Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102196, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760101

RESUMO

In human cells, ATP is generated using oxidative phosphorylation machinery, which is inoperable without proteins encoded by mitochondrial DNA (mtDNA). The DNA polymerase gamma (Polγ) repairs and replicates the multicopy mtDNA genome in concert with additional factors. The Polγ catalytic subunit is encoded by the POLG gene, and mutations in this gene cause mtDNA genome instability and disease. Barriers to studying the molecular effects of disease mutations include scarcity of patient samples and a lack of available mutant models; therefore, we developed a human SJCRH30 myoblast cell line model with the most common autosomal dominant POLG mutation, c.2864A>G/p.Y955C, as individuals with this mutation can present with progressive skeletal muscle weakness. Using on-target sequencing, we detected a 50% conversion frequency of the mutation, confirming heterozygous Y955C substitution. We found mutated cells grew slowly in a glucose-containing medium and had reduced mitochondrial bioenergetics compared with the parental cell line. Furthermore, growing Y955C cells in a galactose-containing medium to obligate mitochondrial function enhanced these bioenergetic deficits. Also, we show complex I NDUFB8 and ND3 protein levels were decreased in the mutant cell line, and the maintenance of mtDNA was severely impaired (i.e., lower copy number, fewer nucleoids, and an accumulation of Y955C-specific replication intermediates). Finally, we show the mutant cells have increased sensitivity to the mitochondrial toxicant 2'-3'-dideoxycytidine. We expect this POLG Y955C cell line to be a robust system to identify new mitochondrial toxicants and therapeutics to treat mitochondrial dysfunction.


Assuntos
DNA Polimerase gama/genética , Replicação do DNA , DNA Polimerase Dirigida por DNA , DNA Polimerase gama/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Heterozigoto , Humanos , Mutação
2.
J Biol Chem ; 296: 100206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334881

RESUMO

Nucleoside reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat human immunodeficiency virus infection, and their use can cause mitochondrial toxicity, including mitochondrial DNA (mtDNA) depletion in several cases. The first-generation NRTIs, including 2',3'-dideoxycytidine (ddC), were originally and are still pursued as anticancer agents. NRTI-sensitive DNA polymerases localizing to mitochondria allow for the opportunity to poison proliferating cancer cell mtDNA replication as certain cancers rely heavily on mitochondrial functions. However, mtDNA replication is independent of the cell cycle creating a significant concern that toxicants such as ddC impair mtDNA maintenance in both proliferating and nonproliferating cells. To examine this possibility, we tested the utility of the HepaRG cell line to study ddC-induced toxicity in isogenic proliferating (undifferentiated) and nonproliferating (differentiated) cells. Following ddC exposures, we measured cell viability, mtDNA copy number, and mitochondrial bioenergetics utilizing trypan blue, Southern blotting, and extracellular flux analysis, respectively. After 13 days of 1 µM ddC exposure, proliferating and differentiated HepaRG harbored mtDNA levels of 0.9% and 17.9% compared with control cells, respectively. Cells exposed to 12 µM ddC contained even less mtDNA. By day 13, differentiated cell viability was maintained but declined for proliferating cells. Proliferating HepaRG bioenergetic parameters were severely impaired by day 8, with 1 and 12 µM ddC, whereas differentiated cells displayed defects of spare and maximal respiratory capacities (day 8) and proton-leak linked respiration (day 14) with 12 µM ddC. These results indicate HepaRG is a useful model to study proliferating and differentiated cell mitochondrial toxicant exposures.


Assuntos
Replicação do DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores da Transcriptase Reversa/toxicidade , Zalcitabina/toxicidade , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Variações do Número de Cópias de DNA , DNA Mitocondrial/antagonistas & inibidores , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Metabolismo Energético/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Mitocôndrias/genética , Mitocôndrias/metabolismo
3.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269646

RESUMO

The mitochondrial DNA (mtDNA) sequences of two commonly used human cell lines, HepaRG and SJCRH30, were determined. HepaRG originates from a liver tumor obtained from a patient with hepatocarcinoma and hepatitis C while SJCRH30 originates from a rhabdomyosarcoma patient tumor. In comparison to the revised Cambridge Reference Sequence, HepaRG and SJCRH30 mtDNA each contain 14 nucleotide variations. In addition to an insertion of a cytosine at position 315 (315insC), the mtDNA sequences from both cell types share six common polymorphisms. Heteroplasmic variants were identified in both cell types and included the identification of the 315insC mtDNA variant at 42 and 75% heteroplasmy in HepaRG and SJCRH30, respectively. Additionally, a novel heteroplasmic G13633A substitution in the HepaRG ND5 gene was detected at 33%. Previously reported cancer-associated mtDNA variants T195C and T16519C were identified in SJCRH30, both at homoplasmy (100%), while HepaRG mtDNA harbors a known prostate cancer-associated T6253C substitution at near homoplasmy, 95%. Based on our sequencing analysis, HepaRG mtDNA is predicted to lie within haplogroup branch H15a1 while SJCRH30 mtDNA is predicted to localize to H27c. The catalog of polymorphisms and heteroplasmy reported here should prove useful for future investigations of mtDNA maintenance in HepaRG and SJCRH30 cell lines.


Assuntos
Carcinoma Hepatocelular/genética , DNA Mitocondrial/genética , Neoplasias Hepáticas/genética , Polimorfismo Genético , Rabdomiossarcoma/genética , Carcinoma Hepatocelular/complicações , Linhagem Celular Tumoral , Hepatite C/complicações , Hepatite C/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/complicações , Mitocôndrias/genética , Análise de Sequência de DNA
4.
Front Oncol ; 14: 1394699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993645

RESUMO

Endometrial cancer (EC) is a devastating and common disease affecting women's health. The NCI Surveillance, Epidemiology, and End Results Program predicted that there would be >66,000 new cases in the United States and >13,000 deaths from EC in 2023, and EC is the sixth most common cancer among women worldwide. Regulation of mitochondrial metabolism plays a role in tumorigenesis. In proliferating cancer cells, mitochondria provide the necessary building blocks for biosynthesis of amino acids, lipids, nucleotides, and glucose. One mechanism causing altered mitochondrial activity is mitochondrial DNA (mtDNA) mutation. The polyploid human mtDNA genome is a circular double-stranded molecule essential to vertebrate life that harbors genes critical for oxidative phosphorylation plus mitochondrial-derived peptide genes. Cancer cells display aerobic glycolysis, known as the Warburg effect, which arises from the needs of fast-dividing cells and is characterized by increased glucose uptake and conversion of glucose to lactate. Solid tumors often contain at least one mtDNA substitution. Furthermore, it is common for cancer cells to harbor mixtures of wild-type and mutant mtDNA genotypes, known as heteroplasmy. Considering the increase in cancer cell energy demand, the presence of functionally relevant carcinogenesis-inducing or environment-adapting mtDNA mutations in cancer seems plausible. We review 279 EC tumor-specific mtDNA single nucleotide variants from 111 individuals from different studies. Many transition mutations indicative of error-prone DNA polymerase γ replication and C to U deamination events were present. We examine the spectrum of mutations and their heteroplasmy and discuss the potential biological impact of recurrent, non-synonymous, insertion, and deletion mutations. Lastly, we explore current EC treatments, exploiting cancer cell mitochondria for therapy and the prospect of using mtDNA variants as an EC biomarker.

5.
Life (Basel) ; 12(4)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35455053

RESUMO

Endometrial carcinoma (EC) is the most common type of gynecologic malignant epithelial tumor, with the death rate from this disease doubling over the past 20 years. Mitochondria provide cancer cells with necessary anabolic building blocks such as amino acids, lipids, and nucleotides, and EC samples have been shown to increase mitochondrial biogenesis. In cancer, mitochondrial DNA (mtDNA) heteroplasmy studies suggest that heteroplasmic variants encode predicted pathogenic proteins. We investigated the mtDNA genotypes within peri-normal and tumor specimens obtained from three individuals diagnosed with EC. DNA extracts from peri-normal and tumor tissues were used for mtDNA-specific next-generation sequencing and analyses of mtDNA content and topoisomers. The three tumors harbor heteroplasmic somatic mutations, and at least one mutation in each carcinoma is predicted to deleteriously alter a mtDNA-encoded protein. Somatic heteroplasmy linked to two mtDNA tRNA genes was found in separate tumors, and two heteroplasmic non-coding variants were identified in a single EC tumor. While two tumors had altered mtDNA content, all three displayed increased mtDNA catenanes. Our findings support that EC cells require wild-type mtDNA, but heteroplasmic mutations may alter mitochondrial metabolism to help promote cancer cell growth and proliferation.

6.
Mitochondrion ; 61: 147-158, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619353

RESUMO

The COVID-19 pandemic prompted the FDA to authorize a new nucleoside analogue, remdesivir, for emergency use in affected individuals. We examined the effects of its active metabolite, remdesivir triphosphate (RTP), on the activity of the replicative mitochondrial DNA polymerase, Pol γ. We found that while RTP is not incorporated by Pol γ into a nascent DNA strand, it remains associated with the enzyme impeding its synthetic activity and stimulating exonucleolysis. In spite of that, we found no evidence for deleterious effects of remdesivir treatment on the integrity of the mitochondrial genome in human cells in culture.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Tratamento Farmacológico da COVID-19 , DNA Polimerase gama/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/biossíntese , Fibroblastos/metabolismo , SARS-CoV-2 , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , COVID-19/metabolismo , Células Cultivadas , Humanos
7.
Cell Cycle ; 18(4): 476-499, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30755072

RESUMO

HepaRG is a proliferative human hepatoma-derived cell line that can be differentiated into hepatocyte-like and biliary-like cells. Differentiated HepaRG cultures maintain key hepatic functions including drug transporters and xenobiotic-metabolizing enzymes. To gain insight into proliferative and differentiated HepaRG metabolism we profiled various bioenergetic parameters and investigated cell culture levels of adenosine triphosphate (ATP), lactate, and lactate dehydrogenase (LDH) activity. Compared to differentiated-derived HepaRG, cells from proliferative cultures had increased basal and ATP-linked respiration and decreased maximal and spare respiratory capacities. Basal ATP levels but not lactate or LDH activity were increased in samples from proliferative-derived compared to differentiated-derived HepaRG. Further extracellular acidification rate (ECAR) experiments revealed parameters associated with glycolysis and oxidative phosphorylation. Under basal conditions, cells derived from both cultures had similar ECARs; however, under stressed conditions, proliferative-derived HepaRG had increases in ECAR capacity and apparent glycolytic reserve. The biguanide metformin has been reported to protect differentiated HepaRG against acetaminophen (APAP)-induced cell injury, as well as offer protection against bioenergetic deficiencies; therefore, we studied the outcome of exposure to these drugs in both culture conditions. Proliferative- and differentiated-derived cells were found to have distinct mitochondrial bioenergetic alterations when exposed to the hepatotoxic drug APAP. Metformin offered protection against loss of APAP-induced cellular viability and prevented APAP-induced decreases in bioenergetics in differentiated- but not proliferative-derived HepaRG. Distinguishingly, treatment with metformin alone reduced ATP-linked respiration, maximal respiratory capacity, and basal respiration in proliferative-derived HepaRG. Our results support that HepaRG represents an appropriate model to study drug-induced bioenergetic dysfunction.


Assuntos
Acetaminofen/farmacologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético , Hepatócitos/metabolismo , Metformina/farmacologia , Trifosfato de Adenosina/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Meios de Cultura/química , Glicólise , Hepatócitos/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Neoplasias Hepáticas/patologia , Fosforilação Oxidativa
8.
Curr Protoc Toxicol ; 80(1): e75, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30982231

RESUMO

A single cell can contain several thousand copies of the mitochondrial DNA genome or mtDNA. Tools for assessing mtDNA content are necessary for clinical and toxicological research, as mtDNA depletion is linked to genetic disease and drug toxicity. For instance, mtDNA depletion syndromes are typically fatal childhood disorders that are characterized by severe declines in mtDNA content in affected tissues. Mitochondrial toxicity and mtDNA depletion have also been reported in human immunodeficiency virus-infected patients treated with certain nucleoside reverse transcriptase inhibitors. Further, cell culture studies have demonstrated that exposure to oxidative stress stimulates mtDNA degradation. Here we outline a Southern blot and nonradioactive digoxigenin-labeled probe hybridization method to estimate mtDNA content in human genomic DNA samples. © 2019 by John Wiley & Sons, Inc.


Assuntos
Southern Blotting/métodos , Sondas de DNA/metabolismo , DNA Mitocondrial/genética , Células Cultivadas , Enzimas de Restrição do DNA/genética , Digoxigenina , Eletroforese em Gel de Ágar , Humanos , Plasmídeos/genética , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA