids, gives origin to four geometric isomers (cis/trans, trans/trans, cis/cis and trans/cis). The new compounds were tested on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Most of them resulted in being potent modulators of the extrusion pump P-gp, showing potency values ([I](0.5)) in the submicromolar and nanomolar range. Of these, compounds 2b, 2c, 3d, 5a-d and 6d, showed excellent efficacy with a α(max) close to 1. Selected compounds (2d, 3a, 3b, 5a-d) were further studied to evaluate their doxorubicin cytotoxicity potentiation (RF) on doxorubicin-resistant erythroleukemia K562 cells and were found able to enhance significantly doxorubicin cytotoxicity on K562/DOX cells. The results of both pirarubicin uptake and the cytotoxicity assay, indicate that the new compounds of the series are potent P-gp-mediated MDR reversers. They present a structure with a mix of flexible and rigid moieties, a property that seems critical to allow the molecules to choose the most productive of the several binding modes possible in the transporter recognition site. In particular, compounds 5c and 5d, similar to the already reported analogous isomers 1c and 1d,(29) are potent and efficacious modulators of P-gp-dependent MDR and may be promising leads for the development of MDR-reversal drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Aminas/química , Antineoplásicos/química , Cicloexanóis/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/toxicidade , Resistencia a Medicamentos Antineoplásicos , Ésteres , Humanos , Isomerismo , Células K562 , Relação Estrutura-Atividade
15.
ACS Chem Neurosci ; 14(14): 2537-2547, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37386821

RESUMO

The main objective of this study was to determine the pharmacological activity and molecular mechanism of action of DM506 (3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole fumarate), a novel ibogamine derivative, at different nicotinic acetylcholine receptor (nAChR) subtypes. The functional results showed that DM506 neither activates nor potentiates but inhibits ACh-evoked currents at each rat nAChR subtype in a non-competitive manner. The receptor selectivity for DM506 inhibition follows the sequence: α9α10 (IC50 = 5.1 ± 0.3 µM) ≅ α7ß2 (5.6 ± 0.2 µM) ∼ α7 (6.4 ± 0.5 µM) > α6/α3ß2ß3 (25 ± 1 µM) > α4ß2 (62 ± 4 µM) ≅ α3ß4 (70 ± 5 µM). No significance differences in DM506 potency were observed between rat and human α7 and α9α10 nAChRs. These results also indicated that the ß2 subunit is not involved or is less relevant in the activity of DM506 at the α7ß2 nAChR. DM506 inhibits the α7 and α9α10 nAChRs in a voltage-dependent and voltage-independent manner, respectively. Molecular docking and molecular dynamics studies showed that DM506 forms stable interactions with a putative site located in the α7 cytoplasmic domain and with two intersubunit sites in the extracellular-transmembrane junction of the α9α10 nAChR, one located in the α10(+)/α10(─) interface and another in the α10(+)/α9(─) interface. This study shows for the first time that DM506 inhibits both α9α10 and α7 nAChR subtypes by novel allosteric mechanisms likely involving modulation of the extracellular-transmembrane domain junction and cytoplasmic domain, respectively, but not by direct competitive antagonism or open channel block.


Assuntos
Receptores Nicotínicos , Ratos , Animais , Humanos , Simulação de Acoplamento Molecular , Receptor Nicotínico de Acetilcolina alfa7 , Hidrocarbonetos Aromáticos com Pontes
16.
Eur J Med Chem ; 259: 115716, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37573829

RESUMO

New 2,5- and 1,5-disubstituted tetrazoles, and 2,5-disubstituted-1,3,4-oxadiazoles were synthesized as tariquidar and elacridar derivatives and studied as multidrug resistance (MDR) reversers. Their behaviour on the three ABC transporters P-gp, MRP1 and BCRP was investigated. All compounds inhibited the P-gp transport activity in MDCK-MDR1 cells overexpressing P-gp, showing EC50 values even in the low nanomolar range (compounds 15, 22). Oxadiazole derivatives were able to increase the antiproliferative effect of doxorubicin in MDCK-MDR1 and in HT29/DX cells confirming their nature of P-gp modulators, with derivative 15 being the most potent in these assays. Compound 15 also displayed a dual inhibitory effect showing good activities towards both P-gp and BCRP. A computational study suggested a common interaction pattern on P-gp for most of the potent compounds. The bioisosteric substitution of the amide group of lead compounds allowed identifying a new set of potent oxadiazole derivatives that modulate MDR through inhibition of the P-gp efflux activity. If compared to previous amide derivatives, the introduction of the heterocycle rings greatly enhances the activity on P-gp, introduces in two compounds a moderate inhibitory activity on MRP1 and maintains in some cases the effect on BCRP, leading to the unveiling of dual inhibitor 15.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Resistencia a Medicamentos Antineoplásicos , Relação Estrutura-Atividade , Proteínas de Neoplasias , Resistência a Múltiplos Medicamentos , Tetrazóis/farmacologia , Amidas/farmacologia
17.
Curr Top Med Chem ; 22(31): 2535-2569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284399

RESUMO

BACKGROUND: The failure of anticancer chemotherapy is often due to the development of resistance to a variety of anticancer drugs. This phenomenon is called multidrug resistance (MDR) and is related to the overexpression of ABC transporters, such as P-glycoprotein, multidrug resistance- associated protein 1 and breast cancer resistance protein. Over the past few decades, several ABC protein modulators have been discovered and studied as a possible approach to evade MDR and increase the success of anticancer chemotherapy. Nevertheless, the co-administration of pump inhibitors with cytotoxic drugs, which are substrates of the transporters, does not appear to be associated with an improvement in the therapeutic efficacy of antitumor agents. However, more recently discovered MDR reversing agents, such as the two tetrahydroisoquinoline derivatives tariquidar and elacridar, are characterized by high affinity towards the ABC proteins and by reduced negative properties. Consequently, many analogs of these two derivatives have been synthesized, with the aim of optimizing their MDR reversal properties. OBJECTIVE: This review aims to describe the MDR modulators carrying the tetraidroisoquinoline scaffold reported in the literature in the period 2009-2021, highlighting the structural characteristics that confer potency and/or selectivity towards the three ABC transport proteins. RESULTS AND CONCLUSION: Many compounds have been synthesized in the last twelve years showing interesting properties, both in terms of potency and selectivity. Although clear structure-activity relationships can be drawn only by considering strictly related compounds, some of the compounds reviewed could be promising starting points for the design of new ABC protein inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Tetra-Hidroisoquinolinas , Humanos , Transportadores de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias , Resistência a Múltiplos Medicamentos , Antineoplásicos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Tetra-Hidroisoquinolinas/farmacologia , Neoplasias/tratamento farmacológico
18.
Expert Opin Drug Discov ; 17(9): 969-984, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35848922

RESUMO

INTRODUCTION: Piperazine is a structural element present in drugs belonging to various chemical classes and used for numerous different therapeutic applications; it has been considered a privileged scaffold for drug design. AREAS COVERED: The authors have searched examples of piperazine-containing compounds among drugs recently approved by the FDA and in some research fields (nicotinic receptor modulators, compounds acting against cancer, and bacterial multidrug resistance), looking in particular to the design behind the insertion of this moiety. EXPERT OPINION: Piperazine is widely used due to its peculiar characteristics, such as solubility, basicity, chemical reactivity, and conformational properties. This moiety has represented an important tool to modulate pharmacokinetic and pharmacodynamic properties of drugs.


Assuntos
Neoplasias , Receptores Nicotínicos , Desenho de Fármacos , Descoberta de Drogas , Humanos , Piperazina/farmacologia
19.
ChemMedChem ; 17(12): e202200027, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35416421

RESUMO

Some 2,4-disubstituted quinazolines were synthesized and studied as multidrug resistance (MDR) reversers. The new derivatives carried the quinazoline-4-amine scaffold found in modulators of the ABC transporters involved in MDR, as the TKIs gefitinib and erlotinib. Their behaviour on the three ABC transporters, P-gp, MRP1 and BCRP, was investigated. Almost all compounds inhibited the P-gp activity in MDCK-MDR1 cells overexpressing P-gp, showing EC50 values in the nanomolar range (1 d, 1 e, 2 a, 2 c, 2 e). Some compounds were active also towards MRP1 and/or BCRP. Docking results obtained by in silico studies on the P-gp crystal structure highlighted common features for the most potent compounds. The P-gp selective compound 1 e was able to increase the doxorubicin uptake in HT29/DX cells and to restore its antineoplastic activity in resistant cancer cells in the same extent of sensitive cells. Compound 2 a displayed a dual inhibitory effect showing good activities towards both P-gp and BCRP.


Assuntos
Antineoplásicos , Quinazolinas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Antineoplásicos/química , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Quinazolinas/farmacologia
20.
J Med Chem ; 65(21): 14655-14672, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269278

RESUMO

In a continuing search of dual P-gp and hCA XII inhibitors, we synthesized and studied new N,N-bis(alkanol)amine aryl diester derivatives characterized by the presence of a coumarin group. These hybrids contain both P-gp and hCA XII binding groups to synergistically overcome the P-gp-mediated multidrug resistance (MDR) in cancer cells expressing both P-gp and hCA XII. Indeed, hCA XII modulates the efflux activity of P-gp and the inhibition of hCA XII reduces the intracellular pH, thereby decreasing the ATPase activity of P-gp. All compounds showed inhibitory activities on P-gp and hCA XII proteins taken individually, and many of them displayed a synergistic effect in HT29/DOX and A549/DOX cells that overexpress both P-gp and hCA XII, being more potent than in K562/DOX cells overexpressing only P-gp. Compounds 5 and 14 were identified as promising chemosensitizer agents for selective inhibition in MDR cancer cells overexpressing both P-gp and hCA XII.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Relação Estrutura-Atividade , Anidrases Carbônicas/metabolismo , Resistência a Múltiplos Medicamentos , Aminas/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrase Carbônica IX , Antígenos de Neoplasias/metabolismo , Estrutura Molecular , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA