Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circulation ; 128(4): 377-87, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23785004

RESUMO

BACKGROUND: Proinflammatory cytokine tumor necrosis factor-α (TNFα) induces ß-adrenergic receptor (ßAR) desensitization, but mechanisms proximal to the receptor in contributing to cardiac dysfunction are not known. METHODS AND RESULTS: Two different proinflammatory transgenic mouse models with cardiac overexpression of myotrophin (a prohypertrophic molecule) or TNFα showed that TNFα alone is sufficient to mediate ßAR desensitization as measured by cardiac adenylyl cyclase activity. M-mode echocardiography in these mouse models showed cardiac dysfunction paralleling ßAR desensitization independent of sympathetic overdrive. TNFα-mediated ßAR desensitization that precedes cardiac dysfunction is associated with selective upregulation of G-protein coupled receptor kinase 2 (GRK2) in both mouse models. In vitro studies in ß2AR-overexpressing human embryonic kidney 293 cells showed significant ßAR desensitization, GRK2 upregulation, and recruitment to the ßAR complex following TNFα. Interestingly, inhibition of phosphoinositide 3-kinase abolished GRK2-mediated ßAR phosphorylation and GRK2 recruitment on TNFα. Furthermore, TNFα-mediated ßAR phosphorylation was not blocked with ßAR antagonist propranolol. Additionally, TNFα administration in transgenic mice with cardiac overexpression of Gßγ-sequestering peptide ßARK-ct could not prevent ßAR desensitization or cardiac dysfunction showing that GRK2 recruitment to the ßAR is Gßγ independent. Small interfering RNA knockdown of GRK2 resulted in the loss of TNFα-mediated ßAR phosphorylation. Consistently, cardiomyocytes from mice with cardiac-specific GRK2 ablation normalized the TNFα-mediated loss in contractility, showing that TNFα-induced ßAR desensitization is GRK2 dependent. CONCLUSIONS: TNFα-induced ßAR desensitization is mediated by GRK2 and is independent of Gßγ, uncovering a hitherto unknown cross-talk between TNFα and ßAR function, providing the underpinnings of inflammation-mediated cardiac dysfunction.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/enzimologia , Receptores Adrenérgicos beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Modelos Animais de Doenças , Células HEK293 , Insuficiência Cardíaca/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/fisiologia , Propranolol/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Sistema Nervoso Simpático/fisiologia , Fator de Necrose Tumoral alfa/genética
2.
Sci Rep ; 11(1): 22018, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759299

RESUMO

Although microRNA-7 (miRNA-7) is known to regulate proliferation of cancer cells by targeting Epidermal growth factor receptor (EGFR/ERBB) family, less is known about its role in cardiac physiology. Transgenic (Tg) mouse with cardiomyocyte-specific overexpression of miRNA-7 was generated to determine its role in cardiac physiology and pathology. Echocardiography on the miRNA-7 Tg mice showed cardiac dilation instead of age-associated physiological cardiac hypertrophy observed in non-Tg control mice. Subjecting miRNA-7 Tg mice to transverse aortic constriction (TAC) resulted in cardiac dilation associated with increased fibrosis bypassing the adaptive cardiac hypertrophic response to TAC. miRNA-7 expression in cardiomyocytes resulted in significant loss of ERBB2 expression with no changes in ERBB1 (EGFR). Cardiac proteomics in the miRNA-7 Tg mice showed significant reduction in mitochondrial membrane structural proteins compared to NTg reflecting role of miRNA-7 beyond the regulation of EGFR/ERRB in mediating cardiac dilation. Consistently, electron microscopy showed that miRNA-7 Tg hearts had disorganized rounded mitochondria that was associated with mitochondrial dysfunction. These findings show that expression of miRNA-7 in the cardiomyocytes results in cardiac dilation instead of adaptive hypertrophic response during aging or to TAC providing insights on yet to be understood role of miRNA-7 in cardiac function.


Assuntos
Cardiomegalia/diagnóstico por imagem , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular , Animais , Aorta Torácica/cirurgia , Ecocardiografia , Receptores ErbB/metabolismo , Ligadura/métodos , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , MicroRNAs/genética , Membranas Mitocondriais/metabolismo , Receptor ErbB-2/metabolismo
3.
Hypertension ; 68(2): 334-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27324226

RESUMO

Catestatin (CST), an endogenous antihypertensive/antiadrenergic peptide, is a novel regulator of cardiovascular physiology. Here, we report case-control studies in 2 geographically/ethnically distinct Indian populations (n≈4000) that showed association of the naturally-occurring human CST-Gly364Ser variant with increased risk for hypertension (age-adjusted odds ratios: 1.483; P=0.009 and 2.951; P=0.005). Consistently, 364Ser allele carriers displayed elevated systolic (up to ≈8 mm Hg; P=0.004) and diastolic (up to ≈6 mm Hg; P=0.001) blood pressure. The variant allele was also found to be in linkage disequilibrium with other functional single-nucleotide polymorphisms in the CHGA promoter and nearby coding region. Functional characterization of the Gly364Ser variant was performed using cellular/molecular biological experiments (viz peptide-receptor binding assays, nitric oxide [NO], phosphorylated extracellular regulated kinase, and phosphorylated endothelial NO synthase estimations) and computational approaches (molecular dynamics simulations for structural analysis of wild-type [CST-WT] and variant [CST-364Ser] peptides and docking of peptide/ligand with ß-adrenergic receptors [ADRB1/2]). CST-WT and CST-364Ser peptides differed profoundly in their secondary structures and showed differential interactions with ADRB2; although CST-WT displaced the ligand bound to ADRB2, CST-364Ser failed to do the same. Furthermore, CST-WT significantly inhibited ADRB2-stimulated extracellular regulated kinase activation, suggesting an antagonistic role towards ADRB2 unlike CST-364Ser. Consequently, CST-WT was more potent in NO production in human umbilical vein endothelial cells as compared with CST-364Ser. This NO-producing ability of CST-WT was abrogated by ADRB2 antagonist ICI 118551. In conclusion, CST-364Ser allele enhanced the risk for hypertension in human populations, possibly via diminished endothelial NO production because of altered interactions of CST-364Ser peptide with ADRB2 as compared with CST-WT.


Assuntos
Pressão Sanguínea/genética , Cromogranina A/genética , Hipertensão , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/genética , Receptores Adrenérgicos beta 2/fisiologia , Adulto , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/fisiologia
4.
Nat Med ; 21(9): 1048-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26259032

RESUMO

Hypertension is the most common cardiovascular disease, afflicting >30% of adults. The cause of hypertension in most individuals remains unknown, suggesting that additional contributing factors have yet to be discovered. Corin is a serine protease that activates the natriuretic peptides, thereby regulating blood pressure. It is synthesized as a zymogen that is activated by proteolytic cleavage. CORIN variants and mutations impairing corin activation have been identified in people with hypertension and pre-eclampsia. To date, however, the identity of the protease that activates corin remains elusive. Here we show that proprotein convertase subtilisin/kexin-6 (PCSK6, also named PACE4; ref. 10) cleaves and activates corin. In cultured cells, we found that corin activation was inhibited by inhibitors of PCSK family proteases and by small interfering RNAs blocking PCSK6 expression. Conversely, PCSK6 overexpression enhanced corin activation. In addition, purified PCSK6 cleaved wild-type corin but not the R801A variant that lacks the conserved activation site. Pcsk6-knockout mice developed salt-sensitive hypertension, and corin activation and pro-atrial natriuretic peptide processing activity were undetectable in these mice. Moreover, we found that CORIN variants in individuals with hypertension and pre-eclampsia were defective in PCSK6-mediated activation. We also identified a PCSK6 mutation that impaired corin activation activity in a hypertensive patient. Our results indicate that PCSK6 is the long-sought corin activator and is important for sodium homeostasis and normal blood pressure.


Assuntos
Pressão Sanguínea , Pró-Proteína Convertases/fisiologia , Serina Endopeptidases/fisiologia , Animais , Cricetinae , Células HEK293 , Humanos , Hipertensão/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética
5.
Sci Signal ; 6(259): ra4, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23354687

RESUMO

Activation of cardiac phosphoinositide 3-kinase α (PI3Kα) by growth factors, such as insulin, or activation of PI3Kγ downstream of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors stimulates the activity of the kinase Akt, which phosphorylates and inhibits glycogen synthase kinase-3 (GSK-3). We found that PI3Kγ inhibited GSK-3 independently of the insulin-PI3Kα-Akt axis. Although insulin treatment activated Akt in PI3Kγ knockout mice, phosphorylation of GSK-3 was decreased compared to control mice. GSK-3 is activated when dephosphorylated by the protein phosphatase 2A (PP2A), which is activated when methylated by the PP2A methyltransferase PPMT-1. PI3Kγ knockout mice showed increased activity of PPMT-1 and PP2A and enhanced nuclear export of the GSK-3 substrate NFATc3. GSK-3 inhibits cardiac hypertrophy, and the hearts of PI3Kγ knockout mice were smaller compared to those of wild-type mice. Cardiac overexpression of a catalytically inactive PI3Kγ (PI3Kγ(inact)) transgene in PI3Kγ knockout mice reduced the activities of PPMT-1 and PP2A and increased phosphorylation of GSK-3. Furthermore, PI3Kγ knockout mice expressing the PI3Kγ(inact) transgene had larger hearts than wild-type or PI3Kγ knockout mice. Our studies show that a kinase-independent function of PI3Kγ could directly inhibit GSK-3 function by preventing the PP2A-PPMT-1 interaction and that this inhibition of GSK-3 was independent of Akt.


Assuntos
Cardiomegalia/enzimologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Ativação Enzimática/genética , Quinase 3 da Glicogênio Sintase/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Miocárdio/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética
6.
Curr Mol Pharmacol ; 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22697395

RESUMO

G-protein coupled receptors (GPCRs) are seven transmembrane receptors that are pivotal regulators of cellular responses including vision, cardiac contractility, olfaction, and platelet activation. GPCRs have been a major target for drug discovery due to their role in regulating a broad range of physiological and pathological responses. GPCRs mediate these responses through a cyclical process of receptor activation (initiation of downstream signals), desensitization (inactivation that results in diminution of downstream signals), and resensitization (receptor reactivation for next wave of activation). Although these steps may be of equal importance in regulating receptor function, significant advances have been made in understanding activation and desensitization with limited effort towards resensitization. Inadequate importance has been given to resensitization due to the understanding that resensitization is a homeostasis maintaining process and is not acutely regulated. Evidence indicates that resensitization is a critical step in regulating GPCR function and may contribute towards receptor signaling and cellular responses. In light of these observations, it is imperative to discuss resensitization as a dynamic and mechanistic regulator of GPCR function. In this review we discuss components regulating GPCR function like activation, desensitization, and internalization with special emphasis on resensitization. Although we have used ß-adrenergic receptor as a proto-type GPCR to discuss mechanisms regulating receptor function, other GPCRs are also described to put forth a view point on the universality of such mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA