Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Microb Cell Fact ; 23(1): 118, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659044

RESUMO

BACKGROUND: Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS: Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS: L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations.


Assuntos
Álcool Desidrogenase , Etanol , Probióticos , Humanos , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Etanol/metabolismo , Lactobacillus/metabolismo , Lactobacillus/genética , Lactobacillales/genética , Lactobacillales/metabolismo , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Pediococcus acidilactici/metabolismo
2.
Biochem Biophys Res Commun ; 603: 41-48, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35278878

RESUMO

An increasing number of studies have indicated that alterations in gut microbiota affect brain function, including cognition and memory ability, via the gut-brain axis. In this study, we aimed to determine the protective effect of Bifidobacterium bifidum BGN4 (B. bifidum BGN4) and Bifidobacterium longum BORI (B. longum BORI) on age-related brain damage in mice. We found that administration of B. bifidum BGN4 and B. longum BORI effectively elevates brain-derived neurotrophic factor expression which was mediated by increased histone 3 lysine 9 trimethylation. Furthermore, administration of probiotic supplementation reversed the DNA damage and apoptotic response in aged mice and also improved the age-related cognitive and memory deficits of these mice. Taken together, the present study highlights the anti-aging effects of B. bifidum BGN4 and B. longum BORI in the aged brain and their beneficial effects for age-related brain disorders.


Assuntos
Bifidobacterium bifidum , Bifidobacterium longum , Microbioma Gastrointestinal , Probióticos , Animais , Bifidobacterium bifidum/genética , Camundongos , Rejuvenescimento
3.
Microb Cell Fact ; 21(1): 113, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672695

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a gastrointestinal disease characterized by diarrhea, rectal bleeding, abdominal pain, and weight loss. Recombinant probiotics producing specific proteins with IBD therapeutic potential are currently considered novel drug substitutes. In this study, a Bifidobacterium bifidum BGN4-SK strain was designed to produce the antioxidant enzymes streptococcal superoxide dismutase (SOD) and lactobacillus catalase (CAT), and a B. bifidum BGN4-pBESIL10 strain was proposed to generate an anti-inflammatory cytokine, human interleukin (IL)-10. In vitro and in vivo efficacy of these genetically modified Bifidobacterium strains were evaluated for colitis amelioration. RESULTS: In a lipopolysaccharide (LPS)-stimulated HT-29 cell model, tumor necrosis factor (TNF)-α and IL-8 production was significantly suppressed in the B. bifidum BGN4-SK treatment, followed by B. bifidum BGN4-pBESIL10 treatment, when compared to the LPS-treated control. Synergistic effects on TNF-α suppression were also observed. In a dextran sodium sulphate (DSS)-induced colitis mouse model, B. bifidum BGN4-SK treatment significantly enhanced levels of antioxidant enzymes SOD, glutathione peroxidase (GSH-Px) and CAT, compared to the DSS-only group. B. bifidum BGN4-SK significantly ameliorated the symptoms of DSS-induced colitis, increased the expression of tight junction genes (claudin and ZO-1), and decreased pro-inflammatory cytokines IL-6, IL-1ß and TNF-α. CONCLUSIONS: These findings suggest that B. bifidum BGN4-SK ameliorated DSS-induced colitis by generating antioxidant enzymes, maintaining the epithelial barrier, and decreasing the production of pro-inflammatory cytokines. Although B. bifidum BGN4-pBESIL10 exerted anti-inflammatory effects in vitro, the enhancement of IL-10 production and alleviation of colitis were very limited.


Assuntos
Bifidobacterium bifidum , Colite , Doenças Inflamatórias Intestinais , Probióticos , Animais , Anti-Inflamatórios/efeitos adversos , Antioxidantes/metabolismo , Bifidobacterium bifidum/genética , Colite/tratamento farmacológico , Colite/terapia , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Interleucina-10/metabolismo , Lipopolissacarídeos , Camundongos , Probióticos/uso terapêutico , Superóxido Dismutase/efeitos adversos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
J Appl Microbiol ; 132(4): 3189-3200, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34878713

RESUMO

AIMS: This study aimed to evaluate the efficacy of paraprobiotics Lactobacillus acidophilus PIN7 supplementation against dextran sodium sulphate (DSS)-induced colitis in mice and to determine their mechanisms of the action. METHODS AND RESULTS: Ten-week-old female BALB/C mice were randomly divided into five groups. Each group was administered with PBS (control and DSS group), live PIN7 (LIVE group), heat-killed PIN7 (HEAT group) or lysozyme-treated PIN7 (LYSOZYME group) for 10 days followed by 2.5% DSS supply in drinking water for 5 days except for the control group. Colitis-associated DAI scores were significantly (p < 0.05) attenuated in HEAT and LYSOZYME group. The HEAT group exhibited significantly (p < 0.05) lower colonic tissue damage score compared to the DSS group. Furthermore, HEAT and LYSOZYME groups showed significantly (p < 0.05) higher colonic expressions of toll-like receptor (TLR) 6 and intestinal junction protein E-cadherin and occludin compared to the DSS group. LYSOZYME group showed significantly (p < 0.05) lower colonic expressions of Th2 cell-associated pro-inflammatory molecules, namely GATA3 and IL-4, and higher expression of anti-inflammatory NLRP6 and IL-18 compared to the DSS group. Also, HEAT group exhibited significantly (p < 0.05) lower colonic p-IκBα expression compared to the DSS group, while COX-2 expression was significantly (p < 0.05) suppressed by both paraprobiotics supplementation. Paraprobiotics significantly altered the composition of the intestinal microbiota. CONCLUSION: Paraprobiotic L. acidophilus PIN7 ameliorated DSS-induced colitis by regulating immune-modulatory TLR6 signalling and gut microbiota composition. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests paraprobiotic L. acidophilus PIN7 are superior candidates to prevent intestinal inflammation associated with dysregulated immune responses.


Assuntos
Colite , Probióticos , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Modelos Animais de Doenças , Feminino , Lactobacillus acidophilus , Camundongos , Camundongos Endogâmicos BALB C , Probióticos/farmacologia
5.
Microb Cell Fact ; 20(1): 16, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468130

RESUMO

BACKGROUND: Bifidobacterium spp. are representative probiotics that play an important role in the health of their hosts. Among various Bifidobacterium spp., B. bifidum BGN4 exhibits relatively high cell adhesion to colonic cells and has been reported to have various in vivo and in vitro bio functionalities (e.g., anti-allergic effect, anti-cancer effect, and modulatory effects on immune cells). Interleukin-10 (IL-10) has emerged as a major suppressor of immune response in macrophages and other antigen presenting cells and plays an essential role in the regulation and resolution of inflammation. In this study, recombinant B. bifidum BGN4 [pBESIL10] was developed to deliver human IL-10 effectively to the intestines. RESULTS: The vector pBESIL10 was constructed by cloning the human IL-10 gene under a gap promoter and signal peptide from Bifidobacterium spp. into the E. coli-Bifidobacterium shuttle vector pBES2. The secreted human IL-10 from B. bifidum BGN4 [pBESIL10] was analyzed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), Western Blotting, and enzyme-linked immunosorbent assay (ELISA). More than 1,473 ± 300 ng/mL (n = 4) of human IL-10 was obtained in the cell free culture supernatant of B. bifidum BGN4 [pBESIL10]. This productivity is significantly higher than other previously reported human IL-10 level from food grade bacteria. In vitro functional evaluation of the cell free culture supernatant of B. bifidum BGN4 [pBESIL10] revealed significantly inhibited interleukin-6 (IL-6) production in lipopolysaccharide (LPS)-induced Raw 264.7 cells (n = 6, p < 0.0001) and interleukin-8 (IL-8) production in LPS-induced HT-29 cells (n = 6, p < 0.01) or TNFα-induced HT-29 cells (n = 6, p < 0.001). CONCLUSION: B. bifidum BGN4 [pBESIL10] efficiently produces and secretes significant amounts of biologically active human IL-10. The human IL-10 production level in this study is the highest of all human IL-10 production reported to date. Further research should be pursued to evaluate B. bifidum BGN4 [pBESIL10] producing IL-10 as a treatment for various inflammation-related diseases, including inflammatory bowel disease, rheumatoid arthritis, allergic asthma, and cancer immunotherapy.


Assuntos
Bifidobacterium bifidum/metabolismo , Escherichia coli/metabolismo , Interleucina-10/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Sequência de Bases , Bifidobacterium bifidum/genética , Western Blotting , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Células HT29 , Humanos , Interleucina-10/genética , Camundongos , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , Homologia de Sequência do Ácido Nucleico
6.
Microb Cell Fact ; 20(1): 75, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757506

RESUMO

BACKGROUND: Lactobacillus spp. have been researched worldwide and are used in probiotics, but due to difficulties with laboratory cultivation of and experimentation on oral microorganisms, there are few reports of Lactobacillus spp. being isolated from the oral cavity and tested against oral pathogens. This research sought to isolate and determine the safety and inhibitory capabilities of a Lactobacillus culture taken from the human body. RESULTS: One organism was isolated, named "L. gasseri HHuMIN D", and evaluated for safety. A 5% dilution of L. gasseri HHuMIN D culture supernatant exhibited 88.8% inhibition against halitosis-producing anaerobic microorganisms and the organism itself exhibited powerful inhibitory effects on the growth of 11 oral bacteria. Hydrogen peroxide production reached 802 µmol/L after 12 h and gradually diminished until 24 h, it efficiently aggregated with P. catoniae and S. sanguinis, and it completely suppressed S. mutans-manufactured artificial dental plaque. L. gasseri HHuMIN D's KB cell adhesion capacity was 4.41 cells per cell, and the cell adhesion of F. nucleatum and S. mutans diminished strongly in protection and displacement assays. CONCLUSION: These results suggest that L. gasseri HHuMIN D is a safe, bioactive, lactobacterial food ingredient, starter culture, and/or probiotic microorganism for human oral health.


Assuntos
Antibiose , Lactobacillus gasseri/isolamento & purificação , Lactobacillus gasseri/metabolismo , Lactobacillus/metabolismo , Boca/microbiologia , Probióticos/metabolismo , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Lactobacillus/classificação , Lactobacillus/patogenicidade , Lactobacillus gasseri/crescimento & desenvolvimento , Probióticos/administração & dosagem
7.
J Transl Med ; 18(1): 317, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799896

RESUMO

BACKGROUND: To evaluate the immunomodulatory effect of Lactobacillus sakei in a mouse model of rheumatoid arthritis (RA) and in human immune cells. METHODS: We evaluated whether L. sakei reduced the severity of collagen-induced arthritis (CIA) and modulated interleukin (IL)-17 and IL-10 levels, as well as whether it affected the differentiation of CD4+ T cells and regulatory B cells. We evaluated osteoclastogenesis after culturing bone marrow-derived mononuclear cells with L. sakei. RESULTS: The differentiation of T helper 17 cells and the serum level of IL-17 were suppressed by L. sakei in both human peripheral blood mononuclear cells and mouse splenocytes. The serum level of IL-10 was significantly increased in the L. sakei-treated group, whereas the regulatory T cell population was unchanged. The population of regulatory B cells significantly increased the in L. sakei-treated group. Oral administration of L. sakei reduced the arthritis incidence and score in mice with CIA. Finally, osteoclastogenesis and the mRNA levels of osteoclast-related genes were suppressed in the L. sakei-treated group. CONCLUSION: L. sakei exerted an anti-inflammatory effect in an animal model of RA, regulated Th17 and regulatory B cell differentiation, and suppressed osteoclastogenesis. Our findings suggest that L. sakei has therapeutic potential for RA.


Assuntos
Artrite Experimental , Linfócitos B Reguladores , Latilactobacillus sakei , Animais , Artrite Experimental/terapia , Diferenciação Celular , Camundongos , Linfócitos T Reguladores , Células Th17
8.
Glycoconj J ; 36(3): 199-209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31030313

RESUMO

Breast-fed infants have Bifidobacterium-rich gut microbiota compared to infants fed formula. Fucosylated oligosaccharides are the major components of human milk oligosaccharide (HMO) which confer various beneficial effects including prebiotic effect and protection from pathogenic infection on the host. A novel prebiotics was developed using bifidobacterial ß-galactosidase and fucose and lactose as substrates. Structure analysis revealed it as ß-D-galactopyranosyl-(1 → 3)-O-L-fucopyranose named as ß-galactosyl fucose (gal-fuc), which is different from common fucosylated HMOs with α1-2, α1-3, and α1-4 linkages. Among the four Lactobacillus strains examined, all but L. delbrueckii subsp. bilgaricus KCTC 3635 grew better on gal-fuc than on ß-GOS. Among the 11 bifidobacterial species examined, all except for B. bifium used gal-fuc as much as GOS. Moreover, the gal-fuc was noticeably better used by Bifidobacterium infantis, the major intestinal bacteria of breast fed infant. Among 15 non-probiotic bacteria, only 4 strains used gal-fuc better than ß-GOS. In conclusion, a novel gal-fuc is expected to contribute to beneficial changes of gut microbiota. Graphical abstract A novel form of ß-galactosyl fucose with an improved prebiotic effect.


Assuntos
Proteínas de Bactérias/metabolismo , Fucose/análogos & derivados , Galactose/análogos & derivados , Prebióticos , beta-Galactosidase/metabolismo , Proteínas de Bactérias/genética , Bifidobacterium/enzimologia , Biocatálise , Células CACO-2 , Fucose/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Lactose/química , beta-Galactosidase/genética
9.
Int J Mol Sci ; 19(5)2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29747442

RESUMO

Over the past decade, a variety of lactic acid bacteria have been commercially available to and steadily used by consumers. However, recent studies have shown that some lactic acid bacteria produce toxic substances and display properties of virulence. To establish safety guidelines for lactic acid bacteria, the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) has suggested that lactic acid bacteria be characterized and proven safe for consumers’ health via multiple experiments (e.g., antibiotic resistance, metabolic activity, toxin production, hemolytic activity, infectivity in immune-compromised animal species, human side effects, and adverse-outcome analyses). Among the lactic acid bacteria, Bifidobacterium and Lactobacillus species are probiotic strains that are most commonly commercially produced and actively studied. Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI have been used in global functional food markets (e.g., China, Germany, Jordan, Korea, Lithuania, New Zealand, Poland, Singapore, Thailand, Turkey, and Vietnam) as nutraceutical ingredients for decades, without any adverse events. However, given that the safety of some newly screened probiotic species has recently been debated, it is crucial that the consumer safety of each commercially utilized strain be confirmed. Accordingly, this paper details a safety assessment of B. bifidum BGN4 and B. longum BORI via the assessment of ammonia production, hemolysis of blood cells, biogenic amine production, antimicrobial susceptibility pattern, antibiotic resistance gene transferability, PCR data on antibiotic resistance genes, mucin degradation, genome stability, and possession of virulence factors. These probiotic strains showed neither hemolytic activity nor mucin degradation activity, and they did not produce ammonia or biogenic amines (i.e., cadaverine, histamine or tyramine). B. bifidum BGN4 and B. longum BORI produced a small amount of putrescine, commonly found in living cells, at levels similar to or lower than that found in other foods (e.g., spinach, ketchup, green pea, sauerkraut, and sausage). B. bifidum BGN4 showed higher resistance to gentamicin than the European Food Safety Authority (EFSA) cut-off. However, this paper shows the gentamicin resistance of B. bifidum BGN4 was not transferred via conjugation with L. acidophilus ATCC 4356, the latter of which is highly susceptible to gentamicin. The entire genomic sequence of B. bifidum BGN4 has been published in GenBank (accession no.: CP001361.1), documenting the lack of retention of plasmids capable of transferring an antibiotic-resistant gene. Moreover, there was little genetic mutation between the first and 25th generations of B. bifidum BGN4. Tetracycline-resistant genes are prevalent among B. longum strains; B. longum BORI has a tet(W) gene on its chromosome DNA and has also shown resistance to tetracycline. However, this research shows that its tetracycline resistance was not transferred via conjugation with L. fermentum AGBG1, the latter of which is highly sensitive to tetracycline. These findings support the continuous use of B. bifidum BGN4 and B. longum BORI as probiotics, both of which have been reported as safe by several clinical studies, and have been used in food supplements for many years.


Assuntos
Amônia/metabolismo , Bifidobacterium bifidum/fisiologia , Bifidobacterium longum/fisiologia , Animais , Antibacterianos/farmacologia , Bifidobacterium bifidum/efeitos dos fármacos , Bifidobacterium bifidum/crescimento & desenvolvimento , Bifidobacterium bifidum/patogenicidade , Bifidobacterium longum/efeitos dos fármacos , Bifidobacterium longum/crescimento & desenvolvimento , Bifidobacterium longum/patogenicidade , Aminas Biogênicas/metabolismo , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Hemólise , Humanos , Testes de Sensibilidade Microbiana , Fatores de Virulência/metabolismo
10.
Int J Mol Sci ; 17(9)2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27649150

RESUMO

Bifidobacterium bifidum BGN4 is a probiotic strain that has been used as a major ingredient to produce nutraceutical products and as a dairy starter since 2000. The various bio-functional effects and potential for industrial application of B. bifidum BGN4 has been characterized and proven by in vitro (i.e., phytochemical bio-catalysis, cell adhesion and anti-carcinogenic effects on cell lines, and immunomodulatory effects on immune cells), in vivo (i.e., suppressed allergic responses in mouse model and anti-inflammatory bowel disease), and clinical studies (eczema in infants and adults with irritable bowel syndrome). Recently, the investigation of the genome sequencing was finished and this data potentially clarifies the biochemical characteristics of B. bifidum BGN4 that possibly illustrate its nutraceutical functionality. However, further systematic research should be continued to gain insight for academic and industrial applications so that the use of B. bifidum BGN4 could be expanded to result in greater benefit. This review deals with multiple studies on B. bifidum BGN4 to offer a greater understanding as a probiotic microorganism available in functional food ingredients. In particular, this work considers the potential for commercial application, physiological characterization and exploitation of B. bifidum BGN4 as a whole.


Assuntos
Antibiose/fisiologia , Bifidobacterium bifidum/fisiologia , Suplementos Nutricionais , Microbiologia Industrial/métodos , Mucosa Intestinal/microbiologia , Probióticos/administração & dosagem , Bifidobacterium bifidum/classificação , Bifidobacterium bifidum/genética , Genoma Bacteriano/genética , Genômica/métodos , Humanos , Mucosa Intestinal/imunologia , Especificidade da Espécie
11.
Phytother Res ; 27(2): 166-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22511336

RESUMO

Ginseng has shown an efficacy in preventing and managing various health conditions. This study aimed to evaluate the effect of the fermented ginseng extract (FGE) in type 2 diabetes mellitus murine model. FGE was provided to male C57BL/ksJ-db/db mice for 8 weeks at 0.1% (w/w) dose in contrast to water for the control group. Potential anti-diabetic mechanisms were investigated with blood glucose, serum insulin, serum adiponectin, hemoglobin A1c (HbA1c), glucose tolerance, insulin secretion assay, quantitative real-time polymerase chain reaction, and hematoxylin-eosin staining. Compared with the control group, the FGE group had lower levels of blood glucose after 6 and 9 h fasting, HbA1c, and the area under the curve in an oral glucose tolerance test and higher levels of adiponectin and serum insulin (p < 0.05). The FGE group had higher levels of peroxisome proliferator-activated receptor gamma 2 and glucose transporter protein 2 mRNAs, a lower level of tumor necrosis factor-α (TNF-α) (p < 0.05), and less lymphocytes in pancreas than the control group had. The FGE exerted anti-diabetic effects in type 2 diabetic mice.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Panax/química , Extratos Vegetais/farmacologia , Adiponectina/sangue , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 2/metabolismo , Hemoglobinas Glicadas/metabolismo , Homeostase , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
12.
Arthritis Res Ther ; 25(1): 130, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496081

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that leads to joint destruction and functional disability due to the targeting of self-antigens present in the synovium, cartilage, and bone. RA is caused by a number of complex factors, including genetics, environment, dietary habits, and altered intestinal microbial flora. Microorganisms in the gut bind to nod-like receptors and Toll-like receptors to regulate the immune system and produce various metabolites, such as short-chain fatty acids (SCFAs) that interact directly with the host. Faecalibacterium prausnitzii is a representative bacterium that produces butyrate, a well-known immunomodulatory agent in the body, and this microbe exerts anti-inflammatory effects in autoimmune diseases. METHODS: In this study, F. prausnitzii was administered in a mouse model of RA, to investigate RA pathology and changes in the intestinal microbial flora. Using collagen-induced arthritic mice, which is a representative animal model of RA, we administered F. prausnitzii orally for 7 weeks. RESULTS: The arthritis score and joint tissue damage were decreased in the mice administered F. prausnitzii compared with the vehicle-treated group. In addition, administration of F. prausnitzii reduced the abundance of systemic immune cells that secrete the pro-inflammatory cytokine IL-17 and induced changes in SCFA concentrations and the intestinal microbial flora composition. It also resulted in decreased lactate and acetate concentrations, an increased butyrate concentration, and altered compositions of bacteria known to exacerbate or improve RA. CONCLUSION: These results suggest that F. prausnitzii exerts a therapeutic effect on RA by regulation of IL-17 producing cells. In addition, F. prausnitzii modify the microbial flora composition and short chain fatty acids in experimental RA mouse model.


Assuntos
Artrite Reumatoide , Faecalibacterium prausnitzii , Camundongos , Animais , Faecalibacterium prausnitzii/metabolismo , Interleucina-17/metabolismo , Ácidos Graxos Voláteis/metabolismo , Modelos Animais de Doenças , Butiratos , Artrite Reumatoide/tratamento farmacológico
13.
Front Med (Lausanne) ; 10: 1238960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020091

RESUMO

Introduction: This study investigated the role of renal-intestinal crosstalk in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) in elderly individuals. Methods: Using young and aged mice, we induced bilateral ischemia-reperfusion injury (IRI) and compared intestinal and kidney inflammation over 28 days. To determine the role of the microbiome in gut-kidney crosstalk, we analyzed the microbiome of fecal samples of the young vs. aged mice and examined the effects of probiotic supplementation. Results: In the post-IRI recovery phase, prolonged intestinal and renal inflammation along with dysbiosis were evident in aged vs. younger mice that was associated with severe renal dysfunction and fibrosis progression in aged mice. Probiotic supplementation with Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI alleviated intestinal inflammation but not intestinal leakage, characterized by decreased inflammatory cytokine levels and decreased infiltration of macrophages, neutrophils, and Th17 cells. This was associated with improved M1-dominant renal inflammation and ultimately improved renal function and fibrosis, suggesting that renal-intestinal crosstalk in aged mice contributes to the transition from AKI to CKD. Discussion: Our study findings suggest that exacerbation of chronic inflammation through the gut-kidney axis might be an important mechanism in the transition from AKI to CKD in the elderly.

14.
PLoS One ; 18(6): e0286456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352198

RESUMO

Osteoarthritis (OA), the most common form of arthritis, is characterized by pain and cartilage damage; it usually exhibits gradual development. However, the pathogenesis of OA remains unclear. This study was undertaken to improve the understanding and treatment of OA. OA was induced in 7-week-old Wistar rats by intra-articular injection of monosodium iodoacetate (MIA); subsequently, the rats underwent oral administration of Bifidobacterium longum BORI (B. BORI). The effects of B. BORI were examined in chondrocytes and an MIA-induced OA rat model. In the rats, B. BORI-mediated effects on pain severity, cartilage destruction, and inflammation were recorded. Additional effects on mRNA and cytokine secretion were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Paw withdrawal threshold, paw withdrawal latency, and weight-bearing assessments revealed that pain severity in MIA-induced OA rats was decreased after B. BORI treatment. Histopathology analyses and three-dimensional surface renderings of rat femurs from micro-computed tomography images revealed cartilage protection and cartilage loss inhibition effects in B. BORI-treated OA rats. Immunohistochemical analyses of inflammatory cytokines and catabolic markers (e.g., matrix metalloproteinases) showed that the expression levels of both were reduced in tissue from B. BORI-treated OA rats. Furthermore, B. BORI treatment decreased the expression levels of the inflammatory cytokine monocyte chemoattractant protein-1 and inflammatory gene factors (e.g., inflammatory cell death markers) in chondrocytes. The findings indicate that oral administration of B. BORI has therapeutic potential in terms of reducing pain, progression, and inflammation in OA.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Condrócitos/metabolismo , Ratos Wistar , Microtomografia por Raio-X , Cartilagem Articular/patologia , Osteoartrite/metabolismo , Dor/patologia , Inflamação/patologia , Ácido Iodoacético/efeitos adversos , Citocinas/metabolismo
15.
Front Immunol ; 14: 1286387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239365

RESUMO

Introduction: The intricate connection between gut microbiota and rheumatoid arthritis (RA) pathogenesis has gained prominence, although the specific microbial species contributing to RA development remain largely unknown. Recent studies have sought to comprehensively explore alterations in the human microbiome, focusing on identifying disease-related microbial species through blood analysis. Consequently, this study aimed to identify RA-associated microbial species using a serum microbial array system and to investigate the efficacy and underlying mechanisms of potential microbial species for RA treatment. Methods: Serum immunoglobulin M levels against 384 intestinal microbial species were assessed using a microbial microarray in patients with RA and healthy individuals. We investigated the therapeutic potential of the identified microbial candidate regarding arthritis development, immune responses, gut barrier function, and gut microbiome using a collagen-induced arthritis (CIA) mouse model. Results: Our findings revealed significant alterations in antibody levels against 36 microbial species in patients with RA compared to healthy individuals. Notably, the antibody levels against Peptoniphilus gorbachii (PG) were decreased in patients with RA and exhibited an inverse correlation with RA disease activity. In vitro experiments demonstrated that PG produced acetate and butyrate, while exhibiting anti-inflammatory properties. In CIA mice, PG administration suppressed arthritis symptoms, reduced the accumulation of inflammatory monocytes in the mesenteric lymph nodes, and downregulated gene expression of pro-inflammatory cytokines in the ileum. Additionally, PG supplementation restored intestinal barrier integrity and partially resolved gut microbial dysbiosis in CIA mice. The fecal microbiota in PG-treated mice corresponded to improved intestinal barrier integrity and reduced inflammatory responses. Conclusion: This study highlights the potential of serum-based detection of anti-microbial antibodies to identify microbial targets at the species level for RA treatment. Moreover, our findings suggest that PG, identified through the microbial microarray analysis, holds therapeutic potential for RA by restoring intestinal barrier integrity and suppressing the immunologic response associated with RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Firmicutes , Camundongos , Humanos , Animais , Modelos Animais de Doenças , Citocinas/metabolismo
16.
J Bacteriol ; 194(17): 4757-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22887663

RESUMO

Bifidobacterium bifidum, a common endosymbiotic inhabitant of the human gut, is considered a prominent probiotic microorganism that may promote health. We completely decrypted the 2.2-Mb genome sequence of B. bifidum BGN4, a strain that had been isolated from the fecal sample of a healthy breast-fed infant, and annotated 1,835 coding sequences.


Assuntos
Bifidobacterium/genética , Genoma Bacteriano , Probióticos , Sequência de Bases , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Mapeamento Cromossômico , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Humanos , Lactente , Dados de Sequência Molecular , Análise de Sequência de DNA , Simbiose
17.
J Med Food ; 25(2): 146-157, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35148194

RESUMO

Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are characterized by chronic gastrointestinal inflammation with continuous relapse-remission cycles. This study aimed to evaluate the protective effect of Bifidobacterium bifidum BGN4 as a probiotic or paraprobiotic against dextran sulfate sodium (DSS)-induced colitis in mice. Ten-week-old female BALB/c mice were randomly divided into five groups. The control (CON) and DSS groups received oral gavage of PBS, whereas the live B. bifidum (LIVE), heat-killed B. bifidum BGN4 (HEAT), and lysozyme-treated B. bifidum BGN4 (LYSOZYME) groups received live B. bifidum BGN4, heat-killed B. bifidum BGN4, and lysozyme-treated B. bifidum BGN4, respectively, for 10 days, followed by DSS supply to induce colitis. The paraprobiotic (HEAT and LYSOZYME) groups had less body weight loss and colon length shortening than the DSS or LIVE groups. The LYSOZYME group exhibited better preserved intestinal barrier integrity than the LIVE group by upregulating gap junction protein expression possibly through activating NOD-like receptor family pyrin domain containing 6/caspase-1/interleukin (IL)-18 signaling. The LYSOZYME group showed downregulated proinflammatory molecules, including p-inhibitor of kappa B proteins alpha (IκBα), cycloxygenase 2 (COX2), IL-1ß, and T-bet, whereas the expression of the regulatory T cell transcription factor, forkhead box P3 expression, was increased. The paraprobiotic groups showed distinct separation of microbiota distribution and improved inflammation-associated dysbiosis. These results suggest that B. bifidum BGN4 paraprobiotics, especially lysozyme-treated BGN4, have a preventive effect against DSS-induced colitis, impacting intestinal barrier integrity, inflammation, and dysbiosis.


Assuntos
Bifidobacterium bifidum , Colite , Probióticos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética
18.
Sci Rep ; 12(1): 4763, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35306534

RESUMO

Bacterial vaginosis (BV) is the most common vaginal infection in reproductive women, which is characterized by depleted level of lactic acid bacteria and overgrowth of anaerobes such as Gardnerella vaginalis spp. Lactic acid bacteria have been known to be beneficial for amelioration of BV, since they produce antimicrobial substances against G. vaginalis spp. The objectives of this study were to characterize different fractions of cell-free supernatant of Lactobacillus paracasei CH88 (LCFS) and investigate antibacterial activity of the LCFS fractions against G. vaginalis in-vitro and in-vivo. Antibacterial activity of the LCFS was stable during thermal treatment up to 120 °C for 30 min and maintained at pH ranging from 3.0 to 13.0 except pH 5.0. Fraction below 3 kDa of the LCFS partially lost its antibacterial activity after treatment with proteolytic enzymes. Precipitated protein fraction below 3 kDa of the LCFS (< 3 kDa LCFSP) inhibited the growth and biofilm formation of G. vaginalis. Treatment of L. paracasei CH88 or the < 3 kDa LCFSP attenuated G. vaginalis-induced BV in mice by inhibiting the growth of G. vaginalis, reducing exfoliation of vaginal epithelial cells, and regulating immune response. These results suggest that L. paracasei CH88 may have potential in ameliorating G. vaginalis-induced BV.


Assuntos
Lacticaseibacillus paracasei , Vaginose Bacteriana , Animais , Antibacterianos/farmacologia , Bactérias Anaeróbias/fisiologia , Feminino , Gardnerella vaginalis , Humanos , Camundongos , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
19.
Kidney Res Clin Pract ; 41(1): 89-101, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34974660

RESUMO

BACKGROUND: Emerging evidence suggests that intestinal dysbiosis contributes to systemic inflammation and cardiovascular diseases in dialysis patients. The purpose of this study was to evaluate the effects of probiotic supplementation on various inflammatory parameters in hemodialysis (HD) patients. METHODS: Twenty-two patients with maintenance HD were enrolled. These patients were treated twice a day with 2.0 ×1010 colony forming units of a combination of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI for 3 months. The microbiome and fecal short-chain fatty acids (SCFAs) were analyzed. The percentages of CD14+ CD16+ proinflammatory monocytes and CD4+ CD25+ regulatory T-cells (Tregs) before and after probiotic supplementation were determined by flow cytometry. Serum levels of calprotectin and cytokine responses upon lipopolysaccharide (LPS) challenge were compared before and after probiotic supplementation. RESULTS: Fecal SCFAs increased significantly after probiotic supplementation. Serum levels of calprotectin and interleukin 6 upon LPS stimulation significantly decreased. The anti-inflammatory effects of probiotics were associated with a significant increase in the percentage of CD4+ CD25+ Tregs (3.5% vs. 8.6%, p < 0.05) and also with a decrease of CD14+ CD16+ proinflammatory monocytes (310/ mm2 vs. 194/mm2 , p < 0.05). CONCLUSION: Probiotic supplementation reduced systemic inflammatory responses in HD patients and this effect was associated with an increase in Tregs and a decrease in proinflammatory monocytes. Hence, targeting intestinal dysbiosis might be a novel strategy for decreasing inflammation and cardiovascular risks in HD patients.

20.
Food Funct ; 13(4): 1834-1845, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35084011

RESUMO

Butyl-fructooligosaccharides (B-FOSs) are newly synthesized prebiotics composed of short-chain FOS (GF2, 1-kestose; GF3, nystose; GF4, fructofuranosyl-nystose; GF5, 1-F-(1-b-D-fructofuranosyl)-2-nystose) bound with one or two butyric groups by ester bonds. Previous in vitro studies have shown that B-FOS treatment increases butyrate production and protects the growth of butyrate-producing bacteria during fermentation. The aim of this study was to further test B-FOS as a novel prebiotic compound by evaluating the effect of B-FOS on gut microbiota via 16S rRNA metagenomic analysis in an Institute of Cancer Research (ICR) mouse model and examining its anti-inflammatory efficacy in a mouse model of colitis induced by dextran sodium sulphate (DSS). In the healthy ICR mouse study, linear discriminant analysis effect size results revealed that Bifidobacterium was the representative phylotype in the B-FOS treatment compared to the control group. Furthermore, the cecal butyrate concentration of the B-FOS group was significantly higher than that of the control (P < 0.05). The high concentration of butyrate in the B-FOS treatment was probably associated with the high relative abundance of clusters of orthologous group (COG) 4770 (acetyl/propionyl-CoA carboxylase). In the DSS-induced infection study, B-FOS significantly ameliorated the symptoms of DSS-induced colitis, increased the mRNA expression of occludin, decreased tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin (IL-8) in the colon tissues, and significantly increased cecal butyrate concentrations. These findings suggest that B-FOS ameliorated DSS-induced colitis by maintaining the epithelial barrier and reducing the secretion of inflammation related cytokines.


Assuntos
Colite Ulcerativa/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Oligossacarídeos/farmacologia , Animais , Colite Ulcerativa/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA