Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Bioanal Chem ; 414(17): 4919-4933, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35699740

RESUMO

Non-targeted analysis (NTA) methods are widely used for chemical discovery but seldom employed for quantitation due to a lack of robust methods to estimate chemical concentrations with confidence limits. Herein, we present and evaluate new statistical methods for quantitative NTA (qNTA) using high-resolution mass spectrometry (HRMS) data from EPA's Non-Targeted Analysis Collaborative Trial (ENTACT). Experimental intensities of ENTACT analytes were observed at multiple concentrations using a semi-automated NTA workflow. Chemical concentrations and corresponding confidence limits were first estimated using traditional calibration curves. Two qNTA estimation methods were then implemented using experimental response factor (RF) data (where RF = intensity/concentration). The bounded response factor method used a non-parametric bootstrap procedure to estimate select quantiles of training set RF distributions. Quantile estimates then were applied to test set HRMS intensities to inversely estimate concentrations with confidence limits. The ionization efficiency estimation method restricted the distribution of likely RFs for each analyte using ionization efficiency predictions. Given the intended future use for chemical risk characterization, predicted upper confidence limits (protective values) were compared to known chemical concentrations. Using traditional calibration curves, 95% of upper confidence limits were within ~tenfold of the true concentrations. The error increased to ~60-fold (ESI+) and ~120-fold (ESI-) for the ionization efficiency estimation method and to ~150-fold (ESI+) and ~130-fold (ESI-) for the bounded response factor method. This work demonstrates successful implementation of confidence limit estimation strategies to support qNTA studies and marks a crucial step towards translating NTA data in a risk-based context.


Assuntos
Incerteza , Calibragem , Espectrometria de Massas/métodos
2.
Toxicol Pathol ; 47(7): 851-864, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31558096

RESUMO

Carcinogenesis of the small intestine is rare in humans and rodents. Oral exposure to hexavalent chromium (Cr(VI)) and the fungicides captan and folpet induce intestinal carcinogenesis in mice. Previously (Toxicol Pathol. 330:48-52), we showed that B6C3F1 mice exposed to carcinogenic concentrations of Cr(VI), captan, or folpet for 28 days exhibited similar histopathological responses including villus enterocyte cytotoxicity and regenerative crypt epithelial hyperplasia. Herein, we analyze transcriptomic responses from formalin-fixed, paraffin-embedded duodenal sections from the aforementioned study. TempO-Seq technology and the S1500+ gene set were used to analyze transcription responses. Transcriptional responses were similar between all 3 agents; gene-level comparison identified 126/546 (23%) differentially expressed genes altered in the same direction, with a total of 25 upregulated pathways. These changes were related to cellular metabolism, stress, inflammatory/immune cell response, and cell proliferation, including upregulation in hypoxia inducible factor 1 (HIF-1) and activator protein 1 (AP1) signaling pathways, which have also been shown to be related to intestinal injury and angiogenesis/carcinogenesis. The similar molecular-, cellular-, and tissue-level changes induced by these 3 carcinogens can be informative for the development of an adverse outcome pathway for intestinal cancer.


Assuntos
Captana/toxicidade , Carcinógenos/toxicidade , Cromo/toxicidade , Intestino Delgado/efeitos dos fármacos , Ftalimidas/toxicidade , Animais , Perfilação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos
3.
Environ Sci Technol ; 53(2): 719-732, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30516957

RESUMO

Prioritizing the potential risk posed to human health by chemicals requires tools that can estimate exposure from limited information. In this study, chemical structure and physicochemical properties were used to predict the probability that a chemical might be associated with any of four exposure pathways leading from sources-consumer (near-field), dietary, far-field industrial, and far-field pesticide-to the general population. The balanced accuracies of these source-based exposure pathway models range from 73 to 81%, with the error rate for identifying positive chemicals ranging from 17 to 36%. We then used exposure pathways to organize predictions from 13 different exposure models as well as other predictors of human intake rates. We created a consensus, meta-model using the Systematic Empirical Evaluation of Models framework in which the predictors of exposure were combined by pathway and weighted according to predictive ability for chemical intake rates inferred from human biomonitoring data for 114 chemicals. The consensus model yields an R2 of ∼0.8. We extrapolate to predict relevant pathway(s), median intake rate, and credible interval for 479 926 chemicals, mostly with minimal exposure information. This approach identifies 1880 chemicals for which the median population intake rates may exceed 0.1 mg/kg bodyweight/day, while there is 95% confidence that the median intake rate is below 1 µg/kg BW/day for 474572 compounds.


Assuntos
Exposição Ambiental , Praguicidas , Consenso , Dieta , Monitoramento Ambiental , Humanos , Medição de Risco
4.
J Expo Sci Environ Epidemiol ; 32(6): 855-863, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36329211

RESUMO

BACKGROUND: Toxicokinetic (TK) data needed for chemical risk assessment are not available for most chemicals. To support a greater number of chemicals, the U.S. Environmental Protection Agency (EPA) created the open-source R package "httk" (High Throughput ToxicoKinetics). The "httk" package provides functions and data tables for simulation and statistical analysis of chemical TK, including a population variability simulator that uses biometrics data from the National Health and Nutrition Examination Survey (NHANES). OBJECTIVE: Here we modernize the "HTTK-Pop" population variability simulator based on the currently available data and literature. We provide explanations of the algorithms used by "httk" for variability simulation and uncertainty propagation. METHODS: We updated and revised the population variability simulator in the "httk" package with the most recent NHANES biometrics (up to the 2017-18 NHANES cohort). Model equations describing glomerular filtration rate (GFR) were revised to more accurately represent physiology and population variability. The model output from the updated "httk" package was compared with the current version. RESULTS: The revised population variability simulator in the "httk" package now provides refined, more relevant, and better justified estimations. SIGNIFICANCE: Fulfilling the U.S. EPA's mission to provide open-source data and models for evaluations and applications by the broader scientific community, and continuously improving the accuracy of the "httk" package based on the currently available data and literature.


Assuntos
Inquéritos Nutricionais , Estados Unidos , Humanos , United States Environmental Protection Agency
5.
Toxics ; 10(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36287849

RESUMO

To estimate potential chemical risk, tools are needed to prioritize potential exposures for chemicals with minimal data. Consumer product exposures are a key pathway, and variability in consumer use patterns is an important factor. We designed Ex Priori, a flexible dashboard-type screening-level exposure model, to rapidly visualize exposure rankings from consumer product use. Ex Priori is Excel-based. Currently, it is parameterized for seven routes of exposure for 1108 chemicals present in 228 consumer product types. It includes toxicokinetics considerations to estimate body burden. It includes a simple framework for rapid modeling of broad changes in consumer use patterns by product category. Ex Priori rapidly models changes in consumer user patterns during the COVID-19 pandemic and instantly shows resulting changes in chemical exposure rankings by body burden. Sensitivity analysis indicates that the model is sensitive to the air emissions rate of chemicals from products. Ex Priori's simple dashboard facilitates dynamic exploration of the effects of varying consumer product use patterns on prioritization of chemicals based on potential exposures. Ex Priori can be a useful modeling and visualization tool to both novice and experienced exposure modelers and complement more computationally intensive population-based exposure models.

6.
Expert Opin Drug Metab Toxicol ; 17(8): 903-921, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34056988

RESUMO

INTRODUCTION: Toxicity data are unavailable for many thousands of chemicals in commerce and the environment. Therefore, risk assessors need to rapidly screen these chemicals for potential risk to public health. High-throughput screening (HTS) for in vitro bioactivity, when used with high-throughput toxicokinetic (HTTK) data and models, allows characterization of these thousands of chemicals. AREAS COVERED: This review covers generic physiologically based toxicokinetic (PBTK) models and high-throughput PBTK modeling for in vitro-in vivo extrapolation (IVIVE) of HTS data. We focus on 'httk', a public, open-source set of computational modeling tools and in vitro toxicokinetic (TK) data. EXPERT OPINION: HTTK benefits chemical risk assessors with its ability to support rapid chemical screening/prioritization, perform IVIVE, and provide provisional TK modeling for large numbers of chemicals using only limited chemical-specific data. Although generic TK model design can increase prediction uncertainty, these models provide offsetting benefits by increasing model implementation accuracy. Also, public distribution of the models and data enhances reproducibility. For the httk package, the modular and open-source design can enable the tool to be used and continuously improved by a broad user community in support of the critical need for high-throughput chemical prioritization and rapid dose estimation to facilitate rapid hazard assessments.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Modelos Biológicos , Toxicocinética , Animais , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Medição de Risco/métodos
7.
Environ Int ; 137: 105470, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32050122

RESUMO

High-throughput and computational tools provide a new opportunity to calculate combined bioactivity of exposure to diverse chemicals acting through a common mechanism. We used high throughput in vitro bioactivity data and exposure predictions from the U.S. EPA's Toxicity and Exposure Forecaster (ToxCast and ExpoCast) to estimate combined estrogen receptor (ER) agonist activity of non-pharmaceutical chemical exposures for the general U.S. population. High-throughput toxicokinetic (HTTK) data provide conversion factors that relate bioactive concentrations measured in vitro (µM), to predicted population geometric mean exposure rates (mg/kg/day). These data were available for 22 chemicals with ER agonist activity and were estimated for other ER bioactive chemicals based on the geometric mean of HTTK values across chemicals. For each chemical, ER bioactivity across ToxCast assays was compared to predicted population geometric mean exposure at different levels of in vitro potency and model certainty. Dose additivity was assumed in calculating a Combined Exposure-Bioactivity Index (CEBI), the sum of exposure/bioactivity ratios. Combined estrogen bioactivity was also calculated in terms of the percent maximum bioactivity of chemical mixtures in human plasma using a concentration-addition model. Estimated CEBIs vary greatly depending on assumptions used for exposure and bioactivity. In general, CEBI values were <1 when using median of the estimated general population chemical intake rates, while CEBI were ≥1 when using the upper 95th confidence bound for those same intake rates for all chemicals. Concentration-addition model predictions of mixture bioactivity yield comparable results. Based on current in vitro bioactivity data, HTTK methods, and exposure models, combined exposure scenarios sufficient to influence estrogen bioactivity in the general population cannot be ruled out. Future improvements in screening methods and computational models could reduce uncertainty and better inform the potential combined effects of estrogenic chemicals.


Assuntos
Disruptores Endócrinos , Sistema Endócrino , Poluentes Ambientais , Ensaios de Triagem em Larga Escala , Bioensaio , Disruptores Endócrinos/toxicidade , Sistema Endócrino/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Estrogênios , Humanos
8.
Toxicol Sci ; 172(2): 235-251, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532498

RESUMO

High(er) throughput toxicokinetics (HTTK) encompasses in vitro measures of key determinants of chemical toxicokinetics and reverse dosimetry approaches for in vitro-in vivo extrapolation (IVIVE). With HTTK, the bioactivity identified by any in vitro assay can be converted to human equivalent doses and compared with chemical intake estimates. Biological variability in HTTK has been previously considered, but the relative impact of measurement uncertainty has not. Bayesian methods were developed to provide chemical-specific uncertainty estimates for 2 in vitro toxicokinetic parameters: unbound fraction in plasma (fup) and intrinsic hepatic clearance (Clint). New experimental measurements of fup and Clint are reported for 418 and 467 chemicals, respectively. These data raise the HTTK chemical coverage of the ToxCast Phase I and II libraries to 57%. Although the standard protocol for Clint was followed, a revised protocol for fup measured unbound chemical at 10%, 30%, and 100% of physiologic plasma protein concentrations, allowing estimation of protein binding affinity. This protocol reduced the occurrence of chemicals with fup too low to measure from 44% to 9.1%. Uncertainty in fup was also reduced, with the median coefficient of variation dropping from 0.4 to 0.1. Monte Carlo simulation was used to propagate both measurement uncertainty and biological variability into IVIVE. The uncertainty propagation techniques used here also allow incorporation of other sources of uncertainty such as in silico predictors of HTTK parameters. These methods have the potential to inform risk-based prioritization based on the relationship between in vitro bioactivities and exposures.


Assuntos
Substâncias Perigosas/toxicidade , Fígado/efeitos dos fármacos , Modelos Biológicos , Toxicocinética , Teorema de Bayes , Simulação por Computador , Substâncias Perigosas/sangue , Substâncias Perigosas/farmacocinética , Ensaios de Triagem em Larga Escala , Humanos , Fígado/metabolismo , Taxa de Depuração Metabólica , Método de Monte Carlo , Ligação Proteica , Medição de Risco , Incerteza
9.
Toxicol Sci ; 163(1): 152-169, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385628

RESUMO

Prioritizing the risk posed by thousands of chemicals potentially present in the environment requires exposure, toxicity, and toxicokinetic (TK) data, which are often unavailable. Relatively high throughput, in vitro TK (HTTK) assays and in vitro-to-in vivo extrapolation (IVIVE) methods have been developed to predict TK, but most of the in vivo TK data available to benchmark these methods are from pharmaceuticals. Here we report on new, in vivo rat TK experiments for 26 non-pharmaceutical chemicals with environmental relevance. Both intravenous and oral dosing were used to calculate bioavailability. These chemicals, and an additional 19 chemicals (including some pharmaceuticals) from previously published in vivo rat studies, were systematically analyzed to estimate in vivo TK parameters (e.g., volume of distribution [Vd], elimination rate). For each of the chemicals, rat-specific HTTK data were available and key TK predictions were examined: oral bioavailability, clearance, Vd, and uncertainty. For the non-pharmaceutical chemicals, predictions for bioavailability were not effective. While no pharmaceutical was absorbed at less than 10%, the fraction bioavailable for non-pharmaceutical chemicals was as low as 0.3%. Total clearance was generally more under-estimated for nonpharmaceuticals and Vd methods calibrated to pharmaceuticals may not be appropriate for other chemicals. However, the steady-state, peak, and time-integrated plasma concentrations of nonpharmaceuticals were predicted with reasonable accuracy. The plasma concentration predictions improved when experimental measurements of bioavailability were incorporated. In summary, HTTK and IVIVE methods are adequately robust to be applied to high throughput in vitro toxicity screening data of environmentally relevant chemicals for prioritizing based on human health risks.


Assuntos
Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Modelos Biológicos , Toxicocinética , Animais , Área Sob a Curva , Disponibilidade Biológica , Simulação por Computador , Poluentes Ambientais/sangue , Poluentes Ambientais/química , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Taxa de Depuração Metabólica , Valor Preditivo dos Testes , Ratos Sprague-Dawley , Medição de Risco , Relação Estrutura-Atividade , Distribuição Tecidual
10.
Environ Health Perspect ; 125(8): 087017, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28858827

RESUMO

BACKGROUND: Through the food and water they ingest, the air they breathe, and the consumer products with which they interact at home and at work, humans are exposed to tens of thousands of chemicals, many of which have not been evaluated to determine their potential toxicities. Furthermore, while current chemical testing tends to focus on individual chemicals, the exposures that people actually experience involve mixtures of chemicals. Unfortunately, the number of mixtures that can be formed from the thousands of environmental chemicals is enormous, and testing all of them would be impossible. OBJECTIVES: We seek to develop and demonstrate a method for identifying those mixtures that are most prevalent in humans. METHODS: We applied frequent itemset mining, a technique traditionally used for market basket analysis, to biomonitoring data from the 2009-2010 cycle of the continuous National Health and Nutrition Examination Survey (NHANES) to identify combinations of chemicals that frequently co-occur in people. RESULTS: We identified 90 chemical combinations consisting of relatively few chemicals that occur in at least 30% of the U.S. population, as well as three supercombinations consisting of relatively many chemicals that occur in a small but nonnegligible proportion of the U.S. population. CONCLUSIONS: We demonstrated how FIM can be used in conjunction with biomonitoring data to narrow a large number of possible chemical combinations down to a smaller set of prevalent chemical combinations. https://doi.org/10.1289/EHP1265.


Assuntos
Mineração de Dados , Exposição Ambiental , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Humanos , Inquéritos Nutricionais , Estados Unidos
11.
Environ Int ; 106: 105-118, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28628784

RESUMO

The thousands of chemicals present in the environment (USGAO, 2013) must be triaged to identify priority chemicals for human health risk research. Most chemicals have little of the toxicokinetic (TK) data that are necessary for relating exposures to tissue concentrations that are believed to be toxic. Ongoing efforts have collected limited, in vitro TK data for a few hundred chemicals. These data have been combined with biomonitoring data to estimate an approximate margin between potential hazard and exposure. The most "at risk" 95th percentile of adults have been identified from simulated populations that are generated either using standard "average" adult human parameters or very specific cohorts such as Northern Europeans. To better reflect the modern U.S. population, we developed a population simulation using physiologies based on distributions of demographic and anthropometric quantities from the most recent U.S. Centers for Disease Control and Prevention National Health and Nutrition Examination Survey (NHANES) data. This allowed incorporation of inter-individual variability, including variability across relevant demographic subgroups. Variability was analyzed with a Monte Carlo approach that accounted for the correlation structure in physiological parameters. To identify portions of the U.S. population that are more at risk for specific chemicals, physiologic variability was incorporated within an open-source high-throughput (HT) TK modeling framework. We prioritized 50 chemicals based on estimates of both potential hazard and exposure. Potential hazard was estimated from in vitro HT screening assays (i.e., the Tox21 and ToxCast programs). Bioactive in vitro concentrations were extrapolated to doses that produce equivalent concentrations in body tissues using a reverse dosimetry approach in which generic TK models are parameterized with: 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. For risk-based prioritization of chemicals, predicted bioactive equivalent doses were compared to demographic-specific inferences of exposure rates that were based on NHANES urinary analyte biomonitoring data. The inclusion of NHANES-derived inter-individual variability decreased predicted bioactive equivalent doses by 12% on average for the total population when compared to previous methods. However, for some combinations of chemical and demographic groups the margin was reduced by as much as three quarters. This TK modeling framework allows targeted risk prioritization of chemicals for demographic groups of interest, including potentially sensitive life stages and subpopulations.


Assuntos
Poluentes Ambientais/toxicidade , Adolescente , Adulto , Idoso , Criança , Demografia , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Inquéritos Nutricionais , Medição de Risco , Toxicocinética , Estados Unidos , Adulto Jovem
12.
Toxicol Sci ; 158(1): 199-212, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472532

RESUMO

The toxicity of hexavalent chromium [Cr(VI)] in drinking water has been studied extensively, and available in vivo and in vitro studies provide a robust dataset for application of advanced toxicological tools to inform the mode of action (MOA). This study aimed to contribute to the understanding of Cr(VI) MOA by evaluating high-throughput screening (HTS) data and other in vitro data relevant to Cr(VI), and comparing these findings to robust in vivo data, including transcriptomic profiles in target tissues. Evaluation of Tox21 HTS data for Cr(VI) identified 11 active assay endpoints relevant to the Ten Key Characteristics of Carcinogens (TKCCs) that have been proposed by other investigators. Four of these endpoints were related to TP53 (tumor protein 53) activation mapping to genotoxicity (KCC#2), and four were related to cell death/proliferation (KCC#10). HTS results were consistent with other in vitro data from the Comparative Toxicogenomics Database. In vitro responses were compared to in vivo transcriptomic responses in the most sensitive target tissue, the duodenum, of mice exposed to ≤ 180 ppm Cr(VI) for 7 and 90 days. Pathways that were altered both in vitro and in vivo included those relevant to cell death/proliferation. In contrast, pathways relevant to p53/DNA damage were identified in vitro but not in vivo. Benchmark dose modeling and phenotypic anchoring of in vivo transcriptomic responses strengthened the finding that Cr(VI) causes cell stress/injury followed by proliferation in the mouse duodenum at high doses. These findings contribute to the body of evidence supporting a non-mutagenic MOA for Cr(VI)-induced intestinal cancer.


Assuntos
Cromo/toxicidade , Ensaios de Triagem em Larga Escala , Transcriptoma , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromo/administração & dosagem , Relação Dose-Resposta a Droga , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
13.
Environ Mol Mutagen ; 57(9): 706-716, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27859739

RESUMO

Exposure to hexavalent chromium [Cr(VI)] in drinking water was previously reported to increase oral tumor incidence in F344 rats. To investigate the mode of action for these tumors, transcriptomic profiles in oral mucosa samples of F344 rats and B6C3F1 mice were analyzed following exposure to 0.1-180 ppm Cr(VI) for 7 or 90 days. In rats, genome-wide microarray analyses identified no significantly differentially expressed genes (DEGs) at either time point. In mice, 14 and 1 DEGs were respectively identified after 7 and 90 days of exposure. Therefore, relaxed statistical criteria were employed to identify potential DEGs (pDEGs), followed by high-throughput benchmark dose modeling to identify responsive pDEGs for pathway enrichment analysis. This identified 288 and 168 pDEGs in the rat oral mucosa, of which only 20 and 7 showed evidence of dose-response. No significant pathway enrichment was obtained with either pDEG or dose-responsive pDEG lists. Similar results were obtained in mice. These analyses indicate a negligible transcriptional response in the oral mucosa of both species. Comparison of the total number of gene changes in the oral mucosa of rats and mice with responses in the duodenum of animals from the same study demonstrated remarkable dose-response concordance across tissues and species as a function of tissue chromium concentration. The low chromium levels in the oral mucosa and negligible transcript response are consistent with an absence of tissue lesions. These findings are used to compare the merits of linear and nonlinear approaches for deriving toxicity criteria based on the oral tumors in rats. Environ. Mol. Mutagen. 57:706-716, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.


Assuntos
Carcinógenos Ambientais/toxicidade , Cromo/toxicidade , Mucosa Bucal/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Carcinógenos Ambientais/farmacocinética , Cromo/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Camundongos Endogâmicos , Mucosa Bucal/metabolismo , Ratos Endogâmicos F344 , Medição de Risco , Especificidade da Espécie , Poluentes Químicos da Água/farmacocinética
14.
Artigo em Inglês | MEDLINE | ID: mdl-19964641

RESUMO

Long QT Syndrome (LQTS) is a congenital disorder associated with life-threatening arrhythmias. LQT1, a type of LQTS affecting the slow delayed rectifier potassium current, shows a higher incidence of arrhythmia associated with sympathetic stimulation than other types of LQTS. LQT1 patients show increased variability of repolarization with epinephrine infusion, as measured from the 12-lead ECG. We investigate the variability of repolarization measured as action potential duration (APD) in the rabbit left ventricle: how APD variability is affected by pacing rate, transmural location, LQT1 induced by chromanol 293b, and epinephrine infusion. Chromanol preferentially changes APD variability in the midwall. Infusing epinephrine returns the variability to near-control levels. These results differ substantially from clinical studies and show the need for further study.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Síndrome do QT Longo , Agonistas Adrenérgicos/farmacologia , Animais , Cromanos/farmacologia , Eletrocardiografia , Epinefrina/farmacologia , Ventrículos do Coração , Modelos Lineares , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Coelhos , Processamento de Sinais Assistido por Computador , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA