Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Biol Chem ; 299(4): 104573, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870685

RESUMO

Sideromycins are a unique subset of siderophores comprising of a siderophore conjugated to an antimicrobial agent. The "Trojan horse" antibiotic albomycins are unique sideromycins consisting of a ferrichrome-type siderophore conjugated to a peptidyl nucleoside antibiotic. They exhibit potent antibacterial activities against many model bacteria and a number of clinical pathogens. Earlier studies have provided significant insight into the biosynthetic pathway of the peptidyl nucleoside moiety. We herein decipher the biosynthetic pathway of the ferrichrome-type siderophore in Streptomyces sp. ATCC 700974. Our genetic studies suggested that abmA, abmB, and abmQ are involved in the formation of the ferrichrome-type siderophore. Additionally, we performed biochemical studies to demonstrate that a flavin-dependent monooxygenase AbmB and an N-acyltransferase AbmA catalyze sequential modifications of L-ornithine to generate N5-acetyl-N5-hydroxyornithine. Three molecules of N5-acetyl-N5-hydroxyornithine are then assembled to generate the tripeptide ferrichrome through the action of a nonribosomal peptide synthetase AbmQ. Of special note, we found out that orf05026 and orf03299, two genes scattered elsewhere in the chromosome of Streptomyces sp. ATCC 700974, have functional redundancy for abmA and abmB, respectively. Interestingly, both orf05026 and orf03299 are situated within gene clusters encoding putative siderophores. In summary, this study provided new insight into the siderophore moiety of albomycin biosynthesis and shed light on the contingency of multiple siderophores in albomycin-producing Streptomyces sp. ATCC 700974.


Assuntos
Sideróforos , Streptomyces , Sideróforos/metabolismo , Ferricromo/química , Ferricromo/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Vias Biossintéticas , Nucleosídeos/metabolismo , Antibacterianos/metabolismo
2.
Trends Biochem Sci ; 44(11): 961-972, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31256981

RESUMO

The widespread emergence of antibiotic-resistant pathogens poses a severe threat to public health. This problem becomes even worse with a coincident decline in the supply of new antibiotics. Conventional bioactivity-guided natural product discovery has failed to meet the urgent need for new antibiotics, largely due to limited resources and high rediscovery rates. Recent advances in cultivation techniques, analytical technologies, and genomics-based approaches have greatly expanded our access to previously underexploited microbial sources. These strategies will enable us to access new reservoirs of microorganisms and unleash their chemical potentials, thus opening new opportunities for the discovery of next-generation drugs to address the growing concerns of antimicrobial resistance.


Assuntos
Antibacterianos/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Biologia Computacional , Descoberta de Drogas/métodos , Genômica , Ensaios de Triagem em Larga Escala/métodos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
3.
Mol Cell ; 57(1): 179-90, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25574948

RESUMO

In both prokaryotes and eukaryotes, insight into gene function is typically obtained by in silico homology searches and/or phenotypic analyses of strains bearing mutations within open reading frames. However, the studies herein illustrate how mRNA function is not limited to the expression of a cognate protein. We demonstrate that a stress-induced protein-encoding mRNA (irvA) from the dental caries pathogen Streptococcus mutans directly modulates target mRNA (gbpC) stability through seed pairing interactions. The 5' untranslated region of irvA mRNA is a trans riboregulator of gbpC and a critical activator of the DDAG stress response, whereas IrvA functions independently in the regulation of natural competence. The irvA riboregulatory domain controls GbpC production by forming irvA-gbpC hybrid mRNA duplexes that prevent gbpC degradation by an RNase J2-mediated pathway. These studies implicate a potentially ubiquitous role for typical protein-encoding mRNAs as riboregulators, which could alter current concepts in gene regulation.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Mensageiro/genética , Proteínas Repressoras/genética , Streptococcus mutans/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Fases de Leitura Aberta , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Streptococcus mutans/metabolismo , Transcrição Gênica
4.
Mar Drugs ; 21(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888456

RESUMO

A novel GH2 (glycoside hydrolase family 2) ß-galactosidase from Marinomonas sp. BSi20584 was successfully expressed in E. coli with a stable soluble form. The recombinant enzyme (rMaBGA) was purified to electrophoretic homogeneity and characterized extensively. The specific activity of purified rMaBGA was determined as 96.827 U mg-1 at 30 °C using ONPG (o-nitrophenyl-ß-D-galactopyranoside) as a substrate. The optimum pH and temperature of rMaBGA was measured as 7.0 and 50 °C, respectively. The activity of rMaBGA was significantly enhanced by some divalent cations including Zn2+, Mg2+ and Ni2+, but inhibited by EDTA, suggesting that some divalent cations might play important roles in the catalytic process of rMaBGA. Although the enzyme was derived from a cold-adapted strain, it still showed considerable stability against various physical and chemical elements. Moreover, rMaBGA exhibited activity both toward Galß-(1,3)-GlcNAc and Galß-(1,4)-GlcNAc, which is a relatively rare occurrence in GH2 ß-galactosidase. The results showed that two domains in the C-terminal region might be contributed to the ß-1,3-galactosidase activity of rMaBGA. On account of its fine features, this enzyme is a promising candidate for the industrial application of ß-galactosidase.


Assuntos
Galactosidases , Glicosídeo Hidrolases , Clonagem Molecular , Cátions Bivalentes , Escherichia coli/genética , Escherichia coli/metabolismo , Especificidade por Substrato , Temperatura , beta-Galactosidase/química , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Cinética
5.
Metab Eng ; 68: 187-198, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34673237

RESUMO

Herbicide-resistance in weeds has become a serious threat to agriculture across the world. Thus, there is an urgent need for the discovery and development of herbicides with new modes of action. Thaxtomin phytotoxins are a group of nitrated diketopiperazines produced by potato common scab-causing phytopathogen Streptomyces scabies and other actinobacterial pathogens. They are generally considered to function as inhibitors of cellulose synthesis in plants, and thus have great potential to be used as natural herbicides. Generation of an overproducing strain is crucial for the scale-up production of thaxtomins and their wide use in agriculture. In the present study, we employed a stepwise strategy by combining heterologous expression, repressor deletion, activator overexpression, and optimization of fermentation media for high-level production of thaxtomins. The maximum yield of 728 mg/L thaxtomins was achieved with engineered Streptomyces albidoflavus J1074 strains in shake-flask cultures, and it was approximately 36-fold higher than S. albidoflavus J1074 carrying the unmodified cluster. Moreover, the yield of thaxtomins could reach 1973 mg/L when the engineered strain was cultivated in a small-scale stirred-tank bioreactor. This is the highest titer reported to date, representing a significant leap forward for the scale-up production of thaxtomins. Our study presents a robust, easy-to-use system that will be broadly useful for improving titers of bioactive compounds in many Streptomyces species.


Assuntos
Engenharia Metabólica , Streptomyces , Indóis , Piperazinas , Streptomyces/genética
6.
Crit Rev Biotechnol ; 40(8): 1163-1171, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32819175

RESUMO

Herbicide-resistant weeds are a growing problem worldwide. Thaxtomin phytotoxins are a group of nitrated diketopiperazines produced by the potato common scab-causing pathogen Streptomyces scabies and other actinobacterial plant pathogens. They represent a unique class of microbial natural products with distinctive structural features and promising herbicidal activity. The biosynthesis of thaxtomins proceeds through multiple steps of unusual enzymatic reactions. Advances in understanding of thaxtomins biosynthetic machinery have provided the basis for precursor-directed biosynthesis, pathway refactoring, and one-pot biocombinatorial synthesis to generate thaxtomin analogues. We herein summarize recent findings on the biosynthesis of thaxtomins and highlight recent advances in the rational generation of novel thaxtomins for the development of potent herbicidal agents.


Assuntos
Vias Biossintéticas , Herbicidas/metabolismo , Engenharia Metabólica , Plantas Daninhas , Solanum tuberosum/microbiologia , Streptomyces
7.
Wei Sheng Wu Xue Bao ; 56(3): 406-17, 2016 Mar 04.
Artigo em Zh | MEDLINE | ID: mdl-27382784

RESUMO

OBJECTIVE: To determine the functions of gouC and gouD in gougerotin biosynthesis, disruption of these two genes was performed. As gougerotin producing strain Streptomyces graminearus lacks efficient genetic manipulation system, the gene cluster for gougerotin biosynthesis was heterologously expressed in Streptomyces coelicolor M1146 to facilitate genetic manipulations of gouC and gouD. METHODS: By using fosmid D6-4H containing the complete gougerotin biosynthetic gene cluster, gouC and gouD were disrupted by PCR-targeting method to generate pGOUe-ΔC and pGOUe-ΔD. Both pGOUe-ΔC and pGOUe-ΔD were introduced into Streptomyces coelicolor M1146 by intergeneric conjugation, thus gouC and gouD disrpution mutants (Ml146-GOUe-AC and M1146-GOUe-ΔD) were obtained. The gougerotin production of M1146-GOUe-ΔC and M1146-GOUe-ΔD were assayed by HPLC analysis. The intermediates accumulated in these mutants were purified and subjected to MS and NMR analyses for structure determinations. Bioassay of these intermediates against tumor cell line were also carried out. RESULTS: Disruption mutants of gouC and gouD failed to produce gougerotin and the mutants accumulated different gougerotin intermediates, which lost their ability to inhibit cancer cell proliferation. CONCLUSION: gouC and gouD are key structual genes in the biosynthesis of gougerotin peptidyl moieties. This study will pave the way for the elucidation of gougerotin biosynthetic pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Estrutura Molecular , Família Multigênica , Nucleosídeos de Pirimidina/biossíntese , Nucleosídeos de Pirimidina/química , Streptomyces/química , Streptomyces/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
8.
Mol Microbiol ; 94(3): 490-505, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25116816

RESUMO

Two regulatory genes, jadR2 and jadR3, in the jadomycin (jad) biosynthetic gene cluster of Streptomyces venezuelae encode homologues of γ-butyrolactone receptor. JadR2 was previously shown to be a pseudo γ-butyrolactone receptor. jadR3 is situated at the upstream of jadW123 encoding putative enzymes for γ-butyrolactone biosynthesis. Disruption of jadR3 resulted in markedly decreased production of jadomycin. Transcriptional analysis revealed that JadR3 represses jadW1, jadR2 and jadR3 but activates jadR1, the key activator gene for jadomycin biosynthesis. DNase I footprinting showed that JadR3 has four binding sites in the intergenic regions of jadR2-jadR1 and jadR3-jadW1. A JadR3 interactive molecule, SVB1, was purified from a large-scale fermentation and its structure found to be the same as SCB3, a γ-butyrolactone from Streptomyces coelicolor, and was absent from a jadW123 mutant lacking jadomycin production. Addition of SVB1 or extract from S. coelicolor to the mutant restored jadomycin production. Overall, our results revealed that the association of JadR3 and SVB1 plays an important role in controlling a regulatory mini-network governing jadomycin biosynthesis, providing new insights into the ways in which γ-butyrolactone/receptor systems modulate antibiotic biosynthesis in Streptomyces.


Assuntos
4-Butirolactona/metabolismo , Antibacterianos/metabolismo , Redes Reguladoras de Genes , Isoquinolinas/metabolismo , Naftoquinonas/metabolismo , Transdução de Sinais , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Pegada de DNA , DNA Bacteriano/metabolismo , DNA Intergênico/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Mutagênese Insercional , Ligação Proteica , Metabolismo Secundário , Streptomyces/genética , Fatores de Transcrição/genética
9.
Wei Sheng Wu Xue Bao ; 55(6): 707-18, 2015 Jun 04.
Artigo em Zh | MEDLINE | ID: mdl-26562995

RESUMO

OBJECTIVE: We expressed a nikkomycin biosynthetic gene cluster in the well-characterized surrogate Streptomyces coelicolor M1146. METHODS: By using PCR-targeting method, we replaced the promoters of sanG and sanF in pNIK, which contains nikkomycin biosynthetic gene cluster, with the hrdB promoter to generate pNIKm. We transferred pNIK and pNIKm into S. coelicolor M1146 by intergeneric conjugation and obtained M1146-NIK and M1146-NIKm, respectively. We then evaluated expression of the gene cluster in the heterologous host by RT-PCR. Furthermore, we also compared the antifugal activity and nikkomycin production of M1146-NIK and M1146-NIKm by bioassay against Alternaria longipes and HPLC analysis. RESULTS: M1146-NIK and M1146-NIKm exhibited antifungal activity, and they can produce a trace amount of nikkomycin X, nikkomycin Z and pseudo-Z. There was a substantial accumulation of uridine in M1146-NIK, whereas substantial accumulations of uridine, ribofuranosyl-4-formyl-4-imidazolone and pyridylhomothreonine were observed in M1146-NIKm. CONCLUSION: We successfully expressed the nikkomycin biosynthetic gene cluster in the heterologous host and identified nikkomycins and some of its key biosynthetic intermediates. This study will provide the basis for enzymatic reaction of the condensation between the two nikkomycin moieties and for the generation of hybrid antibiotics by combinatorial biosynthesis.


Assuntos
Aminoglicosídeos/biossíntese , Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Streptomyces/genética , Streptomyces/metabolismo , Aminoglicosídeos/química , Antifúngicos/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Engenharia Metabólica , Família Multigênica , Regiões Promotoras Genéticas
10.
Appl Environ Microbiol ; 80(2): 714-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24242236

RESUMO

Gougerotin is a peptidyl nucleoside antibiotic. It functions as a specific inhibitor of protein synthesis by binding ribosomal peptidyl transferase and exhibits a broad spectrum of biological activities. gouR, situated in the gougerotin biosynthetic gene cluster, encodes a TetR family transcriptional regulatory protein. Gene disruption and genetic complementation revealed that gouR plays an important role in the biosynthesis of gougerotin. Transcriptional analysis suggested that GouR represses the transcription of the gouL-to-gouB operon consisting of 11 structural genes and activates the transcription of the major facilitator superfamily (MFS) transporter gene (gouM). Electrophoresis mobility shift assays (EMSAs) and DNase I footprinting experiments showed that GouR has specific DNA-binding activity for the promoter regions of gouL, gouM, and gouR. Our data suggested that GouR modulates gougerotin production by coordinating its biosynthesis and export in Streptomyces graminearus.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Sequência de Bases , Sítios de Ligação , Desoxirribonuclease I/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Dados de Sequência Molecular , Família Multigênica , Mutação , Óperon , Regiões Promotoras Genéticas , Transporte Proteico , Nucleosídeos de Pirimidina/biossíntese , Nucleosídeos de Pirimidina/genética , Transativadores/genética
11.
Microb Cell Fact ; 13(1): 59, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24751325

RESUMO

BACKGROUND: Nikkomycins are competitive inhibitors of chitin synthase and inhibit the growth of filamentous fungi, insects, acarids and yeasts. The gene cluster responsible for biosynthesis of nikkomycins has been cloned and the biosynthetic pathway was elucidated at the genetic, enzymatic and regulatory levels. RESULTS: Streptomyces ansochromogenes ΔsanL was constructed by homologous recombination and the mutant strain was fed with benzoic acid, 4-hydroxybenzoic acid, nicotinic acid and isonicotinic acid. Two novel nikkomycin analogues were produced when cultures were supplemented with nicotinic acid. These two compounds were identified as nikkomycin Px and Pz by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). Bioassays against Candida albicans and Alternaria longipes showed that nikkomycin Px and Pz exhibited comparatively strong inhibitory activity as nikkomycin X and Z produced by Streptomyces ansochromogenes 7100 (wild-type strain). Moreover, nikkomycin Px and Pz were found to be more stable than nikkomycin X and Z at different pH and temperature conditions. CONCLUSIONS: Two novel nikkomycin analogues (nikkomycin Px and Pz) were generated by mutasynthesis with the sanL inactivated mutant of Streptomyces ansochromogenes 7100. Although antifungal activities of these two compounds are similar to those of nikkomycin X and Z, their stabilities are much better than nikkomycin X and Z under different pHs and temperatures.


Assuntos
Aminoglicosídeos/biossíntese , Dipeptídeos/biossíntese , Nucleosídeos/biossíntese , Streptomyces/metabolismo , Uridina/análogos & derivados , Alternaria/efeitos dos fármacos , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Candida albicans/efeitos dos fármacos , Dipeptídeos/isolamento & purificação , Dipeptídeos/farmacologia , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Molecular , Família Multigênica , Mutação , Niacina/farmacologia , Nucleosídeos/isolamento & purificação , Nucleosídeos/farmacologia , Streptomyces/efeitos dos fármacos , Espectrometria de Massas em Tandem , Temperatura , Transaminases/genética , Uridina/biossíntese , Uridina/isolamento & purificação , Uridina/farmacologia
12.
Sci Total Environ ; 913: 169767, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176562

RESUMO

Inadequately managed solid organic waste generation poses a threat to the environment and human health globally. Biotransformation with the black soldier fly larvae (BSFL) is emerging as talent technology for solid waste management. However, there is a lack of understanding of whether BSFL can effectively suppress potential pathogenic microorganisms during management and the underlying mechanisms. In this study, we investigated the temporal variations of microorganisms in two common types of solid waste, i.e., kitchen waste (KW) and pig manure (PM). Natural composting and composting with BSFL under three different pH levels (pH 5, 7, and 9) were established to explore their impact on microbial communities in compost and the gut of BSFL. The results showed that the compost of kitchen waste and pig manure led to an increase in relative abundance of various potentially pathogenic bacteria. Temporal gradient analyses revealed that the most substantial reduction in the relative abundance and diversity of potentially pathogenic microorganisms occurred when the initial pH of both two wastes were adjusted to 7 upon the introduction of BSFL. Through network and pls-pm analysis, it was discovered that the gut microbiota of BSFL occupied an ecological niche in the compost, inhibiting the proliferation of potentially pathogenic microorganisms. This study has revealed the potential of BSFL in reducing public health risks during the solid waste management process, providing robust support for sustainable waste management.


Assuntos
Compostagem , Dípteros , Humanos , Animais , Suínos , Larva/fisiologia , Resíduos Sólidos , Esterco , Dípteros/fisiologia
13.
Appl Microbiol Biotechnol ; 97(14): 6383-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23515837

RESUMO

Nikkomycins and gougerotin are peptidyl nucleoside antibiotics with broad biological activities. The nikkomycin biosynthetic gene cluster comprises one pathway-specific regulatory gene (sanG) and 21 structural genes, whereas the gene cluster for gougerotin biosynthesis includes one putative regulatory gene, one major facilitator superfamily transporter gene, and 13 structural genes. In the present study, we introduced sanG driven by six different promoters into Streptomyces ansochromogenes TH322. Nikkomycin production was increased significantly with the highest increase in engineered strain harboring hrdB promoter-driven sanG. In the meantime, we replaced the native promoter of key structural genes in the gougerotin (gou) gene cluster with the hrdB promoters. The heterologous producer Streptomyces coelicolor M1146 harboring the modified gene cluster produced gougerotin up to 10-fold more than strains carrying the unmodified cluster. Therefore, genetic manipulations of genes involved in antibiotics biosynthesis with the constitutive hrdB promoter present a robust, easy-to-use system generally useful for the improvement of antibiotics production in Streptomyces.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Família Multigênica , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Regiões Promotoras Genéticas , Nucleosídeos de Pirimidina/biossíntese , Streptomyces/metabolismo
14.
Appl Microbiol Biotechnol ; 97(24): 10469-77, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121866

RESUMO

Gougerotin is a peptidyl nucleoside antibiotic produced by Streptomyces graminearus . It is a specific inhibitor of protein synthesis and exhibits a broad spectrum of biological activities. Generation of an overproducing strain is crucial for the scale-up production of gougerotin. In this study, the natural and engineered gougerotin gene clusters were reassembled into an integrative plasmid by λ-red-mediated recombination technology combined with classic cloning methods. The resulting plasmids pGOU and pGOUe were introduced into S. graminearus to obtain recombinant strains Sgr-GOU and Sgr-GOUe, respectively. Compared with the wild-type strain, Sgr-GOU led to a maximum 1.3-fold increase in gougerotin production, while Sgr-GOUe resulted in a maximum 2.1-fold increase in gougerotin production. To further increase the yield of gougerotin, the effect of different precursors on its production was investigated. All precursors, including cytosine, serine, and glycine, had stimulatory effect on gougerotin production. The maximum gougerotin yield was achieved with Sgr-GOUe in the presence of glycine, and it was approximately 2.5-fold higher than that of the wild-type strain. The strategies used in this study can be extended to other Streptomyces for improving production of industrial important antibiotics.


Assuntos
Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Família Multigênica , Streptomyces/genética , Streptomyces/metabolismo , Plasmídeos , Nucleosídeos de Pirimidina/metabolismo , Recombinação Genética
15.
J Biol Eng ; 17(1): 45, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461106

RESUMO

BACKGROUND: Novel bone substitutes are urgently needed in experimental research and clinical orthopaedic applications. There are many traditional Chinese medicines that have effects on bone repair. However, application of natural medicines in traditional Chinese medicine to bone tissue engineering and its mechanism were rarely reported. RESULTS: In this study, the osteogenic ability of bioactive glass particles (BGPs) and the osteogenic and osteoclastic ability of neferine (Nef) were fused into PLGA-based bone tissue engineering materials for bone regeneration. BGPs were prepared by spray drying and calcination. Particles and Nef were then mixed with PLGA solution to prepare porous composites by the phase conversion method. Here we showed that Nef inhibited proliferation and enhanced ALP activity of MC3T3-E1 cells in a dose- and time-dependent manner. And the composites containing Nef could also inhibit RANKL-induced osteoclast formation (p < 0.05). Mechanistically, the PLGA/BGP/Nef composite downregulated the expression of NFATC1 by inhibiting the NF-κB pathway to restrain osteoclasts. In the other hands, PLGA/BGP/Nef composite was first demonstrated to effectively activate the IGF-1R/PI3K/AKT/mTOR pathway to enhance IGF-1-mediated osteogenic differentiation. The results of animal experiments show that the material can effectively promote the formation and maturation of new bone in the skull defect site. CONCLUSIONS: The PLGA/BGP/Nef porous composite can restrain osteoclasts by inhibiting the NF-κB pathway, enhance IGF-1-mediated osteogenic differentiation and promotes bone regeneration, and has the potential for clinical application.

16.
Microbiol Spectr ; : e0385222, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847561

RESUMO

Lasalocid, a representative polyether ionophore, has been successfully applied in veterinary medicine and animal husbandry and also displays promising potential for cancer therapy. Nevertheless, the regulatory system governing lasalocid biosynthesis remains obscure. Here, we identified two conserved (lodR2 and lodR3) and one variable (lodR1, found only in Streptomyces sp. strain FXJ1.172) putative regulatory genes through a comparison of the lasalocid biosynthetic gene cluster (lod) from Streptomyces sp. FXJ1.172 with those (las and lsd) from Streptomyces lasalocidi. Gene disruption experiments demonstrated that both lodR1 and lodR3 positively regulate lasalocid biosynthesis in Streptomyces sp. FXJ1.172, while lodR2 plays a negative regulatory role. To unravel the regulatory mechanism, transcriptional analysis and electrophoretic mobility shift assays (EMSAs) along with footprinting experiments were performed. The results revealed that LodR1 and LodR2 could bind to the intergenic regions of lodR1-lodAB and lodR2-lodED, respectively, thereby repressing the transcription of the lodAB and lodED operons, respectively. The repression of lodAB-lodC by LodR1 likely boosts lasalocid biosynthesis. Furthermore, LodR2 and LodE constitute a repressor-activator system that senses changes in intracellular lasalocid concentrations and coordinates its biosynthesis. LodR3 could directly activate the transcription of key structural genes. Comparative and parallel functional analyses of the homologous genes in S. lasalocidi ATCC 31180T confirmed the conserved roles of lodR2, lodE, and lodR3 in controlling lasalocid biosynthesis. Intriguingly, the variable gene locus lodR1-lodC from Streptomyces sp. FXJ1.172 seems functionally conserved when introduced into S. lasalocidi ATCC 31180T. Overall, our findings demonstrate that lasalocid biosynthesis is tightly controlled by both conserved and variable regulators, providing valuable guidance for further improving lasalocid production. IMPORTANCE Compared to its elaborated biosynthetic pathway, the regulation of lasalocid biosynthesis remains obscure. Here, we characterize the roles of regulatory genes in lasalocid biosynthetic gene clusters of two distinct Streptomyces species and identify a conserved repressor-activator system, LodR2-LodE, which could sense changes in the concentration of lasalocid and coordinate its biosynthesis with self-resistance. Furthermore, in parallel, we verify that the regulatory system identified in a new Streptomyces isolate is valid in the industrial lasalocid producer and thus applicable for the construction of high-yield strains. These findings deepen our understanding of regulatory mechanisms involved in the production of polyether ionophores and provide novel clues for the rational design of industrial strains for scaled-up production.

17.
Protein Cell ; 14(10): 713-725, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37128855

RESUMO

With the gradual maturity of sequencing technology, many microbiome studies have published, driving the emergence and advance of related analysis tools. R language is the widely used platform for microbiome data analysis for powerful functions. However, tens of thousands of R packages and numerous similar analysis tools have brought major challenges for many researchers to explore microbiome data. How to choose suitable, efficient, convenient, and easy-to-learn tools from the numerous R packages has become a problem for many microbiome researchers. We have organized 324 common R packages for microbiome analysis and classified them according to application categories (diversity, difference, biomarker, correlation and network, functional prediction, and others), which could help researchers quickly find relevant R packages for microbiome analysis. Furthermore, we systematically sorted the integrated R packages (phyloseq, microbiome, MicrobiomeAnalystR, Animalcules, microeco, and amplicon) for microbiome analysis, and summarized the advantages and limitations, which will help researchers choose the appropriate tools. Finally, we thoroughly reviewed the R packages for microbiome analysis, summarized most of the common analysis content in the microbiome, and formed the most suitable pipeline for microbiome analysis. This paper is accompanied by hundreds of examples with 10,000 lines codes in GitHub, which can help beginners to learn, also help analysts compare and test different tools. This paper systematically sorts the application of R in microbiome, providing an important theoretical basis and practical reference for the development of better microbiome tools in the future. All the code is available at GitHub github.com/taowenmicro/EasyMicrobiomeR.


Assuntos
Microbiota , Software , Análise de Sequência de DNA , Idioma
18.
Sci China Life Sci ; 66(8): 1728-1741, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36932313

RESUMO

The gut microbiome of plant-eaters is affected by the food they eat, but it is currently unclear how the plant metabolome and microbiome are influenced by the substrate the plant grows in and how this subsequently impacts the feeding behavior and gut microbiomes of insect herbivores. Here, we use Plutella xylostella caterpillars and show that the larvae prefer leaves of cabbage plants growing in a vermiculite substrate to those from plants growing in conventional soil systems. From a plant metabolomics analysis, we identified 20 plant metabolites that were related to caterpillar feeding performance. In a bioassay, the effects of these plant metabolites on insects' feeding were tested. Nitrate and compounds enriched with leaves of soilless cultivation promoted the feeding of insects, while compounds enriched with leaves of plants growing in natural soil decreased feeding. Several microbial groups (e.g., Sporolactobacillus, Haliangium) detected inside the plant correlated with caterpillar feeding performance and other microbial groups, such as Ramlibacter and Methylophilus, correlated with the gut microbiome. Our results highlight the role of growth substrates on the food metabolome and microbiome and on the feeding performance and the gut microbiome of plant feeders. It illustrates how belowground factors can influence the aboveground properties of plant-animal systems, which has important implications for plant growth and pest control.


Assuntos
Herbivoria , Insetos , Animais , Larva , Comportamento Alimentar , Solo , Folhas de Planta/metabolismo
19.
Comput Struct Biotechnol J ; 21: 5273-5284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954150

RESUMO

Coronarin (COR), an analog of jasmonic acid, has been shown to enhance the tolerance of plants to drought. However, the effects of COR on the interactions among microorganisms associated with plant roots and their implications for enhancing the drought tolerance of plants remain unclear. Here, we studied the effects of applying COR on the microorganisms associated with plant roots and the rhizosphere metabolome. Treatment with COR affected the fungal community of the rhizosphere by inducing changes in the rhizosphere metabolome, which enhanced the drought tolerance of plants. However, treatment with COR had no significant effect on root microorganisms or rhizosphere bacteria. Specifically, the application of COR resulted in a significant reduction in the relative abundance of metabolites, such as mucic acid, 1,4-cyclohexanedione, 4-acetylbutyric acid, Ribonic acid, palmitic acid, and stearic acid, in maize roots under drought conditions; COR application also led to increases in the abundance of drought-resistant fungal microorganisms, including Rhizopus, and the assembly of a highly drought-resistant rhizosphere fungal network, which enhanced the drought tolerance of plants. Overall, the results of our study indicate that COR application positively regulates interactions between plants and microbes and increases the drought tolerance of plants.

20.
Nat Commun ; 14(1): 4497, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495619

RESUMO

Prebiotics are compounds that selectively stimulate the growth and activity of beneficial microorganisms. The use of prebiotics is a well-established strategy for managing human gut health. This concept can also be extended to plants where plant rhizosphere microbiomes can improve the nutrient acquisition and disease resistance. However, we lack effective strategies for choosing metabolites to elicit the desired impacts on plant health. In this study, we target the rhizosphere of tomato (Solanum lycopersicum) suffering from wilt disease (caused by Ralstonia solanacearum) as source for potential prebiotic metabolites. We identify metabolites (ribose, lactic acid, xylose, mannose, maltose, gluconolactone, and ribitol) exclusively used by soil commensal bacteria (not positively correlated with R. solanacearum) but not efficiently used by the pathogen in vitro. Metabolites application in the soil with 1 µmol g-1 soil effectively protects tomato and other Solanaceae crops, pepper (Capsicum annuum) and eggplant (Solanum melongena), from pathogen invasion. After adding prebiotics, the rhizosphere soil microbiome exhibits enrichment of pathways related to carbon metabolism and autotoxin degradation, which were driven by commensal microbes. Collectively, we propose a novel pathway for mining metabolites from the rhizosphere soil and their use as prebiotics to help control soil-borne bacterial wilt diseases.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Solanum melongena , Humanos , Prebióticos , Rizosfera , Solo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Bactérias , Ralstonia solanacearum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA