RESUMO
BACKGROUND: Quantification of drug-target binding is critical for confirming that drugs reach their intended protein targets, understanding the mechanism of action, and interpreting dose-response relationships. For covalent inhibitors, target engagement can be inferred by free target levels before and after treatment. Targeted mass spectrometry assays offer precise protein quantification in complex biological samples and have been routinely applied in pre-clinical studies to quantify target engagement in frozen tumor tissues for oncology drug development. However, frozen tissues are often not available from clinical trials so it is critical that assays are applicable to formalin-fixed, paraffin-embedded (FFPE) tissues in order to extend mass spectrometry-based target engagement studies into clinical settings. METHODS: Wild-type RAS and RASG12C was quantified in FFPE tissues by a highly optimized targeted mass spectrometry assay that couples high-field asymmetric waveform ion mobility spectrometry (FAIMS) and parallel reaction monitoring (PRM) with internal standards. In a subset of samples, technical reproducibility was evaluated by analyzing consecutive tissue sections from the same tumor block and biological variation was accessed among adjacent tumor regions in the same tissue section. RESULTS: Wild-type RAS protein was measured in 32 clinical non-small cell lung cancer tumors (622-2525 amol/µg) as measured by FAIMS-PRM mass spectrometry. Tumors with a known KRASG12C mutation (n = 17) expressed a wide range of RASG12C mutant protein (127-2012 amol/µg). The variation in wild-type RAS and RASG12C measurements ranged 0-18% CV across consecutive tissue sections and 5-20% CV among adjacent tissue regions. Quantitative target engagement was then demonstrated in FFPE tissues from 2 xenograft models (MIA PaCa-2 and NCI-H2122) treated with a RASG12C inhibitor (AZD4625). CONCLUSIONS: This work illustrates the potential to expand mass spectrometry-based proteomics in preclinical and clinical oncology drug development through analysis of FFPE tumor biopsies.
RESUMO
Mass spectrometry-based targeted proteomics employs heavy isotope-labeled proteins or peptides as standards to improve accuracy and precision. The input sample amount is often determined by the total quantity of endogenous proteins or peptides, as defined by spectrophotometric assays, before the heavy-isotope standards are spiked into the samples. Errors in spectrophotometric measurements, which may be due to low sensitivity or chemical or biological interference, have a direct impact on the quantitative mass spectrometry results. Currently used targeted proteomics workflows cannot identify or correct deviations that arise from differences in the input sample amount. We have developed a workflow, global extraction from parallel reaction monitoring (PRM), to identify and quantify thousands of background peptides that are inherently acquired by PRM experiments. These background peptides were used to identify differences in the input sample amount and to reduce this variance by intensity-based, post-acquisition normalization. This approach was then applied to a xenograft study to improve the quantification of human proteins in the presence of mouse tissue contamination. In addition, these background peptides also provided a direct source of quality control metrics related to sample handling and preparation.
Assuntos
Peptídeos , Proteômica , Animais , Espectrometria de Massas , Camundongos , Proteínas , Controle de QualidadeRESUMO
The human gammaherpesvirus Epstein-Barr virus (EBV) (human herpesvirus 4 [HHV4]) infects most adults and is an important contributor to the development of many types of lymphoid and epithelial cancers. Essential contributions of viral genes to viral replication are known, but the potential contributions of cell genes are less well delineated. A key player is the viral protein Zta (BZLF1, ZEBRA, or Z). This sequence-specific DNA-binding protein can disrupt EBV latency by driving the transcription of target genes and by interacting with the EBV lytic origin of replication. Here, we used an unbiased proteomics approach to identify the Zta-interactome in cells derived from Burkitt's lymphoma. Isolating Zta and associated proteins from Burkitt's lymphoma cells undergoing EBV replication, followed by tandem mass tag (TMT) mass spectrometry, resulted in the identification of 39 viral and cellular proteins within the Zta interactome. An association of Zta with the cellular protein NFATc2 was validated in independent experiments. Furthermore, the ability of Zta to attenuate the activity of an NFAT-dependent promoter was shown, which suggests a functional consequence for the association. The expression of Zta is itself regulated through NFAT activity, suggesting that Zta may contribute to a feedback loop that would limit its own expression, thus aiding viral replication by preventing the known toxic effects of Zta overexpression.IMPORTANCE Epstein-Barr virus infects most people across the world and causes several kinds of cancer. Zta is an important viral protein that makes the virus replicate by binding to its DNA and turning on the expression of some genes. We used a sensitive, unbiased approach to isolate and identify viral and cellular proteins that physically interact with Zta. This revealed 39 viral and cellular proteins. We found that one protein, termed NFATc2, was already known to be important for a very early step in viral replication. We identify that once this step has occurred, Zta reduces the effectiveness of NFATc2, and we suggest that this is important to prevent cells from dying before viral replication is complete and the mature virus is released from the cells.
Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Transativadores/genética , Transativadores/metabolismo , Replicação Viral/genética , Linfoma de Burkitt , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Genes Virais , Humanos , Fatores de Transcrição NFATC/metabolismo , Regiões Promotoras Genéticas , Proteômica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência ViralRESUMO
Mass spectrometry-based protein quantitation is currently used to measure therapeutically relevant protein biomarkers in CAP/CLIA setting to predict likely responses of known therapies. Selected reaction monitoring (SRM) is the method of choice due to its outstanding analytical performance. However, data-independent acquisition (DIA) is now emerging as a proteome-scale clinical assay. We evaluated the ability of DIA to profile the patient-specific proteomes of sample-limited tumor biopsies and to quantify proteins of interest in a targeted fashion using formalin-fixed, paraffin-embedded (FFPE) tumor biopsies ( n = 12) selected from our clinical laboratory. DIA analysis on the tumor biopsies provided 3713 quantifiable proteins including actionable biomarkers currently in clinical use, successfully separated two gastric cancers from colorectal cancer specimen solely on the basis of global proteomic profiles, and identified subtype-specific proteins with prognostic or diagnostic value. We demonstrate the potential use of DIA-based quantitation to inform therapeutic decision-making using TUBB3, for which clinical cutoff expression levels have been established by SRM. Comparative analysis of DIA-based proteomic profiles and mRNA expression levels found positively and negatively correlated protein-gene pairs, a finding consistent with previously reported results from fresh-frozen tumor tissues.
Assuntos
Espectrometria de Massas/métodos , Neoplasias/química , Patologia Molecular/métodos , Proteoma/análise , Biomarcadores Tumorais/análise , Biópsia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Humanos , Neoplasias/patologia , Inclusão em Parafina , Proteômica/métodos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Fixação de TecidosRESUMO
Mutations in DNA methyltransferase 3A (DNMT3A) are common in acute myeloid leukemia and portend a poor prognosis; thus, new therapeutic strategies are needed. The likely mechanism by which DNMT3A loss contributes to leukemogenesis is altered DNA methylation and the attendant gene expression changes; however, our current understanding is incomplete. We observed that murine hematopoietic stem cells (HSCs) in which Dnmt3a had been conditionally deleted markedly overexpress the histone 3 lysine 79 (H3K79) methyltransferase, Dot1l. We demonstrate that Dnmt3a(-/-) HSCs have increased H3K79 methylation relative to wild-type (WT) HSCs, with the greatest increases noted at DNA methylation canyons, which are regions highly enriched for genes dysregulated in leukemia and prone to DNA methylation loss with Dnmt3a deletion. These findings led us to explore DOT1L as a therapeutic target for the treatment of DNMT3A-mutant AML. We show that pharmacologic inhibition of DOT1L resulted in decreased expression of oncogenic canyon-associated genes and led to dose- and time-dependent inhibition of proliferation, induction of apoptosis, cell-cycle arrest, and terminal differentiation in DNMT3A-mutant cell lines in vitro. We show in vivo efficacy of the DOT1L inhibitor EPZ5676 in a nude rat xenograft model of DNMT3A-mutant AML. DOT1L inhibition was also effective against primary patient DNMT3A-mutant AML samples, reducing colony-forming capacity (CFC) and inducing terminal differentiation in vitro. These studies suggest that DOT1L may play a critical role in DNMT3A-mutant leukemia. With pharmacologic inhibitors of DOT1L already in clinical trials, DOT1L could be an immediately actionable therapeutic target for the treatment of this poor prognosis disease.
Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Metiltransferases/genética , Metiltransferases/metabolismo , Terapia de Alvo Molecular , Mutação/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/uso terapêutico , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Metiltransferase 3A , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Lisina/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Ratos , Fatores de Tempo , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
DDX3X, a helicase, can interact directly with mRNA and translation initiation factors, regulating the selective translation of mRNAs that contain a structured 5' untranslated region. This activity modulates the expression of mRNAs controlling cell cycle progression and mRNAs regulating actin dynamics, contributing to cell adhesion and motility. Previously, we have shown that ribosomes and translation initiation factors localise to the leading edge of migrating fibroblasts in loci enriched with actively translating ribosomes, thereby promoting steady-state levels of ArpC2 and Rac1 proteins at the leading edge of cells during spreading. As DDX3X can regulate Rac1 levels, cell motility and metastasis, we have examined DDX3X protein interactions and localisation using many complementary approaches. We now show that DDX3X can physically interact and co-localise with poly(A)-binding protein 1 and caprin-1 at the leading edge of spreading cells. Furthermore, as depletion of DDX3X leads to decreased cell motility, this provides a functional link between DDX3X, caprin-1 and initiation factors at the leading edge of migrating cells to promote cell migration and spreading.
Assuntos
Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , Pulmão/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Pseudópodes/metabolismo , RNA Mensageiro/metabolismo , Mucosa Respiratória/metabolismo , Western Blotting , Sistemas CRISPR-Cas , Linhagem Celular , Movimento Celular , Cromatografia de Afinidade , RNA Helicases DEAD-box/genética , Corantes Fluorescentes/química , Humanos , Imunoprecipitação , Pulmão/citologia , Pulmão/enzimologia , Microscopia Confocal , Microscopia de Fluorescência , Mapeamento de Peptídeos , Transporte Proteico , Proteômica/métodos , Pseudópodes/enzimologia , Mucosa Respiratória/citologia , Mucosa Respiratória/enzimologiaRESUMO
A full description of the human proteome relies on the challenging task of detecting mature and changing forms of protein molecules in the body. Large-scale proteome analysis has routinely involved digesting intact proteins followed by inferred protein identification using mass spectrometry. This 'bottom-up' process affords a high number of identifications (not always unique to a single gene). However, complications arise from incomplete or ambiguous characterization of alternative splice forms, diverse modifications (for example, acetylation and methylation) and endogenous protein cleavages, especially when combinations of these create complex patterns of intact protein isoforms and species. 'Top-down' interrogation of whole proteins can overcome these problems for individual proteins, but has not been achieved on a proteome scale owing to the lack of intact protein fractionation methods that are well integrated with tandem mass spectrometry. Here we show, using a new four-dimensional separation system, identification of 1,043 gene products from human cells that are dispersed into more than 3,000 protein species created by post-translational modification (PTM), RNA splicing and proteolysis. The overall system produced greater than 20-fold increases in both separation power and proteome coverage, enabling the identification of proteins up to 105 kDa and those with up to 11 transmembrane helices. Many previously undetected isoforms of endogenous human proteins were mapped, including changes in multiply modified species in response to accelerated cellular ageing (senescence) induced by DNA damage. Integrated with the latest version of the Swiss-Prot database, the data provide precise correlations to individual genes and proof-of-concept for large-scale interrogation of whole protein molecules. The technology promises to improve the link between proteomics data and complex phenotypes in basic biology and disease research.
Assuntos
Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Proteoma/análise , Proteoma/química , Proteômica/métodos , Processamento Alternativo , Linhagem Celular , Senescência Celular/genética , Dano ao DNA , Bases de Dados de Proteínas , Proteína HMGA1a/análise , Proteína HMGA1b/análise , Células HeLa , Humanos , Fenótipo , Processamento de Proteína Pós-Traducional , Proteólise , Proteômica/instrumentaçãoRESUMO
We have developed a targeted method to quantify all combinations of methylation on an H3 peptide containing lysines 27 and 36 (H3K27-K36). By using stable isotopes that separately label the histone backbone and its methylations, we tracked the rates of methylation and demethylation in myeloma cells expressing high vs. low levels of the methyltransferase MMSET/WHSC1/NSD2. Following quantification of 99 labeled H3K27-K36 methylation states across time, a kinetic model converged to yield 44 effective rate constants qualifying each methylation and demethylation step as a function of the methylation state on the neighboring lysine. We call this approach MS-based measurement and modeling of histone methylation kinetics (M4K). M4K revealed that, when dimethylation states are reached on H3K27 or H3K36, rates of further methylation on the other site are reduced as much as 100-fold. Overall, cells with high MMSET have as much as 33-fold increases in the effective rate constants for formation of H3K36 mono- and dimethylation. At H3K27, cells with high MMSET have elevated formation of K27me1, but even higher increases in the effective rate constants for its reversal by demethylation. These quantitative studies lay bare a bidirectional antagonism between H3K27 and H3K36 that controls the writing and erasing of these methylation marks. Additionally, the integrated kinetic model was used to correctly predict observed abundances of H3K27-K36 methylation states within 5% of that actually established in perturbed cells. Such predictive power for how histone methylations are established should have major value as this family of methyltransferases matures as drug targets.
Assuntos
Histona-Lisina N-Metiltransferase/química , Histonas/química , Lisina/química , Proteínas Repressoras/química , Bioquímica/métodos , Linhagem Celular , Técnicas de Química Combinatória , Epigenômica , Histona-Lisina N-Metiltransferase/genética , Humanos , Cinética , Espectrometria de Massas/métodos , Metilação , Metiltransferases/química , Proteínas Repressoras/genéticaRESUMO
We employ stable-isotope labeling and quantitative mass spectrometry to track histone methylation stability. We show that H3 trimethyl K9 and K27 are slow to be established on new histones and slow to disappear from old histones, with half-lives of multiple cell divisions. By contrast, the transcription-associated marks K4me3 and K36me3 turn over far more rapidly, with half-lives of 6.8 h and 57 h, respectively. Inhibition of demethylases increases K9 and K36 methylation, with K9 showing the largest and most robust increase. We interpret different turnover rates in light of genome-wide localization data and transcription-dependent nucleosome rearrangements proximal to the transcription start site.
Assuntos
Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Marcação por Isótopo , Lisina/química , Metilação , Estabilidade ProteicaRESUMO
Cellular senescence, an irreversible cell cycle arrest induced by a diversity of stimuli, has been considered as an innate tumor suppressing mechanism with implications and applications in cancer therapy. Using a targeted proteomics approach, we show that fibroblasts induced into senescence by expression of oncogenic Ras exhibit a decrease of global acetylation on all core histones, consistent with formation of senescence-associated heterochromatic foci. We also detected clear increases in repressive markers (e.g. >50% elevation of H3K27me2/3) along with decreases in histone marks associated with increased transcriptional expression/elongation (e.g. H3K36me2/3). Despite the increases in repressive marks of chromatin, 179 loci (of 2206 total) were found to be upregulated by global quantitative proteomics. The changes in the cytosolic proteome indicated an upregulation of mitochondrial proteins and downregulation of proteins involved in glycolysis. These alterations in primary metabolism are opposite to the well-known Warburg effect observed in cancer cells. This study significantly improves our understanding of stress-induced senescence and provides a potential application for triggering it in antiproliferative strategies that target the primary metabolism in cancer cells.
Assuntos
Senescência Celular/genética , Glicólise/fisiologia , Histonas/metabolismo , Proteínas Mitocondriais/biossíntese , Neoplasias/metabolismo , Oncogenes , Proteômica/métodos , Proteínas ras/genética , Acetilação , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Proliferação de Células , Cromatina/metabolismo , Cromatografia Líquida/métodos , Citosol/metabolismo , Regulação para Baixo , Fibroblastos , Glicólise/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Transcrição Gênica , Regulação para CimaRESUMO
The multiple myeloma SET domain (MMSET) protein is overexpressed in multiple myeloma (MM) patients with the translocation t(4;14). Although studies have shown the involvement of MMSET/Wolf-Hirschhorn syndrome candidate 1 in development, its mode of action in the pathogenesis of MM is largely unknown. We found that MMSET is a major regulator of chromatin structure and transcription in t(4;14) MM cells. High levels of MMSET correlate with an increase in lysine 36 methylation of histone H3 and a decrease in lysine 27 methylation across the genome, leading to a more open structural state of the chromatin. Loss of MMSET expression alters adhesion properties, suppresses growth, and induces apoptosis in MM cells. Consequently, genes affected by high levels of MMSET are implicated in the p53 pathway, cell cycle regulation, and integrin signaling. Regulation of many of these genes required functional histone methyl-transferase activity of MMSET. These results implicate MMSET as a major epigenetic regulator in t(4;14)+ MM.
Assuntos
Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 4/genética , Metilação de DNA , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Mieloma Múltiplo/genética , Proteínas Repressoras/genética , Translocação Genética/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Adesão Celular , Ciclo Celular , Movimento Celular , Proliferação de Células , Cromatina/genética , Imunoprecipitação da Cromatina , Epigenômica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais CultivadasRESUMO
Prostate cancer is generally considered an immunologically "cold" tumor type that is insensitive to immunotherapy. Targeting surface antigens on tumors through cellular therapy can induce a potent antitumor immune response to "heat up" the tumor microenvironment. However, many antigens expressed on prostate tumor cells are also found on normal tissues, potentially causing on-target, off-tumor toxicities and a suboptimal therapeutic index. Our studies revealed that six-transmembrane epithelial antigen of prostate-2 (STEAP2) was a prevalent prostate cancer antigen that displayed high, homogeneous cell surface expression across all stages of disease with limited distal normal tissue expression, making it ideal for therapeutic targeting. A multifaceted lead generation approach enabled development of an armored STEAP2 chimeric antigen receptor T cell (CAR-T) therapeutic candidate, AZD0754. This CAR-T product was armored with a dominant-negative TGF-ß type II receptor, bolstering its activity in the TGF-ß-rich immunosuppressive environment of prostate cancer. AZD0754 demonstrated potent and specific cytotoxicity against antigen-expressing cells in vitro despite TGF-ß-rich conditions. Further, AZD0754 enforced robust, dose-dependent in vivo efficacy in STEAP2-expressing cancer cell line-derived and patient-derived xenograft mouse models, and exhibited encouraging preclinical safety. Together, these data underscore the therapeutic tractability of STEAP2 in prostate cancer as well as build confidence in the specificity, potency, and tolerability of this potentially first-in-class CAR-T therapy.
Assuntos
Neoplasias da Próstata , Receptores de Antígenos Quiméricos , Masculino , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva , Neoplasias da Próstata/patologia , Linfócitos T , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Microambiente Tumoral , Oxirredutases/metabolismoRESUMO
Mass spectrometry-based targeted proteomics allows objective protein quantitation of clinical biomarkers from a single section of formalin-fixed, paraffin-embedded (FFPE) tumor tissue biopsies. We combined high-field asymmetric waveform ion mobility spectrometry (FAIMS) and parallel reaction monitoring (PRM) to increase assay sensitivity. The modular nature of the FAIMS source allowed direct comparison of the performance of FAIMS-PRM to PRM. Limits of quantitation were determined by spiking synthetic peptides into a human spleen matrix. In addition, 20 clinical samples were analyzed using FAIMS-PRM and the quantitation of HER2 was compared with that obtained with the Ventana immunohistochemistry assay. FAIMS-PRM improved the overall signal-to-noise ratio over that from PRM and increased assay sensitivity in FFPE tissue analysis for four (HER2, EGFR, cMET, and KRAS) of five proteins of clinical interest. FAIMS-PRM enabled sensitive quantitation of basal HER2 expression in breast cancer samples classified as HER2 negative by immunohistochemistry. Furthermore, we determined the degree of FAIMS-dependent background reduction and showed that this correlated with an improved lower limit of quantitation with FAIMS. FAIMS-PRM is anticipated to benefit clinical trials in which multiple biomarker questions must be addressed and the availability of tumor biopsy samples is limited.
Assuntos
Neoplasias da Mama , Proteômica , Biópsia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Espectrometria de Mobilidade Iônica/métodos , Proteínas/química , Proteômica/métodosRESUMO
We employ a stable isotope strategy wherein both histones and their methylations are labeled in synchronized human cells. This allows us to differentiate between old and new methylations on pre-existing versus newly synthesized histones. The strategy is implemented on K79 methylation in an isoform-specific manner for histones H3.1, H3.2, and H3.3. Although levels of H3.3K79 monomethylation are higher than that of H3.2/H3.1, the rate of establishing the K79 methylation is the same for all three isoforms. Surprisingly, we find that pre-existing "old" histones continue to be K79-monomethylated and -dimethylated at a rate equal to the newly synthesized histones. These observations imply that some degree of positional "scrambling" of K79 methylation occurs through the cell cycle.
Assuntos
Ciclo Celular/fisiologia , Cromatina/metabolismo , Histonas/metabolismo , Células HeLa , Humanos , MetilaçãoRESUMO
We used on-line electron capture dissociation (ECD) for the large scale identification and localization of sites of phosphorylation. Each FT-ICR ECD event was paired with a linear ion trap collision-induced dissociation (CID) event, allowing a direct comparison of the relative merits of ECD and CID for phosphopeptide identification and site localization. Linear ion trap CID was shown to be most efficient for phosphopeptide identification, whereas FT-ICR ECD was superior for localization of sites of phosphorylation. The combination of confident CID and ECD identification and confident CID and ECD localization is particularly valuable in cases where a phosphopeptide is identified just once within a phosphoproteomics experiment.
Assuntos
Espectrometria de Massas/métodos , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Fosfopeptídeos/análise , Fosfopeptídeos/química , Fosforilação , Proteínas/química , Reprodutibilidade dos TestesRESUMO
Applying high-throughput Top-Down MS to an entire proteome requires a yet-to-be-established model for data processing. Since Top-Down is becoming possible on a large scale, we report our latest software pipeline dedicated to capturing the full value of intact protein data in automated fashion. For intact mass detection, we combine algorithms for processing MS1 data from both isotopically resolved (FT) and charge-state resolved (ion trap) LC-MS data, which are then linked to their fragment ions for database searching using ProSight. Automated determination of human keratin and tubulin isoforms is one result. Optimized for the intricacies of whole proteins, new software modules visualize proteome-scale data based on the LC retention time and intensity of intact masses and enable selective detection of PTMs to automatically screen for acetylation, phosphorylation, and methylation. Software functionality was demonstrated using comparative LC-MS data from yeast strains in addition to human cells undergoing chemical stress. We further these advances as a key aspect of realizing Top-Down MS on a proteomic scale.
Assuntos
Espectrometria de Massas , Proteômica , Algoritmos , Sequência de Aminoácidos , Proteínas Fúngicas/análise , Células HeLa , Histonas/análise , Histonas/genética , Humanos , Queratinas/análise , Queratinas/genética , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Proteômica/instrumentação , Proteômica/métodos , Software , Estatmina/análise , Estatmina/genética , Tubulina (Proteína)/análise , Tubulina (Proteína)/genéticaRESUMO
Activation of signal transduction by the receptor tyrosine kinase, fibroblast growth factor receptor (FGFR), results in a cascade of protein-protein interactions that rely on the occurrence of specific tyrosine phosphorylation events. One such protein recruited to the activated receptor complex is the nonreceptor tyrosine kinase, Src, which is involved in both initiation and termination of further signaling events. To gain a further understanding of the tyrosine phosphorylation events that occur during FGF signaling, with a specific focus on those that are dependent on Src family kinase (SFK) activity, we have applied SILAC combined with chemical inhibition of SFK activity to search for phosphorylation events that are dependent on SFK activity in FGF stimulated cells. In addition, we used a more targeted approach to carry out high coverage phosphopeptide mapping of one Src substrate protein, the multifunctional adaptor Dok1, and to identify SFK-dependent Dok1 binding partners. From these analyses we identify 80 SFK-dependent phosphorylation events on 40 proteins. We further identify 18 SFK-dependent Dok1 interactions and 9 SFK-dependent Dok1 phosphorylation sites, 6 of which had not previously been known to be SFK-dependent.
Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Humanos , Imunoprecipitação , Marcação por Isótopo , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Peptídeos/química , Peptídeos/metabolismo , Fosfoproteínas/química , Fosforilação , Ligação Proteica , Proteoma/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Quinases da Família src/químicaRESUMO
BACKGROUND: Approximately one-quarter of all pregnancy- and delivery-related maternal deaths worldwide occur in India. Taking into account the costs, feasibility, and operational complexity of alternative interventions, we estimate the clinical and population-level benefits associated with strategies to improve the safety of pregnancy and childbirth in India. METHODS AND FINDINGS: Country- and region-specific data were synthesized using a computer-based model that simulates the natural history of pregnancy (both planned and unintended) and pregnancy- and childbirth-associated complications in individual women; and considers delivery location, attendant, and facility level. Model outcomes included clinical events, population measures, costs, and cost-effectiveness ratios. Separate models were adapted to urban and rural India using survey-based data (e.g., unmet need for birth spacing/limiting, facility births, skilled birth attendants). Model validation compared projected maternal indicators with empiric data. Strategies consisted of improving coverage of effective interventions that could be provided individually or packaged as integrated services, could reduce the incidence of a complication or its case fatality rate, and could include improved logistics such as reliable transport to an appropriate referral facility as well as recognition of referral need and quality of care. Increasing family planning was the most effective individual intervention to reduce pregnancy-related mortality. If over the next 5 y the unmet need for spacing and limiting births was met, more than 150,000 maternal deaths would be prevented; more than US$1 billion saved; and at least one of every two abortion-related deaths averted. Still, reductions in maternal mortality reached a threshold ( approximately 23%-35%) without including strategies that ensured reliable access to intrapartum and emergency obstetrical care (EmOC). An integrated and stepwise approach was identified that would ultimately prevent four of five maternal deaths; this approach coupled stepwise improvements in family planning and safe abortion with consecutively implemented strategies that incrementally increased skilled attendants, improved antenatal/postpartum care, shifted births away from home, and improved recognition of referral need, transport, and availability/quality of EmOC. The strategies in this approach ranged from being cost-saving to having incremental cost-effectiveness ratios less than US$500 per year of life saved (YLS), well below India's per capita gross domestic product (GDP), a common benchmark for cost-effectiveness. CONCLUSIONS: Early intensive efforts to improve family planning and control of fertility choices and to provide safe abortion, accompanied by a paced systematic and stepwise effort to scale up capacity for integrated maternal health services over several years, is as cost-effective as childhood immunization or treatment of malaria, tuberculosis, or HIV. In just 5 y, more than 150,000 maternal deaths would be averted through increasing contraception rates to meet women's needs for spacing and limiting births; nearly US$1.5 billion would be saved by coupling safe abortion to aggressive family planning efforts; and with stepwise investments to improve access to pregnancy-related health services and to high-quality facility-based intrapartum care, more than 75% of maternal deaths could be prevented. If accomplished over the next decade, the lives of more than one million women would be saved.
Assuntos
Análise Custo-Benefício/métodos , Mortalidade Materna , Serviços de Planejamento Familiar , Feminino , Humanos , Índia , Serviços de Saúde Materna , GravidezRESUMO
Despite the availability of ultra-high-resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for online LC-MS to drive high-throughput top-down proteomics in a fashion similar to that of bottom-up proteomics. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier transform mass spectrometer. Protein identification was enabled by nozzle-skimmer dissociation and detection of fragment ions with <10 ppm mass accuracy for highly specific database searching using tailored software. This overall approach led to identification of proteins up to 80 kDa, with 10-60 proteins identified in single LC-MS runs of samples from yeast and human cell lines prefractionated by their molecular mass using a gel-based sieving system.
Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Nanotecnologia , Proteínas/análise , Proteínas/química , Sequência de Aminoácidos , Animais , Bovinos , Células HeLa , Humanos , Dados de Sequência Molecular , Peso Molecular , Polímeros/química , Porosidade , Proteoma/análise , Proteoma/química , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Fatores de TempoRESUMO
BACKGROUND: Rotavirus infection is responsible for about 500,000 deaths annually, and the disease burden is disproportionately borne by children in low-income countries. Recently the World Health Organization (WHO) has released a global recommendation that all countries include infant rotavirus vaccination in their national immunization programs. Our objective was to provide information on the expected health, economic and financial consequences of rotavirus vaccines in the 72 GAVI support-eligible countries. METHODS: We synthesized population-level data from various sources (primarily from global-level databases) for the 72 countries eligible for the support by the GAVI Alliance (GAVI-eligible countries) in order to estimate the health and economic impact associated with rotavirus vaccination programs. The primary outcome measure was incremental cost (in 2005 international dollars [I$]) per disability-adjusted life year (DALY) averted. We also projected the expected reduction in rotavirus disease burden and financial resources required associated with a variety of scale-up scenarios. RESULTS: Under the base-case assumptions (70% coverage), vaccinating one single birth cohort would prevent about 55% of rotavirus associated deaths in the 72 GAVI-eligible countries. Assuming I$25 per vaccinated child (approximately $5 per dose), the number of countries with the incremental cost per DALY averted less than I$200 was 47. Using the WHO's cost-effectiveness threshold based on per capita GDP, the vaccines were considered cost-effective in 68 of the 72 countries (approximately 94%). A 10-year routine rotavirus vaccination would prevent 0.9-2.8 million rotavirus associated deaths among children under age 5 in the poorest parts of the world, depending on vaccine scale-up scenarios. Over the same intervention period, rotavirus vaccination programs would also prevent 4.5-13.3 million estimated cases of hospitalization and 41-107 million cases of outpatient clinic visits in the same population. CONCLUSIONS: Our findings suggest that rotavirus vaccination would be considered a worthwhile investment for improving general development as well as childhood health level in most low-income countries, with a favorable cost-effectiveness profile even under a vaccine price ($1.5-$5.0 per dose) higher than those of traditional childhood vaccines.