Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Entropy (Basel) ; 26(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38392410

RESUMO

The two-dimensional sample entropy marks a significant advance in evaluating the regularity and predictability of images in the information domain. Unlike the direct computation of sample entropy, which incurs a time complexity of O(N2) for the series with N length, the Monte Carlo-based algorithm for computing one-dimensional sample entropy (MCSampEn) markedly reduces computational costs by minimizing the dependence on N. This paper extends MCSampEn to two dimensions, referred to as MCSampEn2D. This new approach substantially accelerates the estimation of two-dimensional sample entropy, outperforming the direct method by more than a thousand fold. Despite these advancements, MCSampEn2D encounters challenges with significant errors and slow convergence rates. To counter these issues, we have incorporated an upper confidence bound (UCB) strategy in MCSampEn2D. This strategy involves assigning varied upper confidence bounds in each Monte Carlo experiment iteration to enhance the algorithm's speed and accuracy. Our evaluation of this enhanced approach, dubbed UCBMCSampEn2D, involved the use of medical and natural image data sets. The experiments demonstrate that UCBMCSampEn2D achieves a 40% reduction in computational time compared to MCSampEn2D. Furthermore, the errors with UCBMCSampEn2D are only 30% of those observed in MCSampEn2D, highlighting its improved accuracy and efficiency.

2.
FASEB J ; 36(3): e22219, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35195911

RESUMO

Promoting the thermogenic function of brown adipose tissue (BAT) is a promising strategy to combat obesity and metabolic disorders. While much is known about the transcriptional regulation of BAT activation, however, the underlying mechanism of post-transcriptional control by RNA binding proteins remains largely unknown. Here, we found that RNA binding protein Y-box binding protein 1 (YBX1) expression was abundant in BAT and induced by cold exposure and a ß-adrenergic agonist in mice. Loss-of-function experiments showed that YBX1 deficiency inhibited mouse primary brown adipocyte differentiation and thermogenic function. Further study showed that YBX1 positively regulates thermogenesis through enhancing mitophagy. Mechanistically, RNA immunoprecipitation identified that YBX1 directly targeted the transcripts of PTEN-induced kinase 1 (Pink1) and parkin RBR E3 ubiquitin-protein ligase (Prkn), two key regulators of mitophagy. RNA decay assay proved that loss of YBX1 decreased mRNA stability of Pink1 and Prkn, leading to reduced protein expression, thereby alleviating mitophagy and inhibiting thermogenic program. Importantly, in vivo experiments demonstrated that YBX1 overexpression in BAT promoted thermogenesis and mitophagy in mice. Collectively, our results reveal novel insight into the molecular mechanism of YBX1 in post-transcriptional regulation of PINK1/PRKN-mediated mitophagy and highlight the critical role of YBX1 in brown adipogenesis and thermogenesis.


Assuntos
Adipogenia , Mitofagia , Termogênese , Fatores de Transcrição/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
EMBO Rep ; 22(5): e52146, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33880847

RESUMO

Obesity has become a major health problem that has rapidly prevailed over the past several decades worldwide. Curcumin, a natural polyphenolic compound present in turmeric, has been shown to have a protective effect on against obesity and metabolic diseases. However, its underlying mechanism remains largely unknown. Here, we show that the administration of curcumin significantly prevents HFD-induced obesity and decreases the fat mass of the subcutaneous inguinal WAT (iWAT) and visceral epididymal WAT (eWAT) in mice. Mechanistically, curcumin inhibits adipogenesis by reducing the expression of AlkB homolog 5 (ALKHB5), an m6 A demethylase, which leads to higher m6 A-modified TNF receptor-associated factor 4 (TRAF4) mRNA. TRAF4 mRNA with higher m6 A level is recognized and bound by YTHDF1, leading to enhanced translation of TRAF4. TRAF4, acting as an E3 RING ubiquitin ligase, promotes degradation of adipocyte differentiation regulator PPARγ by a ubiquitin-proteasome pathway thereby inhibiting adipogenesis. Thus, m6 A-dependent TRAF4 expression upregulation by ALKBH5 and YTHDF1 contributes to curcumin-induced obesity prevention. Our findings provide mechanistic insights into how m6 A is involved in the anti-obesity effect of curcumin.


Assuntos
Curcumina , Fator 4 Associado a Receptor de TNF , Células 3T3-L1 , Adipogenia , Animais , Curcumina/farmacologia , Dieta Hiperlipídica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Fator 4 Associado a Receptor de TNF/genética , Fator 4 Associado a Receptor de TNF/metabolismo , Ubiquitinação
4.
EMBO Rep ; 22(11): e52348, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34569703

RESUMO

Obesity mainly results from a chronic energy imbalance. Promoting browning of white adipocytes is a promising strategy to enhance energy expenditure and combat obesity. N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an important role in regulating adipogenesis. However, whether m6A regulates white adipocyte browning was unknown. Here, we report that adipose tissue-specific deletion of Fto, an m6A demethylase, predisposes mice to prevent high-fat diet (HFD)-induced obesity by enhancing energy expenditure. Additionally, deletion of FTO in vitro promotes thermogenesis and white-to-beige adipocyte transition. Mechanistically, FTO deficiency increases the m6A level of Hif1a mRNA, which is recognized by m6A-binding protein YTHDC2, facilitating mRNA translation and increasing HIF1A protein abundance. HIF1A activates the transcription of thermogenic genes, including Ppaggc1a, Prdm16, and Pparg, thereby promoting Ucp1 expression and the browning process. Collectively, these results unveil an epigenetic mechanism by which m6A-facilitated HIF1A expression controls browning of white adipocytes and thermogenesis, providing a potential target to counteract obesity and metabolic disease.


Assuntos
Tecido Adiposo Bege , Tecido Adiposo Branco , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Adenosina/análogos & derivados , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Termogênese
5.
Cell Mol Life Sci ; 79(9): 481, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962235

RESUMO

Although 5-methylcytosine (m5C) has been identified as a novel and abundant mRNA modification and associated with energy metabolism, its regulation function in adipose tissue and skeletal muscle is still limited. This study aimed at investigating the effect of mRNA m5C on adipogenesis and myogenesis using Jinhua pigs (J), Yorkshire pigs (Y) and their hybrids Yorkshire-Jinhua pigs (YJ). We found that Y grow faster than J and YJ, while fatness-related characteristics observed in Y were lower than those of J and YJ. Besides, total mRNA m5C levels and expression rates of NSUN2 were higher both in backfat layer (BL) and longissimus dorsi muscle (LDM) of Y compared to J and YJ, suggesting that higher mRNA m5C levels positively correlate with lower fat and higher muscle mass. RNA bisulfite sequencing profiling of m5C revealed tissue-specific and dynamic features in pigs. Functionally, hyper-methylated m5C-containing genes were enriched in pathways linked to impaired adipogenesis and enhanced myogenesis. In in vitro, m5C inhibited lipid accumulation and promoted myogenic differentiation. Furthermore, YBX2 and SMO were identified as m5C targets. Mechanistically, YBX2 and SMO mRNAs with m5C modification were recognized and exported into the cytoplasm from the nucleus by ALYREF, thus leading to increased YBX2 and SMO protein expression and thereby inhibiting adipogenesis and promoting myogenesis, respectively. Our work uncovered the critical role of mRNA m5C in regulating adipogenesis and myogenesis via ALYREF-m5C-YBX2 and ALYREF-m5C-SMO manners, providing a potential therapeutic target in the prevention and treatment of obesity, skeletal muscle dysfunction and metabolic disorder diseases.


Assuntos
Adipogenia , Proteínas de Ligação a RNA , Adipogenia/genética , Animais , Desenvolvimento Muscular/genética , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Suínos
6.
BMC Biol ; 20(1): 39, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135551

RESUMO

BACKGROUND: Obesity leads to a decline in the exercise capacity of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. Dietary intervention has been shown to be an important measure to regulate skeletal muscle function, and previous studies have demonstrated the beneficial effects of docosahexaenoic acid (DHA; 22:6 ω-3) on skeletal muscle function. At the molecular level, DHA and its metabolites were shown to be extensively involved in regulating epigenetic modifications, including DNA methylation, histone modifications, and small non-coding microRNAs. However, whether and how epigenetic modification of mRNA such as N6-methyladenosine (m6A) mediates DHA regulation of skeletal muscle function remains unknown. Here, we analyze the regulatory effect of DHA on skeletal muscle function and explore the involvement of m6A mRNA modifications in mediating such regulation. RESULTS: DHA supplement prevented HFD-induced decline in exercise capacity and conversion of muscle fiber types from slow to fast in mice. DHA-treated myoblasts display increased mitochondrial biogenesis, while slow muscle fiber formation was promoted through DHA-induced expression of PGC1α. Further analysis of the associated molecular mechanism revealed that DHA enhanced expression of the fat mass and obesity-associated gene (FTO), leading to reduced m6A levels of DNA damage-induced transcript 4 (Ddit4). Ddit4 mRNA with lower m6A marks could not be recognized and bound by the cytoplasmic m6A reader YTH domain family 2 (YTHDF2), thereby blocking the decay of Ddit4 mRNA. Accumulated Ddit4 mRNA levels accelerated its protein translation, and the consequential increased DDIT4 protein abundance promoted the expression of PGC1α, which finally elevated mitochondria biogenesis and slow muscle fiber formation. CONCLUSIONS: DHA promotes mitochondrial biogenesis and skeletal muscle fiber remodeling via FTO/m6A/DDIT4/PGC1α signaling, protecting against obesity-induced decline in skeletal muscle function.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Ácidos Docosa-Hexaenoicos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Dieta , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/farmacologia , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
7.
RNA Biol ; 18(sup2): 711-721, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570675

RESUMO

5-Methylcytosine (m5C) is a type of RNA modification that exists in tRNAs and rRNAs and was recently found in mRNA. Although mRNA m5C modification has been reported to regulate diverse biological process, its function in adipogenesis remains unknown. Here, we demonstrated that knockdown of NOL1/NOP2/Sun domain family member 2 (NSUN2), a m5C methyltransferase, increased lipid accumulation of 3T3-L1 preadipocytes through accelerating cell cycle progression during mitotic clonal expansion (MCE) at the early stage of adipogenesis. Mechanistically, we proved that NSUN2 directly targeted cyclin-dependent kinase inhibitor 1A (CDKN1A) mRNA, a key inhibitory regulator of cell cycle progression, and upregulated its protein expression in an m5C-dependent manner. Further study identified that CDKN1A was the target of Aly/REF export factor (ALYREF), a reader of m5C modified mRNA. Upon NSUN2 deficiency, the recognition of CDKN1A mRNA by ALYREF was suppressed, resulting in the decrease of CDKN1A mRNA shuttling from nucleus to cytoplasm. Thereby, the translation of CDKN1A was reduced, leading to the acceleration of cell cycle and the promotion of adipogenesis. Together, these findings unveiled an important function and mechanism of the m5C modification on adipogenesis by controlling cell cycle progression, providing a potential therapeutic target to prevent obesity.


Assuntos
5-Metilcitosina , Adipogenia/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Células 3T3-L1 , 5-Metilcitosina/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação da Expressão Gênica , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Biossíntese de Proteínas/genética , Transporte de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
FASEB J ; 33(6): 7529-7544, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30865855

RESUMO

Bone marrow stem cells (BMSCs) are multipotent stem cells that can regenerate mesenchymal tissues, such as adipose tissue, bone, and muscle. Recent studies have shown that N6-methyladenosine (m6A) methylation, one of the most prevalent epigenetic modifications, is involved in the development process. However, whether it plays roles in BMSC differentiation is still elusive. Here, we found that the deletion of m6A "writer" protein methyltransferase-like (METTL)3 in porcine BMSCs (pBMSCs) could promote adipogenesis and janus kinase (JAK)1 protein expression via an m6A-dependent way. Knockdown of METTL3 decreased mRNA m6A levels of JAK1, leading to enhanced YTH m6A RNA binding protein 2 (YTHDF2)-dependent JAK1 mRNA stability. We further demonstrated that JAK1 activated signal transducer and activator of transcription (STAT) 5 through regulation of its phosphorylation to bind to the promoter of CCAAT/enhancer binding protein (C/EBP) ß, which could ultimately lead to a modulated adipogenic process. Collectively, our results reveal an orchestrated network linking the m6A methylation and JAK1/STAT5/C/EBPß pathway in pBMSCs adipogenic differentiation. Our findings provide novel insights into the underlying molecular mechanisms of m6A modification in the regulation of BMSCs differentiating into adipocytes, which may pave a way to develop more effective therapeutic strategies in stem cell regenerative medicine and the treatment of obesity.-Yao, Y., Bi, Z., Wu, R., Zhao, Y., Liu, Y., Liu, Q., Wang, Y., Wang, X. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPß pathway via an m6A-YTHDF2-dependent manner.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/fisiologia , Janus Quinase 1/metabolismo , Células-Tronco Mesenquimais/química , Metiltransferases/fisiologia , Fator de Transcrição STAT5/metabolismo , Adipogenia/fisiologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Humanos , Metiltransferases/genética , Suínos , Transcrição Gênica
9.
FASEB J ; 33(2): 2971-2981, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30339471

RESUMO

Intramuscular fat is considered a potential factor that is associated with meat quality in animal production and insulin resistance in humans. N6-methyladenosine (m6A) modification of mRNA plays an important role in regulating adipogenesis. However, the effects of m6A on the adipogenesis of intramuscular preadipocytes and associated mechanisms remain unknown. Here, we performed m6A sequencing to compare m6A methylome of the longissimus dorsi muscles (LDMs) between Landrace pigs (lean-type breed) and Jinhua pigs (obese-type breed with higher levels of intramuscular fat). Transcriptome-wide m6A profiling of porcine LDMs was highly conserved with humans and mice. Furthermore, we identified a unique methylated gene in Jinhua pigs named mitochondrial carrier homology 2 ( MTCH2). The m6A levels of MTCH2 mRNA were reduced by introducing a synonymous mutation, and adipogenesis test results showed that the MTCH2 mutant was inferior with regard to adipogenesis compared with the MTCH2 wild-type. We then found that MTCH2 protein expression was positively associated with m6A levels, and an YTH domain family protein 1-RNA immunoprecipitation-quantitative PCR assay indicated that MTCH2 mRNA was a target of the YTH domain family protein 1. This study provides comprehensive m6A profiles of LDM transcriptomes in pigs and suggests an essential role for m6A modification of MTCH2 in intramuscular fat regulation.-Jiang, Q., Sun, B., Liu, Q., Cai, M., Wu, R., Wang, F., Yao, Y., Wang, Y., Wang, X. MTCH2 promotes adipogenesis in intramuscular preadipocytes via an m6A-YTHDF1-dependent mechanism.


Assuntos
Adenosina/análogos & derivados , Adipócitos/citologia , Adipogenia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Músculo Esquelético/citologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina/química , Adipócitos/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Metilação , Proteínas de Transporte da Membrana Mitocondrial/genética , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Suínos
10.
J Cell Physiol ; 234(6): 7948-7956, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30644095

RESUMO

N6 -methyladenosine (m6 A), as the most abundant RNA epigenetic modifications, has been shown to play critical roles in various biological functions. Research about enzymes that can catalyze and remove m6 A have revealed its comprehensive roles in messenger RNA (mRNA) metabolism and other physiological processes. The "readers" including YTH domain-containing proteins, hnRNPC, hnRNPG, hnRNPA2B1, IGF2BP1, IGF2BP2, and IGF2BP3, which can affect the fates of mRNA in an m6 A-dependent manner. In this review, we focus on recent advances in the research of the m6 A modifications, especially about the latest functions of its writers, erasers, readers in RNA metabolism, cancer, and lipid metabolism. In the end, we provide insights into the underlying molecular mechanisms of m6 A modifications.


Assuntos
Adenosina/genética , Epigênese Genética , Neoplasias/genética , RNA Mensageiro/genética , Adenosina/análogos & derivados , Humanos , Metabolismo dos Lipídeos/genética , Metilação , Metiltransferases/genética , Processamento Pós-Transcricional do RNA/genética
11.
IUBMB Life ; 71(5): 580-586, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30506811

RESUMO

N6 -methyladenosine (m6 A) mRNA modification plays an important role in adipogenesis, but its role on single gene remains unexplored. Family with Sequence Similarity 134, Member B (FAM134B) is a cis-Golgi transmembrane protein that known to be necessary for the long-term survival of nociceptive and autonomic ganglion neurons. Recent work has shown that FAM134B plays a pivotal role in lipid homeostasis and was identified as its significant m6 A level difference between Chinese local Jinhua pigs and Landrace through RNA-sequence. Here, we construct the non-m6 A FAM134B coding sequence (CDS) plasmid (FAM134B-MUT) and found one important m6 A site on its CDS. Expression of FAM134B-MUT was more effective in promoting porcine preadipocytes adipogenic differentiation and lipid deposition than wild-type FAM134B (FAM134B-WT) both in early and ultimate differentiation stage. FAM134B-MUT functions better in promoting fat deposition by upregulating peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBPα) level. The m6 A reader protein YTH m6 A RNA binding protein 2 (YTHDF2) interacts with FAM134B mRNA and down regulated its protein level. These results demonstrate that FAM134B was the target of YTHDF2, which may recognize and binds the m6 A site of FAM134B to reduce its mRNA lifetime and reduce its protein abundance. © 2018 IUBMB Life, 71(5):580-586, 2019.


Assuntos
Adenosina/análogos & derivados , Adipócitos/citologia , Adipogenia , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina/deficiência , Adipócitos/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Ligação a RNA/genética , Suínos
12.
RNA Biol ; 16(12): 1785-1793, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31434544

RESUMO

Obesity is becoming a global problem. Research into the detailed mechanism of adipocyte development is crucial for the treatment of excess fat. Zinc finger protein 217 plays roles in adipogenesis. However, the underlying mechanism remains unclear. Here, we demonstrated that ZFP217 knockdown prevented the mitotic clonal expansion process and caused adipogenesis inhibition. Depletion of ZFP217 increased the expression of the m6A methyltransferase METTL3, which upregulated the m6A level of cyclin D1 mRNA. METTL3 knockdown rescued the siZFP217-inhibited MCE and promoted CCND1 expression. YTH domain family 2 recognized and degraded the methylated CCND1 mRNA, leading to the downregulation of CCND1. Consequently, cell-cycle progression was blocked, and adipogenesis was inhibited. YTHDF2 knockdown relieved siZFP217-inhibited adipocyte differentiation. These findings reveal that ZFP217 knockdown-induced adipogenesis inhibition was caused by CCND1, which was mediated by METTL3 and YTHDF2 in an m6A-dependent manner. We have provided novel insight into the underlying molecular mechanisms by which m6A methylation is involved in the ZFP217 regulation of adipogenesis.


Assuntos
Adenosina/análogos & derivados , Adipócitos/metabolismo , Adipogenia/genética , Metiltransferases/genética , Transativadores/genética , Células 3T3-L1 , Adenosina/metabolismo , Adipócitos/citologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Células Clonais , Ciclina D1/genética , Ciclina D1/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Metiltransferases/metabolismo , Camundongos , Mitose , PPAR gama/genética , PPAR gama/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Transfecção
13.
Int J Obes (Lond) ; 42(7): 1378-1388, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29795461

RESUMO

BACKGROUND/OBJECTIVE: N6-methyladenosine (m6A) modification of mRNA plays a role in regulating adipogenesis. However, its underlying mechanism remains largely unknown. Epigallocatechin gallate (EGCG), the most abundant catechin in green tea, plays a critical role in anti-obesity and anti-adipogenesis. METHODS: High-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (HPLC-QqQ-MS/MS) was performed to determine the m6A levels in 3T3-L1 preadipocytes. The effects of EGCG on the m6A levels in specific genes were determined by methylated RNA immunoprecipitation coupled with quantitative real-time PCR (meRIP-qPCR). Several adipogenesis makers and cell cycle genes were analyzed by quantitative real-time PCR (qPCR) and western blotting. Lipid accumulation was evaluated by oil red O staining. All measurements were performed at least for three times. RESULTS: Here we showed that EGCG inhibited adipogenesis by blocking the mitotic clonal expansion (MCE) at the early stage of adipocyte differentiation. Exposing 3T3-L1 cells to EGCG reduced the expression of fat mass and obesity-associated (FTO) protein, an m6A demethylase, which led to increased overall levels of RNA m6A methylation. Cyclin A2 (CCNA2) and cyclin dependent kinase 2 (CDK2) play vital roles in MCE. The m6A levels of CCNA2 and CDK2 mRNA were dramatically enhanced by EGCG. Interestingly, EGCG increased the expression of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), which recognized and decayed methylated mRNAs, resulting in decreased protein levels of CCNA2 and CDK2. As a result, MCE was blocked and adipogenesis was inhibited. FTO overexpression and YTHDF2 knockdown in 3T3-L1 cells significantly increased CCNA2 and CDK2 protein levels and ameliorated the EGCG-induced adipogenesis inhibition. Thus, m6A-dependent CCNA2 and CDK2 expressions mediated by FTO and YTHDF2 contributed to EGCG-induced adipogenesis inhibition. CONCLUSION: Our findings provide mechanistic insights into how m6A is involved in the EGCG regulation of adipogenesis and shed light on its anti-obesity effect.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Fármacos Antiobesidade/farmacologia , Catequina/análogos & derivados , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células 3T3-L1/citologia , Adipócitos/citologia , Dioxigenase FTO Dependente de alfa-Cetoglutarato/deficiência , Animais , Catequina/farmacologia , Modelos Animais de Doenças , Camundongos , RNA Mensageiro/química , RNA Mensageiro/genética , Chá/química
14.
Int J Obes (Lond) ; 42(11): 1912-1924, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29487348

RESUMO

BACKGROUND/OBJECTIVE: N6-methyladenosine (m6A) modification of mRNA plays an important role in regulating adipogenesis. However, its underlying mechanism remains largely unknown. SUBJECTS/METHODS: Using Jinhua and Landrace pigs as fat and lean models, we presented a comprehensive transcriptome-wide m6A profiling in adipose tissues from these two pig breeds. Two differentially methylated genes were selected to explore the mechanisms of m6A-mediated regulation of gene function. RESULTS: The ratio of m6A/A in the layer of backfat (LB) was significantly higher in Landrace than that in Jinhua. Transcriptome-wide m6A profiling revealed that m6A modification on mRNA occurs in the conserved sequence motif of RRACH and that the pig transcriptome contains 0.53-0.91 peak per actively expressed transcript. The relative density of m6A peaks in the 3'UTR were higher than in 5'UTR. Genes with common m6A peaks from both Landrace (L-LB) and Jinhua (J-LB) were enriched in RNA splicing and cellular lipid metabolic process. The unique m6A peak genes (UMGs) from L-LB were mainly enriched in the extracellular matrix (ECM) and collagen catabolic process, whereas the UMGs from J-LB are mainly involved in RNA splicing, etc. Lipid metabolism processes were not significantly enriched in the UMGs from L-LB or J-LB. Uncoupling protein-2 (UCP2) and patatin-like phospholipase domain containing 2 (PNPLA2) were two of the UMGs in L-LB. Synonymous mutations (MUT) were conducted to reduce m6A level of UCP2 and PNPLA2 mRNAs. Adipogenesis test showed that UCP2-MUT further inhibited adipogenesis, while PNPLA2-MUT promoted lipid accumulation compared with UCP2-WT and PNPLA2-WT, respectively. Further study showed m6A negatively mediates UCP2 protein expression and positively mediates PNPLA2 protein expression. m6A modification affects the translation of PNPLA2 most likely through YTHDF1, whereas UCP2 is likely neither the target of YTHDF2 nor the target of YTHDF1. CONCLUSION: Our data demonstrated a conserved and yet dynamically regulated m6A methylome in pig transcriptomes and provided an important resource for studying the function of m6A epitranscriptomic modification in obesity development.


Assuntos
Adipócitos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Obesidade/patologia , RNA Mensageiro/metabolismo , Magreza/patologia , Proteína Desacopladora 2/metabolismo , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Lipase/metabolismo , Análise de Sequência de RNA , Suínos , Regulação para Cima/fisiologia
15.
Sci Adv ; 10(26): eadn5229, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924414

RESUMO

There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.


Assuntos
Tecido Adiposo Branco , Quimiocina CCL22 , Metabolismo Energético , Linfonodos , Macrófagos , Termogênese , Animais , Feminino , Humanos , Masculino , Camundongos , Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Quimiocina CCL22/metabolismo , Eosinófilos/metabolismo , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores CCR4/metabolismo , Transdução de Sinais
16.
Int J Biol Macromol ; 264(Pt 2): 130782, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471613

RESUMO

Vascular endothelial growth factor B (VEGFB) has been well demonstrated to play a crucial role in regulating vascular function by binding to the VEGF receptors (VEGFRs). However, the specific role of VEGFB and VEGFRs in pubertal mammary gland development remains unclear. In this study, we observed that blocking the VEGF receptors with Axitinib suppressed the pubertal mammary gland development. Meanwhile, the proliferation of mammary epithelial cells (HC11) was repressed by blocking the VEGF receptors with Axitinib. Additionally, knockdown of VEGFR1 rather than VEGFR2 and NRP1 elicited the inhibition of HC11 proliferation, suggesting the essential role of VEGFR1 during this process. Furthermore, Axitinib or VEGFR1 knockdown led to the inhibition of the PI3K/Akt pathway. However, the inhibition of HC11 proliferation induced by Axitinib and or VEGFR1 knockdown was eliminated by the Akt activator SC79, indicating the involvement of the PI3K/Akt pathway. Finally, the knockdown of VEGFB and VEGFR1 suppressed the pubertal development of mice mammary gland with the inhibition of the PI3K/Akt pathway. In summary, the results showed that knockdown of the VEGFB/VEGFR1 signaling suppresses pubertal mammary gland development of mice via the inhibition of the PI3K/Akt pathway, which provides a new target for the regulation of pubertal mammary gland development.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator B de Crescimento do Endotélio Vascular , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Axitinibe/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular , Proliferação de Células
17.
Food Funct ; 15(9): 5000-5011, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38618651

RESUMO

The anti-obesity effect of conjugated linoleic acid (CLA) has been well elucidated, but whether CLA affects fat deposition by regulating intestinal dietary fat absorption remains largely unknown. Thus, this study aimed to investigate the effects of CLA on intestinal fatty acid uptake and chylomicron formation and explore the possible underlying mechanisms. We found that CLA supplementation reduced the intestinal fat absorption in HFD (high fat diet)-fed mice accompanied by the decreased serum TG level, increased fecal lipids and decreased intestinal expression of ApoB48 and MTTP. Correspondingly, c9, t11-CLA, but not t10, c12-CLA induced the reduction of fatty acid uptake and TG content in PA (palmitic acid)-treated MODE-K cells. In the mechanism of fatty acid uptake, c9, t11-CLA inhibited the binding of CD36 with palmitoyltransferase DHHC7, thus leading to the decreases of CD36 palmitoylation level and localization on the cell membrane of the PA-treated MODE-K cells. In the mechanism of chylomicron formation, c9, t11-CLA inhibited the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the PA-treated MODE-K cells. In in vivo verification, CLA supplementation reduced the DHHC7-mediated total and cell membrane CD36 palmitoylation and suppressed the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the jejunum of HFD-fed mice. Altogether, these data showed that CLA reduced intestinal fatty acid uptake and chylomicron formation in HFD-fed mice associated with the inhibition of DHHC7-mediated CD36 palmitoylation and the downstream ERK pathway.


Assuntos
Quilomícrons , Dieta Hiperlipídica , Sistema de Sinalização das MAP Quinases , Animais , Masculino , Camundongos , Aciltransferases/metabolismo , Aciltransferases/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Quilomícrons/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Absorção Intestinal/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL
18.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081251

RESUMO

A cold collision between atoms and molecules (<1 K) is one of the hot research fields in atomic and molecular physics. At low temperatures, the number of partial waves participating in the collision process decreases dramatically, and quantum phenomena start to emerge. The reaction is often dominated by quantum tunneling, and pronounced resonances can exist on collision cross sections. Here, we report on an apparatus designed for studying cold collisions between metastable noble gas atoms and alkali atoms. Our apparatus features a combined Magneto-Optical-Trap (MOT) and velocity map imaging (VMI) system. The center of a Rb MOT is overlapped with the VMI system. Cold Kr* atoms are launched toward the Rb atoms to induce Kr* + Rb reactions. The collision energy between the two species can be varied from 100 mK to 20 K. With this setup, we are planning to explore the quantum phenomena in Kr* + Rb cold collisions, including the shape resonance and stereodynamics in the reaction.

19.
Cell Death Dis ; 14(1): 29, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642732

RESUMO

Obesity is strongly associated with metabolic diseases, which have become a global health problem. Exploring the underlying mechanism of adipogenesis is crucial for the treatment of excess white fat. Oncogene YBX1 is a multifunctional DNA- and RNA-binding protein that regulates brown adipogenesis. However, the role of YBX1 in white adipogenesis and adipose tissue expansion remains unknown. Here, we showed that YBX1 deficiency inhibited murine and porcine adipocyte differentiation. YBX1 positively regulated adipogenesis through promoting ULK1- and ULK2-mediated autophagy. Mechanistically, we identified YBX1 serves as a 5-methylcytosine (m5C)-binding protein directly targeting m5C-containing Ulk1 mRNA by using RNA immunoprecipitation. RNA decay assay further proved that YBX1 upregulated ULK1 expression though stabilizing its mRNA. Meanwhile, YBX1 promoted Ulk2 transcription and expression as a transcription factor, thereby enhancing autophagy and adipogenesis. Importantly, YBX1 overexpression in white fat enhanced ULK1/ULK2-mediated autophagy and promoted adipose tissue expansion in mice. Collectively, these findings unveil the post-transcriptional and transcriptional mechanism and functional importance of YBX1 in autophagy and adipogenesis regulation, providing an attractive molecular target for therapies of obesity and metabolic diseases.


Assuntos
Adipogenia , Autofagia , Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Camundongos , Adipogenia/genética , Autofagia/genética , Obesidade/genética , RNA Mensageiro , Suínos , Fatores de Transcrição/genética
20.
Nat Commun ; 14(1): 2731, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37169793

RESUMO

A potential therapeutic target to curb obesity and diabetes is thermogenic beige adipocytes. However, beige adipocytes quickly transition into white adipocytes upon removing stimuli. Here, we define the critical role of cyclin dependent kinase inhibitor 2A (Cdkn2a) as a molecular pedal for the beige-to-white transition. Beige adipocytes lacking Cdkn2a exhibit prolonged lifespan, and male mice confer long-term metabolic protection from diet-induced obesity, along with enhanced energy expenditure and improved glucose tolerance. Mechanistically, Cdkn2a promotes the expression and activity of beclin 1 (BECN1) by directly binding to its mRNA and its negative regulator BCL2 like 1 (BCL2L1), activating autophagy and accelerating the beige-to-white transition. Reactivating autophagy by pharmacological or genetic methods abolishes beige adipocyte maintenance induced by Cdkn2a ablation. Furthermore, hyperactive BECN1 alone accelerates the beige-to-white transition in mice and human. Notably, both Cdkn2a and Becn1 exhibit striking positive correlations with adiposity. Hence, blocking Cdkn2a-mediated BECN1 activity holds therapeutic potential to sustain beige adipocytes in treating obesity and related metabolic diseases.


Assuntos
Adipócitos Bege , Tecido Adiposo Bege , Obesidade , Animais , Humanos , Masculino , Camundongos , Adipócitos Bege/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Adiposidade/fisiologia , Obesidade/genética , Obesidade/metabolismo , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA