Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Small ; 18(21): e2200847, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35484474

RESUMO

Hybrid halide perovskites have emerged as highly promising photovoltaic materials because of their exceptional optoelectronic properties, which are often optimized via compositional engineering like mixing halides. It is well established that hybrid perovskites undergo a series of structural phase transitions as temperature varies. In this work, the authors find that phase transitions are substantially suppressed in mixed-halide hybrid perovskite single crystals of MAPbI3-x Brx (MA = CH3 NH3 + and x = 1 or 2) using a complementary suite of diffraction and spectroscopic techniques. Furthermore, as a general behavior, multiple crystallographic phases coexist in mixed-halide perovskites over a wide temperature range, and a slightly distorted monoclinic phase, hitherto unreported for hybrid perovskites, is dominant at temperatures above 100 K. The anomalous structural evolution is correlated with the glassy behavior of organic cations and optical phonons in mixed-halide perovskites. This work demonstrates the complex interplay between composition engineering and lattice dynamics in hybrid perovskites, shedding new light on their unique properties.

2.
Cancer Cell Int ; 22(1): 109, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248043

RESUMO

BACKGROUND: Abnormal expression of splicing factor 3A subunit 3 (SF3A3), a component of the spliceosome, has been confirmed to be related to the occurrence and development of various cancers. However, the expression and function of SF3A3 in bladder cancer (BC) remains unclear. METHODS: The SF3A3 mRNA and protein level were measured in clinical samples and cell lines by quantitative real-time PCR, Western blot and immunofluorescence staining. Evaluate the clinical correlation between SF3A3 expression and clinicopathological characteristics through statistical analysis in BC patients. The function of SF3A3 in BC cells was determined in vitro using MTT and colony analysis. Co-immunoprecipitation (CoIP) assay was used to detected E2F6 and KDM5C interaction. Luciferase reporter and chromatin immunoprecipitation (ChIP) were used to examine the relationship between E2F6/KDM5C and SF3A3 expression. RESULTS: In the present study, we demonstrated that expression of SF3A3 was elevated in BC tissue compared to the normal bladder tissue. Importantly, the upregulation of SF3A3 in patients was correlated with poor prognosis. Additionally, overexpression of SF3A3 promoted while depletion of SF3A3 reduced the growth of BC cells in vivo and in vitro. Data from the TCGA database and clinical samples revealed that hypomethylation of the DNA promoter leads to high expression of SF3A3 in BC tissue. We found that upregulation of lysine-specific demethylase 5C (KDM5C) promotes SF3A3 expression via hypomethylation of the DNA promoter. The transcription factor E2F6 interacts with KDM5C, recruits KDM5C to the SF3A3 promoter, and demethylates the GpC island of H3K4me2, leading to high SF3A3 expression and BC progression. CONCLUSIONS: The results demonstrated that depletion of the KDM5C/SF3A3 prevents the growth of BC in vivo and in vitro. The E2F6/KDM5C/SF3A3 pathway may be a potential therapeutic target for BC treatment.

3.
Angew Chem Int Ed Engl ; 60(25): 14124-14130, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33856098

RESUMO

We report that continuous MOF films with highly controlled thickness (from 44 to 5100 nm) can be deposited over length scales greater than 80 centimeters by a facile, fast, and cost-effective spray-coating method. Such success relies on our discovery of unprecedented perfectly dispersed colloidal solutions consisting of amorphous MOF nanoparticles, which we adopted as precursors that readily converted to the crystalline films upon low-temperature in situ heating. The colloidal solutions allow for the fabrication of compact and uniform MOF films on a great deal of substrates such as fluorine-doped tin oxide, glass, SiO2 , Al2 O3 , Si, Cu, and even flexible polycarbonate, widening their technological applications where substrates are essential. Despite the present work focuses on the fabrication of uniform cobalt-(2-methylimidazole)2 and zinc-(2-methylimidazole)2 films, our findings mark a great possibility in producing other high-quality MOF thin films on a large scale.

4.
FASEB J ; 33(10): 10973-10985, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318608

RESUMO

RNA-binding motif protein 5 (RBM5) acts as a tumor suppressor in various human cancers and presents with several important characteristics, such as the potentiation of apoptosis, inhibition of the cell cycle, and alternative splicing of Fas and caspase-2 precursor mRNA. However, its role in bladder urothelial carcinoma (BUC) remains unknown. In this study, we found that RBM5 expression was significantly down-regulated in BUC tissues when compared with the adjacent nontumor tissues. The down-regulation of RBM5 activates ß-catenin, which binds to the T-cell factor/lymphocyte enhancer factor element of the miR-432-5p promoter and elevates the expression of miR-432-5p in bladder cancer cells. The up-regulated miR-432-5p directly targets 3'-UTR and depresses RBM5 expression. Thus, RBM5-miR-432-5p-ß-catenin forms a feedback loop in regulating bladder cancer cell apoptosis. Our findings provide evidence that the regulatory feedback loop among RBM5, miR-432-5p, and Wnt-ß-catenin is responsible for the progress of bladder cancer cells.-Zhang, Y.-P., Liu, K.-L., Wang, Y.-X., Yang, Z., Han, Z.-W., Lu, B.-S., Qi, J.-C., Yin, Y.-W., Teng, Z.-H., Chang, X.-L., Li, J.-D., Xin, H., Li, W. Down-regulated RBM5 inhibits bladder cancer cell apoptosis by initiating an miR-432-5p/ß-catenin feedback loop.


Assuntos
Apoptose , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Retroalimentação Fisiológica , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Bexiga Urinária/metabolismo , beta Catenina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Bexiga Urinária/genética , Urotélio/metabolismo , beta Catenina/genética
5.
Nanotechnology ; 31(36): 365703, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32470964

RESUMO

We report on the thermal and thermoelectric properties of individual nanocrystalline Bi2 Te3 nanotubes synthesized by the solution phase method using 3ω method and a microfabricated testbench. Measurements show that the nanotubes offer improved ZT compared to bulk Bi2Te3 near room temperature due to an enhanced Seebeck coefficient and suppressed thermal conductivity. This improvement in ZT originates from the nanocrystalline nature and low dimensionality of the nanotubes. Domain boundary filtering of low-energy electrons provides an enhanced Seebeck coefficient. The scattering of phonons at the surface of the nanotube leads to suppressed thermal conductivity. These have been theoretically analyzed using the Boltzmann equation based on the relaxation time approximation and Landauer approach. This work clearly demonstrates the possibility of achieving enhancement in thermoelectric efficiency by combining nanocrystalline and low-dimensional systems.

6.
Cancer Cell Int ; 19: 149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164795

RESUMO

BACKGROUND: NPL4 is an important cofactor of the valosin-containing protein (VCP)-NPL4-UFD1 complex. The VCP-NPL4-UFD1 has been considered as a ubiquitin proteasome system (UPS) regulator and response to protein degradation. While NPL4 plays important roles in various diseases, little is known about its functions in bladder cancer (BC). METHODS: MTT assays and colony forming test were performed to evaluate cell proliferation ability and Western blotting was used to detect protein expression. Cyclin D1 mRNA expression was detected using qRT-PCR, and coimmunoprecipitation (CoIP) was used to detect protein-protein interactions. RESULTS: NPL4 was upregulated in BC tissue and correlated with poor prognosis. Upregulation of NPL4 promoted cell proliferation while suppression of NPL4 reduced BC cell proliferation. Upregulation of NPL4 led to overexpression of cyclin D1 by enhancing its mRNA stability. Moreover, NPL4 was found to bind directly to DXO and induce its degradation. DXO was downregulated in BC tissue and regulated BC cell proliferation by destabilizing cyclin D1 mRNA. DXO-mediated NPL4 regulated BC cell proliferation by stabilizing cyclin D1 expression. CONCLUSIONS: The NPL4/DXO/cyclin D1 axis exert crucial role in BC cell growth and is associated with prognosis and may represent a potential therapeutic target for BC.

7.
Phys Rev Lett ; 121(23): 237203, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576174

RESUMO

To tune the magnetic properties of hexagonal ferrites, a family of magnetoelectric multiferroic materials, by atomic-scale structural engineering, we studied the effect of structural distortion on the magnetic ordering temperature (T_{N}) in these materials. Using the symmetry analysis, we show that unlike most antiferromagnetic rare-earth transition-metal perovskites, a larger structural distortion leads to a higher T_{N} in hexagonal ferrites and manganites, because the K_{3} structural distortion induces the three-dimensional magnetic ordering, which is forbidden in the undistorted structure by symmetry. We also revealed a near-linear relation between T_{N} and the tolerance factor and a power-law relation between T_{N} and the K_{3} distortion amplitude. Following the analysis, a record-high T_{N} (185 K) among hexagonal ferrites was predicted in hexagonal ScFeO_{3} and experimentally verified in epitaxially stabilized films. These results add to the paradigm of spin-lattice coupling in antiferromagnetic oxides and suggests further tunability of hexagonal ferrites if more lattice distortion can be achieved.

8.
Sci Rep ; 14(1): 13743, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877058

RESUMO

Oxidative Balance Scores (OBS) are utilized to assess an individual's antioxidant status, encompassing both dietary and lifestyle factors that contribute to oxidative balance. This study investigates the relationship between OBS and chronic kidney disease (CKD) prevalence among U.S. adults, utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2007-2018. The study involved a cross-sectional analysis of 13,373 individuals from NHANES, focusing on adults aged 20 years or older. OBS was calculated using 20 components, including dietary and lifestyle factors. CKD was identified based on albumin-to-creatinine ratio and estimated glomerular filtration rate, with patients stratified into mild, moderate, and high-risk groups. Statistical analysis included logistic regression models and restricted cubic splines to explore the OBS-CKD relationship. Our findings indicate a statistically significant negative correlation between OBS and CKD prevalence, particularly in mild and moderate-risk groups. Higher OBS quartiles were associated with a decreased likelihood of CKD (OR 0.70; 95% CI 0.53-0.92; P = 0.013). Restricted cubic splines indicated a non-linear, inverse association between OBS and CKD odds for the overall population (P for nonlinearity = 0.017). For mild and moderate CKD risk groups, the relationships were less pronounced (P for nonlinearity = 0.053 and 0.184, respectively), suggesting variability in the OBS-CKD link across different risk levels. The study highlights the potential of elevated OBS as a primary prevention measure for CKD, particularly in individuals with mild to moderate risk. These findings underscore the importance of antioxidant status in CKD risk management and encourage further research into the role of dietary and lifestyle factors in CKD prevention.


Assuntos
Taxa de Filtração Glomerular , Inquéritos Nutricionais , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Estados Unidos/epidemiologia , Prevalência , Idoso , Estresse Oxidativo , Fatores de Risco , Antioxidantes/metabolismo , Adulto Jovem , Estilo de Vida
9.
ACS Appl Mater Interfaces ; 16(17): 22122-22130, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626418

RESUMO

The recent discovery of ferroelectricity in pure ZrO2 has drawn much attention, but the information storage and processing performances of ferroelectric ZrO2-based nonvolatile devices remain open for further exploration. Here, a ZrO2 (∼8 nm)-based ferroelectric capacitor using RuO2 oxide electrodes is fabricated, and the ferroelectric orthorhombic phase evolution under electric field cycling is studied. A ferroelectric remnant polarization (2Pr) of >30 µC/cm2, leakage current density of ∼2.79 × 10-8 A/cm2 at 1 MV/cm, and estimated polarization retention of >10 years are achieved. When the ferroelectric capacitor is connected with a transistor, a memory window of ∼0.8 V and eight distinct states can be obtained in such a ferroelectric field-effect transistor (FeFET). Through the conductance manipulation of the FeFET, a high object image recognition accuracy of ∼93.32% is achieved on the basis of the CIFAR-10 dataset in the convolutional neural network (CNN) simulation, which is close to the result of ∼94.20% obtained by floating-point-based CNN software. These results demonstrate the potential of ferroelectric ZrO2 devices for nonvolatile memory and artificial neural network computing.

10.
Adv Mater ; 36(15): e2211305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291852

RESUMO

The big data era requires ultrafast, low-power, and silicon-compatible materials and devices for information storage and processing. Here, ferroelectric tunnel junctions (FTJs) based on SiO2/Hf0.5Zr0.5O2 composite barrier and both conducting electrodes are designed and fabricated on Si substrates. The FTJ achieves the fastest write speed of 500 ps under 5 V (2 orders of magnitude faster than reported silicon-compatible FTJs) or 10 ns speed at a low voltage of 1.5 V (the lowest voltage among FTJs at similar speeds), low write current density of 1.3 × 104 A cm-2, 8 discrete states, good retention > 105 s at 85 °C, and endurance > 107. In addition, it provides a large read current (88 A cm-2) at 0.1 V, 2 orders of magnitude larger than reported FTJs. Interestingly, in FTJ-based synapses, gradually tunable conductance states (128 states) with high linearity (<1) are obtained by 10 ns pulses of <1.2 V, and a high accuracy of 91.8% in recognizing fashion product images is achieved by online neural network simulations. These results highlight that silicon-compatible HfO2-based FTJs are promising for high-performance nonvolatile memories and electrical synapses.

11.
ACS Appl Mater Interfaces ; 16(10): 12865-12872, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416689

RESUMO

The commercial capacitor using dielectric biaxially oriented polypropylene (BOPP) can work effectively only at low temperatures (less than 105 °C). Polyphenylene oxide (PPO), with better heat resistance and a higher dielectric constant, is promising for capacitors operating at elevated temperatures, but its charge-discharge efficiency (η) degrades greatly under high fields at 125 °C. Here, SiO2 layers are magnetron sputtered on both sides of the PPO film, forming a composite material of SiO2/PPO/SiO2. Due to the wide bandgap and high Young's modulus of SiO2, the breakdown strength (Eb) of this composite material reaches 552 MV/m at 125 °C (PPO: 534 MV/m), and the discharged energy density (Ue) under Eb improves to 3.5 J/cm3 (PPO: 2.5 J/cm3), with a significantly enhanced η of 89% (PPO: 70%). Furthermore, SiO2/PPO/SiO2 can discharge a Ue of 0.45 J/cm3 with an η of 97% at 125 °C under 200 MV/m (working condition in hybrid electric vehicles) for 20,000 cycles, and this value is higher than the energy density (∼0.39 J/cm3 under 200 MV/m) of BOPP at room temperature. Interestingly, the metalized SiO2/PPO/SiO2 film exhibits valuable self-healing behavior. These results make PPO-based dielectrics promising for high-temperature capacitor applications.

12.
Adv Mater ; 36(16): e2308597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288654

RESUMO

Polymer dielectric capacitors are fundamental in advanced electronics and power grids but suffer from low energy density, hindering miniaturization of compact electrical systems. It is shown that high-energy and strong penetrating γ-irradiation significantly enhances capacitive energy storage performance of polymer dielectrics. γ-irradiated biaxially oriented polypropylene (BOPP) films exhibit an extraordinarily high energy density of 10.4 J cm-3 at 968 MV m-1 with an efficiency of 97.3%. In particular, an energy density of 4.06 J cm-3 with an ultrahigh efficiency of 98% is reliably maintained through 20 000 charge-discharge cycles under 600 MV m-1. At 125 °C, the γ-irradiated BOPP film still delivers a high discharged energy density of 5.88 J cm-3 with an efficiency of 90% at 770 MV m-1. Substantial improvements are also achieved for γ-irradiated cycloolefin copolymers at a high temperature of 150 °C, verifying the strategy generalizability. Experimental and theoretical analyses reveal that the excellent performance should be related to the γ-irradiation induced polar functional groups with high electron affinity in the molecular chain, which offer deep energy traps to impede charge transport. This work provides a simple and generally applicable strategy for developing high-performance polymer dielectrics.

13.
Mater Horiz ; 10(6): 2120-2127, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946201

RESUMO

Polymer dielectrics with high operation temperature (∼150 °C) and excellent capacitive energy storage performance are vital for electric power systems and advanced electronic devices. Here, a very convenient and competitive strategy by preparing ultraviolet-irradiated cyclic olefin copolymer films is demonstrated to be effective in improving the energy storage performance at high temperatures. Compared with the unirradiated film, irradiated films exhibit a higher dielectric constant, higher breakdown strength and stronger mechanical properties as a result of the emergence of the carbonyl group and cross-linking network. Consequently, with a high efficiency above 95%, a superior discharged energy density of ∼3.34 J cm-3 is achieved at 150 °C, surpassing the current dielectric polymers and polymer nanocomposites. In particular, the energy storage performance remains highly reliable over 20 000 cycles under actual operating conditions (200 MV m-1 at 150 °C) in hybrid electric vehicles. This research offers a valuable pathway to build high-energy-density polymer-based capacitor devices working under harsh environments.

14.
ACS Appl Mater Interfaces ; 15(36): 42764-42773, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655492

RESUMO

The emergence of complementary metal-oxide semiconductor (CMOS)-compatible HfO2-based ferroelectric materials provides a promising way to achieve ferroelectric field-effect transistors (FeFETs) with a steep subthreshold swing (SS) reduced to below the Boltzmann thermodynamics limit (∼60 mV/dec at room temperature), which has important implications for lowering power consumption. In this work, a metal-oxide-semiconductor field-effect transistor (MOSFET) is connected with Hf0.5Zr0.5O2 (HZO)-based ferroelectric capacitors with different capacitances. By adjusting the capacitance of ferroelectric capacitors, an ultralow SS of ∼0.34 mV/dec in HfO2-based FeFETs can be achieved. More interestingly, by designing the sweeping voltage sequences, the SS can be adjusted to be 0 mV/dec with the drain current ranging over six orders of magnitude, and the threshold voltage for turning on the MOSFET can be further reduced. The manipulated SS could be attributed to the evolution of ferroelectric switching. Our work contributes to understanding the origin of ultralow SS in ferroelectric MOSFETs and the realization of low-power devices.

15.
Sci Rep ; 13(1): 1755, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720991

RESUMO

Electrical modulation of magnetic states in single-phase multiferroic materials, using domain-wall magnetoelectric (ME) coupling, can be enhanced substantially by controlling the population density of the ferroelectric (FE) domain walls during polarization switching. In this work, we investigate the domain-wall ME coupling in multiferroic h-YbFeO3 thin films, in which the FE domain walls induce clamped antiferromagnetic (AFM) domain walls with reduced magnetization magnitude. Simulation according to the phenomenological theory indicates that the domain-wall ME effect is dramatically enhanced when the separation between the FE domain walls shrinks below the characteristic width of the clamped AFM domain walls during the ferroelectric switching. Experimentally, we show that while the magnetization magnitude remains same for both the positive and the negative saturation polarization states, there is evidence of magnetization reduction at the coercive voltages. These results suggest that the domain-wall ME effect is viable for electrical control of magnetization.

16.
ACS Appl Mater Interfaces ; 14(1): 1355-1361, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958206

RESUMO

HfO2-based ferroelectric materials are good candidates for constructing next-generation nonvolatile memories and high-performance electronic synapses and have attracted extensive attention from both academia and industry. Here, a Hf0.5Zr0.5O2-based ferroelectric tunnel junction (FTJ) memristor is successfully fabricated by epitaxially growing a Hf0.5Zr0.5O2 film on a 0.7 wt % Nb-doped SrTiO3 (001) substrate with a buffer layer of La2/3Sr1/3MnO3 (∼1 u.c.). The FTJ shows a high switching speed of 20 ns, a giant electroresistance ratio of ∼834, and multiple states (eight states or three bits) with good retention >104 s. As a solid synaptic device, tunable synapse functions have also been obtained, including long-term potentiation, long-term depression, and spike-timing-dependent plasticity. These results highlight the promising applications of Hf0.5Zr0.5O2-based FTJ in ultrafast-speed and high-density nonvolatile memories and artificial synapses.

17.
ACS Appl Mater Interfaces ; 14(21): 24602-24609, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604049

RESUMO

Ferroelectric tunnel junction (FTJ) is one promising candidate for next-generation nonvolatile data storage and neural network computing systems. In this work, the high-performance 50 nm-diameter Au/Ti/PbZr0.52Ti0.48O3 (∼3 nm, (111)-oriented)/Nb:SrTiO3 (Nb: 0.7 wt %) FTJs are achieved to demonstrate the scaling down capability of FTJ. As a nonvolatile memory, the FTJ shows eight distinct resistance states (3 bits) with a large ON/OFF ratio (>103), and these states can be switched at a fast speed of 10 ns. Intriguingly, the long-term potentiation/depression and spike timing-dependent plasticity, that is, fundamental functions of biological synapses, can be emulated in the nanoscale FTJ-based artificial synapse. A convolutional neural network (CNN) simulation is then carried out based on the experimental results, and a high recognition accuracy of ∼93.8% on fashion product images is obtained, which is very close to the result of ∼94.4% by a floating-point-based CNN software. In particular, the FTJ-based CNN simulation also exhibits robustness to input image noises. These results indicate the great potential of FTJ for high-density information storage and neural network computing.

18.
Adv Mater ; 34(5): e2101976, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807475

RESUMO

The developments of next-generation electric power systems and electronics demand for high temperature (≈150 °C), high energy density, high efficiency, scalable, and low-cost polymer-based dielectric capacitors are still scarce. Here, the nanocomposites based on polyimide-poly(amic acid) copolymers with a very low amount of boron nitride nanosheets are designed and synthesized. Under the actual working condition in hybrid electric vehicles of 200 MV m-1 and 150 °C, a high energy density of 1.38 J cm-3 with an efficiency higher than 96% is achieved. This is about 2.5 times higher than the room temperature energy density (≈0.39 J cm-3 under 200 MV m-1 ) of the commercially used biaxially oriented polypropylene, the benchmark of dielectric polymer. Especially, the energy density and efficiency at 150 °C show no sign of degradation after 20 000 cycles of charge-discharge test and 35 days' high-temperature endurance test. This research provides an effective and low-cost strategy to develop high-temperature polymer-based capacitors.

19.
Adv Mater ; 34(34): e2204356, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35766453

RESUMO

Supercritical relaxor nanograined ferroelectrics are demonstrated for high-performance dielectric capacitors, showing record-high overall properties of energy density ≈13.1 J cm-3 and field-insensitive efficiency ≈90% at ≈74 kV mm-1 and superior charge-discharge performances of high power density ≈700 MW cm-3 , high discharge energy density ≈6.67 J cm-3 , and ultrashort discharge time <40 ns at 55 kV mm-1 . Ex/in situ transmission electron microscopy, Raman spectroscopy, and synchrotron X-ray diffraction provide clear evidence of the supercritical behavior in (Na,K)(Sb,Nb)O3 -SrZrO3 -(Bi0.5 Na0.5 )ZrO3 ceramics, being achieved by engineering the coexistence of multiple local symmetries within the ergodic relaxor zone. The vanished difference between the ground relaxor state and the high-field supercritical state eliminates polarization hysteresis. The supercritical evolution with electric field enables a highly delayed polarization saturation with continuously increased polarization magnitudes. The results demonstrate that such a design strategy of compositionally induced and field-manipulated supercritical behavior can be generalizable for developing desirable energy-storage dielectrics for applications in ceramic/film capacitors.

20.
Nat Commun ; 13(1): 699, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121735

RESUMO

The rapid development of neuro-inspired computing demands synaptic devices with ultrafast speed, low power consumption, and multiple non-volatile states, among other features. Here, a high-performance synaptic device is designed and established based on a Ag/PbZr0.52Ti0.48O3 (PZT, (111)-oriented)/Nb:SrTiO3 ferroelectric tunnel junction (FTJ). The advantages of (111)-oriented PZT (~1.2 nm) include its multiple ferroelectric switching dynamics, ultrafine ferroelectric domains, and small coercive voltage. The FTJ shows high-precision (256 states, 8 bits), reproducible (cycle-to-cycle variation, ~2.06%), linear (nonlinearity <1) and symmetric weight updates, with a good endurance of >109 cycles and an ultralow write energy consumption. In particular, manipulations among 150 states are realized under subnanosecond (~630 ps) pulse voltages ≤5 V, and the fastest resistance switching at 300 ps for the FTJs is achieved by voltages <13 V. Based on the experimental performance, the convolutional neural network simulation achieves a high online learning accuracy of ~94.7% for recognizing fashion product images, close to the calculated result of ~95.6% by floating-point-based convolutional neural network software. Interestingly, the FTJ-based neural network is very robust to input image noise, showing potential for practical applications. This work represents an important improvement in FTJs towards building neuro-inspired computing systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA