Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Cell ; 180(6): 1262-1271.e15, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32169219

RESUMO

Establishing causal links between non-coding variants and human phenotypes is an increasing challenge. Here, we introduce a high-throughput mouse reporter assay for assessing the pathogenic potential of human enhancer variants in vivo and examine nearly a thousand variants in an enhancer repeatedly linked to polydactyly. We show that 71% of all rare non-coding variants previously proposed as causal lead to reporter gene expression in a pattern consistent with their pathogenic role. Variants observed to alter enhancer activity were further confirmed to cause polydactyly in knockin mice. We also used combinatorial and single-nucleotide mutagenesis to evaluate the in vivo impact of mutations affecting all positions of the enhancer and identified additional functional substitutions, including potentially pathogenic variants hitherto not observed in humans. Our results uncover the functional consequences of hundreds of mutations in a phenotype-associated enhancer and establish a widely applicable strategy for systematic in vivo evaluation of human enhancer variants.


Assuntos
Elementos Facilitadores Genéticos/genética , Ensaios de Triagem em Larga Escala/métodos , Polidactilia/genética , Animais , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Introdução de Genes/métodos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Mutação , Fenótipo , Polidactilia/metabolismo , RNA não Traduzido/genética
2.
Cell ; 172(3): 491-499.e15, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29358049

RESUMO

Non-coding "ultraconserved" regions containing hundreds of consecutive bases of perfect sequence conservation across mammalian genomes can function as distant-acting enhancers. However, initial deletion studies in mice revealed that loss of such extraordinarily constrained sequences had no immediate impact on viability. Here, we show that ultraconserved enhancers are required for normal development. Focusing on some of the longest ultraconserved sites genome wide, located near the essential neuronal transcription factor Arx, we used genome editing to create an expanded series of knockout mice lacking individual or combinations of ultraconserved enhancers. Mice with single or pairwise deletions of ultraconserved enhancers were viable and fertile but in nearly all cases showed neurological or growth abnormalities, including substantial alterations of neuron populations and structural brain defects. Our results demonstrate the functional importance of ultraconserved enhancers and indicate that remarkably strong sequence conservation likely results from fitness deficits that appear subtle in a laboratory setting.


Assuntos
Sequência Conservada , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos , Animais , Encéfalo/anormalidades , Encéfalo/embriologia , Encéfalo/metabolismo , Feminino , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell ; 171(3): 710-722.e12, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28965761

RESUMO

To further our understanding of the genetic etiology of autism, we generated and analyzed genome sequence data from 516 idiopathic autism families (2,064 individuals). This resource includes >59 million single-nucleotide variants (SNVs) and 9,212 private copy number variants (CNVs), of which 133,992 and 88 are de novo mutations (DNMs), respectively. We estimate a mutation rate of ∼1.5 × 10-8 SNVs per site per generation with a significantly higher mutation rate in repetitive DNA. Comparing probands and unaffected siblings, we observe several DNM trends. Probands carry more gene-disruptive CNVs and SNVs, resulting in severe missense mutations and mapping to predicted fetal brain promoters and embryonic stem cell enhancers. These differences become more pronounced for autism genes (p = 1.8 × 10-3, OR = 2.2). Patients are more likely to carry multiple coding and noncoding DNMs in different genes, which are enriched for expression in striatal neurons (p = 3 × 10-3), suggesting a path forward for genetically characterizing more complex cases of autism.


Assuntos
Transtorno Autístico/genética , Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Animais , Análise Mutacional de DNA , Feminino , Estudo de Associação Genômica Ampla , Humanos , Mutação INDEL , Masculino , Camundongos
4.
Cell ; 167(2): 355-368.e10, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693352

RESUMO

Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidence that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Doença de Hirschsprung/genética , Proteínas Proto-Oncogênicas c-ret/genética , Alelos , Animais , Sítios de Ligação , Modelos Animais de Doenças , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Trato Gastrointestinal/embriologia , Humanos , Camundongos , Camundongos Transgênicos , RNA não Traduzido/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
5.
Cell ; 167(3): 633-642.e11, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768887

RESUMO

The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.


Assuntos
Evolução Biológica , Elementos Facilitadores Genéticos , Extremidades/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Serpentes/genética , Animais , Sequência de Bases , Evolução Molecular , Técnicas de Introdução de Genes , Camundongos , Camundongos Transgênicos , Mutação , Filogenia , Serpentes/classificação
6.
Nature ; 623(7988): 772-781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968388

RESUMO

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Assuntos
Deficiências do Desenvolvimento , Embrião de Mamíferos , Mutação , Fenótipo , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Núcleo Celular/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Mutação com Ganho de Função , Genótipo , Mutação com Perda de Função , Modelos Genéticos , Modelos Animais de Doenças
7.
Nat Rev Genet ; 23(3): 182-194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34764456

RESUMO

Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.


Assuntos
Sequência Conservada/fisiologia , Genoma/genética , Animais , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos , Feminino , Genômica/métodos , Genômica/tendências , História do Século XXI , Humanos , Mamíferos/genética , Camundongos , Gravidez , Ratos
8.
Cell ; 155(7): 1521-31, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360275

RESUMO

Enhancers are distal regulatory elements that can activate tissue-specific gene expression and are abundant throughout mammalian genomes. Although substantial progress has been made toward genome-wide annotation of mammalian enhancers, their temporal activity patterns and global contributions in the context of developmental in vivo processes remain poorly explored. Here we used epigenomic profiling for H3K27ac, a mark of active enhancers, coupled to transgenic mouse assays to examine the genome-wide utilization of enhancers in three different mouse tissues across seven developmental stages. The majority of the ∼90,000 enhancers identified exhibited tightly temporally restricted predicted activity windows and were associated with stage-specific biological functions and regulatory pathways in individual tissues. Comparative genomic analysis revealed that evolutionary conservation of enhancers decreases following midgestation across all tissues examined. The dynamic enhancer activities uncovered in this study illuminate rapid and pervasive temporal in vivo changes in enhancer usage that underlie processes central to development and disease.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Acetilação , Animais , Epigênese Genética , Evolução Molecular , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos
9.
Cell ; 152(4): 895-908, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23375746

RESUMO

The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. Though many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here, we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified more than 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising more than 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders.


Assuntos
Elementos Facilitadores Genéticos , Telencéfalo/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Feto/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Telencéfalo/embriologia , Transcriptoma , Fatores de Transcrição de p300-CBP/metabolismo
10.
Development ; 150(3)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36620995

RESUMO

The transcription factor HAND2 plays essential roles during cardiogenesis. Hand2 endocardial deletion (H2CKO) results in tricuspid atresia or double inlet left ventricle with accompanying intraventricular septum defects, hypo-trabeculated ventricles and an increased density of coronary lumens. To understand the regulatory mechanisms of these phenotypes, single cell transcriptome analysis of mouse E11.5 H2CKO hearts was performed revealing a number of disrupted endocardial regulatory pathways. Using HAND2 DNA occupancy data, we identify several HAND2-dependent enhancers, including two endothelial enhancers for the shear-stress master regulator KLF2. A 1.8 kb enhancer located 50 kb upstream of the Klf2 TSS imparts specific endothelial/endocardial expression within the vasculature and endocardium. This enhancer is HAND2-dependent for ventricular endocardium expression but HAND2-independent for Klf2 vascular and valve expression. Deletion of this Klf2 enhancer results in reduced Klf2 expression within ventricular endocardium. These data reveal that HAND2 functions within endocardial gene regulatory networks including shear-stress response.


Assuntos
Endocárdio , Redes Reguladoras de Genes , Animais , Camundongos , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Fatores de Transcrição/metabolismo
11.
Nature ; 583(7818): 752-759, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728242

RESUMO

Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited1,2. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders.


Assuntos
Metilação de DNA , Epigenoma , Feto/embriologia , Feto/metabolismo , Animais , Animais Recém-Nascidos , Cromatina/genética , Cromatina/metabolismo , Doença/genética , Regulação para Baixo , Elementos Facilitadores Genéticos/genética , Repressão Epigenética , Feminino , Inativação Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise Espaço-Temporal
12.
Nature ; 583(7818): 760-767, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728245

RESUMO

During mammalian embryogenesis, differential gene expression gradually builds the identity and complexity of each tissue and organ system1. Here we systematically quantified mouse polyA-RNA from day 10.5 of embryonic development to birth, sampling 17 tissues and organs. The resulting developmental transcriptome is globally structured by dynamic cytodifferentiation, body-axis and cell-proliferation gene sets that were further characterized by the transcription factor motif codes of their promoters. We decomposed the tissue-level transcriptome using single-cell RNA-seq (sequencing of RNA reverse transcribed into cDNA) and found that neurogenesis and haematopoiesis dominate at both the gene and cellular levels, jointly accounting for one-third of differential gene expression and more than 40% of identified cell types. By integrating promoter sequence motifs with companion ENCODE epigenomic profiles, we identified a prominent promoter de-repression mechanism in neuronal expression clusters that was attributable to known and novel repressors. Focusing on the developing limb, single-cell RNA data identified 25 candidate cell types that included progenitor and differentiating states with computationally inferred lineage relationships. We extracted cell-type transcription factor networks and complementary sets of candidate enhancer elements by using single-cell RNA-seq to decompose integrative cis-element (IDEAS) models that were derived from whole-tissue epigenome chromatin data. These ENCODE reference data, computed network components and IDEAS chromatin segmentations are companion resources to the matching epigenomic developmental matrix, and are available for researchers to further mine and integrate.


Assuntos
Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Análise de Célula Única , Transcriptoma , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/genética , Embrião de Mamíferos/metabolismo , Elementos Facilitadores Genéticos , Epigenômica , Extremidades/embriologia , Feminino , Masculino , Camundongos , Poli A/genética , Poli A/metabolismo , Regiões Promotoras Genéticas , RNA-Seq , Fatores de Transcrição/metabolismo
13.
Nature ; 583(7818): 744-751, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728240

RESUMO

The Encyclopedia of DNA Elements (ENCODE) project has established a genomic resource for mammalian development, profiling a diverse panel of mouse tissues at 8 developmental stages from 10.5 days after conception until birth, including transcriptomes, methylomes and chromatin states. Here we systematically examined the state and accessibility of chromatin in the developing mouse fetus. In total we performed 1,128 chromatin immunoprecipitation with sequencing (ChIP-seq) assays for histone modifications and 132 assay for transposase-accessible chromatin using sequencing (ATAC-seq) assays for chromatin accessibility across 72 distinct tissue-stages. We used integrative analysis to develop a unified set of chromatin state annotations, infer the identities of dynamic enhancers and key transcriptional regulators, and characterize the relationship between chromatin state and accessibility during developmental gene regulation. We also leveraged these data to link enhancers to putative target genes and demonstrate tissue-specific enrichments of sequence variants associated with disease in humans. The mouse ENCODE data sets provide a compendium of resources for biomedical researchers and achieve, to our knowledge, the most comprehensive view of chromatin dynamics during mammalian fetal development to date.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Conjuntos de Dados como Assunto , Desenvolvimento Fetal/genética , Histonas/metabolismo , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Cromatina/química , Sequenciamento de Cromatina por Imunoprecipitação , Doença/genética , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Variação Genética , Histonas/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Transposases/metabolismo
15.
Nature ; 571(7763): 107-111, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31217582

RESUMO

Large-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants1,2. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1-knockout mice displayed phenotypes similar to those observed upon ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes.


Assuntos
Diarreia/congênito , Diarreia/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes , Intestinos/fisiologia , Deleção de Sequência/genética , Animais , Cromossomos Humanos Par 16/genética , Modelos Animais de Doenças , Feminino , Genes Reporter , Loci Gênicos/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Linhagem , Fenótipo , Ativação Transcricional , Transcriptoma/genética , Transgenes/genética
16.
Nature ; 554(7691): 239-243, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29420474

RESUMO

Distant-acting tissue-specific enhancers, which regulate gene expression, vastly outnumber protein-coding genes in mammalian genomes, but the functional importance of this regulatory complexity remains unclear. Here we show that the pervasive presence of multiple enhancers with similar activities near the same gene confers phenotypic robustness to loss-of-function mutations in individual enhancers. We used genome editing to create 23 mouse deletion lines and inter-crosses, including both single and combinatorial enhancer deletions at seven distinct loci required for limb development. Unexpectedly, none of the ten deletions of individual enhancers caused noticeable changes in limb morphology. By contrast, the removal of pairs of limb enhancers near the same gene resulted in discernible phenotypes, indicating that enhancers function redundantly in establishing normal morphology. In a genetic background sensitized by reduced baseline expression of the target gene, even single enhancer deletions caused limb abnormalities, suggesting that functional redundancy is conferred by additive effects of enhancers on gene expression levels. A genome-wide analysis integrating epigenomic and transcriptomic data from 29 developmental mouse tissues revealed that mammalian genes are very commonly associated with multiple enhancers that have similar spatiotemporal activity. Systematic exploration of three representative developmental structures (limb, brain and heart) uncovered more than one thousand cases in which five or more enhancers with redundant activity patterns were found near the same gene. Together, our data indicate that enhancer redundancy is a remarkably widespread feature of mammalian genomes that provides an effective regulatory buffer to prevent deleterious phenotypic consequences upon the loss of individual enhancers.


Assuntos
Elementos Facilitadores Genéticos/genética , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Fenótipo , Animais , Encéfalo/embriologia , Feminino , Genoma , Coração/embriologia , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Masculino , Camundongos , Deleção de Sequência , Análise Espaço-Temporal
17.
Nat Methods ; 17(8): 807-814, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32737473

RESUMO

Enhancers are important non-coding elements, but they have traditionally been hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features. We integrated these features with supervised machine-learning algorithms to predict enhancers. We further demonstrated that our model could be transferred to predict enhancers in mammals. We comprehensively validated the predictions using a combination of in vivo and in vitro approaches, involving transgenic assays in mice and transduction-based reporter assays in human cell lines (153 enhancers in total). The results confirmed that our model can accurately predict enhancers in different species without re-parameterization. Finally, we examined the transcription factor binding patterns at predicted enhancers versus promoters. We demonstrated that these patterns enable the construction of a secondary model that effectively distinguishes enhancers and promoters.


Assuntos
Epigênese Genética/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Animais , Linhagem Celular , Drosophila , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Reprodutibilidade dos Testes
18.
Cell ; 135(6): 1053-64, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19070576

RESUMO

Vascular development begins when mesodermal cells differentiate into endothelial cells, which then form primitive vessels. It has been hypothesized that endothelial-specific gene expression may be regulated combinatorially, but the transcriptional mechanisms governing specificity in vascular gene expression remain incompletely understood. Here, we identify a 44 bp transcriptional enhancer that is sufficient to direct expression specifically and exclusively to the developing vascular endothelium. This enhancer is regulated by a composite cis-acting element, the FOX:ETS motif, which is bound and synergistically activated by Forkhead and Ets transcription factors. We demonstrate that coexpression of the Forkhead protein FoxC2 and the Ets protein Etv2 induces ectopic expression of vascular genes in Xenopus embryos, and that combinatorial knockdown of the orthologous genes in zebrafish embryos disrupts vascular development. Finally, we show that FOX:ETS motifs are present in many known endothelial-specific enhancers and that this motif is an efficient predictor of endothelial enhancers in the human genome.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Vasos Sanguíneos/embriologia , Embrião de Mamíferos/citologia , Embrião não Mamífero/metabolismo , Endotélio/embriologia , Fibroblastos/metabolismo , Humanos , Camundongos , Xenopus , Peixe-Zebra
19.
Dev Biol ; 476: 1-10, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33757801

RESUMO

Congenital heart defects (CHDs) affecting the cardiac outflow tract (OFT) constitute a significant cause of morbidity and mortality. The OFT develops from migratory cell populations which include the cardiac neural crest cells (cNCCs) and secondary heart field (SHF) derived myocardium and endocardium. The related transcription factors HAND1 and HAND2 have been implicated in human CHDs involving the OFT. Although Hand1 is expressed within the OFT, Hand1 NCC-specific conditional knockout mice (H1CKOs) are viable. Here we show that these H1CKOs present a low penetrance of OFT phenotypes, whereas SHF-specific Hand1 ablation does not reveal any cardiac phenotypes. Further, HAND1 and HAND2 appear functionally redundant within the cNCCs, as a reduction/ablation of Hand2 on an NCC-specific H1CKO background causes pronounced OFT defects. Double conditional Hand1 and Hand2 NCC knockouts exhibit persistent truncus arteriosus (PTA) with 100% penetrance. NCC lineage-tracing and Sema3c in situ mRNA expression reveal that Sema3c-expressing cells are mis-localized, resulting in a malformed septal bridge within the OFTs of H1CKO;H2CKO embryos. Interestingly, Hand1 and Hand2 also genetically interact within the SHF, as SHF H1CKOs on a heterozygous Hand2 background exhibit Ventricular Septal Defects (VSDs) with incomplete penetrance. Previously, we identified a BMP, HAND2, and GATA-dependent Hand1 OFT enhancer sufficient to drive reporter gene expression within the nascent OFT and aorta. Using these transcription inputs as a probe, we identify a novel Hand2 OFT enhancer, suggesting that a conserved BMP-GATA dependent mechanism transcriptionally regulates both HAND factors. These findings support the hypothesis that HAND factors interpret BMP signaling within the cNCCs to cooperatively coordinate OFT morphogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cardiopatias Congênitas/genética , Coração/embriologia , Animais , Aorta/embriologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Débito Cardíaco/fisiologia , Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Cardiopatias Congênitas/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Crista Neural/metabolismo , Fenótipo , Transdução de Sinais/genética , Fatores de Transcrição/genética
20.
Development ; 146(19)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30814119

RESUMO

Chromatin remodeling complexes instruct cellular differentiation and lineage specific transcription. The BRG1/BRM-associated factor (BAF) complexes are important for several aspects of differentiation. We show that the catalytic subunit gene Brg1 has a specific role in cardiac precursors (CPs) to initiate cardiac gene expression programs and repress non-cardiac expression. Using immunopurification with mass spectrometry, we have determined the dynamic composition of BAF complexes during mammalian cardiac differentiation, identifying several cell-type specific subunits. We focused on the CP- and cardiomyocyte (CM)-enriched subunits BAF60c (SMARCD3) and BAF170 (SMARCC2). Baf60c and Baf170 co-regulate gene expression with Brg1 in CPs, and in CMs their loss results in broadly deregulated cardiac gene expression. BRG1, BAF60c and BAF170 modulate chromatin accessibility, to promote accessibility at activated genes while closing chromatin at repressed genes. BAF60c and BAF170 are required for proper BAF complex composition, and BAF170 loss leads to retention of BRG1 at CP-specific sites. Thus, dynamic interdependent BAF complex subunit assembly modulates chromatin states and thereby participates in directing temporal gene expression programs in cardiogenesis.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Complexos Multiproteicos/metabolismo , Organogênese/genética , Subunidades Proteicas/metabolismo , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , DNA Helicases/metabolismo , Genoma , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA