RESUMO
Groups often outperform individuals in problem-solving. Nevertheless, failure to critically evaluate ideas risks suboptimal outcomes through so-called groupthink. Prior studies have shown that people who hold shared goals, perspectives, or understanding of the environment show similar patterns of brain activity, which itself can be enhanced by consensus-building discussions. Whether shared arousal alone can predict collective decision-making outcomes, however, remains unknown. To address this gap, we computed interpersonal heart rate synchrony, a peripheral index of shared arousal associated with joint attention, empathic accuracy, and group cohesion, in 44 groups (n = 204) performing a collective decision-making task. The task required critical examination of all available information to override inferior, default options and make the right choice. Using multidimensional recurrence quantification analysis (MdRQA) and machine learning, we found that heart rate synchrony predicted the probability of groups reaching the correct consensus decision with >70% cross-validation accuracy-significantly higher than that predicted by the duration of discussions, subjective assessment of team function or baseline heart rates alone. We propose that heart rate synchrony during group discussion provides a biomarker of interpersonal engagement that facilitates adaptive learning and effective information sharing during collective decision-making.
Assuntos
Tomada de Decisões , Frequência Cardíaca , Humanos , Frequência Cardíaca/fisiologia , Tomada de Decisões/fisiologia , Masculino , Feminino , Adulto , Relações Interpessoais , Processos Grupais , Adulto JovemRESUMO
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating ß-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Assuntos
Frequência Cardíaca , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Nó Sinoatrial , Humanos , Animais , Nó Sinoatrial/metabolismo , Nó Sinoatrial/fisiopatologia , Nó Sinoatrial/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Relógios BiológicosRESUMO
Sepsis has emerged as a global health burden associated with multiple organ dysfunction and 20% mortality rate in patients. Numerous clinical studies over the past two decades have correlated the disease severity and mortality in septic patients with impaired heart rate variability (HRV), as a consequence of impaired chronotropic response of sinoatrial node (SAN) pacemaker activity to vagal/parasympathetic stimulation. However, the molecular mechanism(s) downstream to parasympathetic inputs have not been investigated yet in sepsis, particularly in the SAN. Based on electrocardiography, fluorescence Ca2+ imaging, electrophysiology, and protein assays from organ to subcellular level, we report that impaired muscarinic receptor subtype 2-G protein-activated inwardly-rectifying potassium channel (M2R-GIRK) signaling in a lipopolysaccharide-induced proxy septic mouse model plays a critical role in SAN pacemaking and HRV. The parasympathetic responses to a muscarinic agonist, namely IKACh activation in SAN cells, reduction in Ca2+ mobilization of SAN tissues, lowering of heart rate and increase in HRV, were profoundly attenuated upon lipopolysaccharide-induced sepsis. These functional alterations manifested as a direct consequence of reduced expression of key ion-channel components (GIRK1, GIRK4, and M2R) in the mouse SAN tissues and cells, which was further evident in the human right atrial appendages of septic patients and likely not mediated by the common proinflammatory cytokines elevated in sepsis.
Assuntos
Lipopolissacarídeos , Sepse , Humanos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Nó Sinoatrial/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Sepse/induzido quimicamente , Sepse/metabolismoRESUMO
The autonomic nervous system (ANS) regulates the body's physiology, including cardiovascular function. As the ANS develops during the second to third trimester, fetal heart rate variability (HRV) increases while fetal heart rate (HR) decreases. In this way, fetal HR and HRV provide an index of fetal ANS development and future neurobehavioral regulation. Fetal HR and HRV have been associated with child language ability and psychomotor development behavior in toddlerhood. However, their associations with postbirth autonomic brain systems, such as the brainstem, hypothalamus, and dorsal anterior cingulate cortex (dACC), have yet to be investigated even though brain pathways involved in autonomic regulation are well established in older individuals. We assessed whether fetal HR and HRV were associated with the brainstem, hypothalamic, and dACC functional connectivity in newborns. Data were obtained from 60 pregnant individuals (ages 14-42) at 24-27 and 34-37â weeks of gestation using a fetal actocardiograph to generate fetal HR and HRV. During natural sleep, their infants (38 males and 22 females) underwent a fMRI scan between 40 and 46â weeks of postmenstrual age. Our findings relate fetal heart indices to brainstem, hypothalamic, and dACC connectivity and reveal connections with widespread brain regions that may support behavioral and emotional regulation. We demonstrated the basic physiologic association between fetal HR indices and lower- and higher-order brain regions involved in regulatory processes. This work provides the foundation for future behavioral or physiological regulation research in fetuses and infants.
Assuntos
Tronco Encefálico , Giro do Cíngulo , Frequência Cardíaca Fetal , Hipotálamo , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Giro do Cíngulo/fisiologia , Giro do Cíngulo/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/fisiologia , Recém-Nascido , Gravidez , Frequência Cardíaca Fetal/fisiologia , Adulto , Hipotálamo/fisiologia , Hipotálamo/diagnóstico por imagem , Hipotálamo/embriologia , Adolescente , Adulto Jovem , Mapeamento Encefálico/métodos , Vias Neurais/fisiologiaRESUMO
The dorsal anterior cingulate cortex (dACC) is a critical brain area for pain and autonomic processing, making it a promising noninvasive therapeutic target. We leverage the high spatial resolution and deep focal lengths of low-intensity focused ultrasound (LIFU) to noninvasively modulate the dACC for effects on behavioral and cardiac autonomic responses using transient heat pain stimuli. A N = 16 healthy human volunteers (6â M/10â F) received transient contact heat pain during either LIFU to the dACC or Sham stimulation. Continuous electroencephalogram (EEG), electrocardiogram (ECG), and electrodermal response (EDR) were recorded. Outcome measures included pain ratings, heart rate variability, EDR response, blood pressure, and the amplitude of the contact heat-evoked potential (CHEP).LIFU reduced pain ratings by 1.09 ± 0.20 points relative to Sham. LIFU increased heart rate variability indexed by the standard deviation of normal sinus beats (SDNN), low-frequency (LF) power, and the low-frequency/high-frequency (LF/HF) ratio. There were no effects on the blood pressure or EDR. LIFU resulted in a 38.1% reduction in the P2 CHEP amplitude. Results demonstrate LIFU to the dACC reduces pain and alters autonomic responses to acute heat pain stimuli. This has implications for the causal understanding of human pain and autonomic processing in the dACC and potential future therapeutic options for pain relief and modulation of homeostatic signals.
Assuntos
Dor Aguda , Giro do Cíngulo , Humanos , Giro do Cíngulo/diagnóstico por imagem , Sistema Nervoso Autônomo , Coração , Frequência Cardíaca/fisiologia , Percepção da DorRESUMO
Resting heart rate (RHR) has been linked to impaired cortical structure in observational studies. However, the extent to which this association is potentially causal has not been determined. Using genetic data, this study aimed to reveal the causal effect of RHR on brain cortical structure. A Two-Sample Mendelian randomization (MR) analysis was conducted. Sensitivity analyses, weighted median, MR Pleiotropy residual sum and outlier, and MR-Egger regression were conducted to evaluate heterogeneity and pleiotropy. A causal relationship between RHR and cortical structures was identified by MR analysis. On the global scale, elevated RHR was found to decrease global surface area (SA; P < 0.0125). On a regional scale, the elevated RHR significantly decreased the SA of pars triangularis without global weighted (P = 1.58 × 10-4) and the thickness (TH) of the paracentral with global weighted (P = 3.56 × 10-5), whereas it increased the TH of banks of the superior temporal sulcus in the presence of global weighted (P = 1.04 × 10-4). MR study provided evidence that RHR might be causally linked to brain cortical structure, which offers a different way to understand the heart-brain axis theory.
Assuntos
Encéfalo , Análise da Randomização Mendeliana , Frequência Cardíaca , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal , Área de Broca , Estudo de Associação Genômica AmplaRESUMO
A century-long debate on bodily states and emotions persists. While the involvement of bodily activity in emotion physiology is widely recognized, the specificity and causal role of such activity related to brain dynamics has not yet been demonstrated. We hypothesize that the peripheral neural control on cardiovascular activity prompts and sustains brain dynamics during an emotional experience, so these afferent inputs are processed by the brain by triggering a concurrent efferent information transfer to the body. To this end, we investigated the functional brainheart interplay under emotion elicitation in publicly available data from 62 healthy subjects using a computational model based on synthetic data generation of electroencephalography and electrocardiography signals. Our findings show that sympathovagal activity plays a leading and causal role in initiating the emotional response, in which ascending modulations from vagal activity precede neural dynamics and correlate to the reported level of arousal. The subsequent dynamic interplay observed between the central and autonomic nervous systems sustains the processing of emotional arousal. These findings should be particularly revealing for the psychophysiology and neuroscience of emotions.
Assuntos
Nível de Alerta , Encéfalo , Eletroencefalografia , Coração , Nervo Vago , Nível de Alerta/fisiologia , Encéfalo/fisiologia , Emoções/fisiologia , Coração/inervação , Frequência Cardíaca/fisiologia , Humanos , Nervo Vago/fisiologiaRESUMO
BACKGROUND: People with HIV (PWH) have lower exercise capacity than peers without HIV, which may be explained by chronotropic incompetence, the inability to increase heart rate during exercise. METHODS: The Exercise for Healthy Aging Study included adults aged 50 to 75 years with and without HIV. Participants completed 12 weeks of moderate-intensity exercise, before randomization to moderate or high intensity for 12 additional weeks. We compared adjusted heart rate reserve (AHRR; chronotropic incompetence <80%) on cardiopulmonary exercise testing by HIV serostatus and change from baseline to 12 and 24 weeks using mixed effects models. RESULTS: Among 32 PWH and 37 controls (median age, 56 years; 7% female), 28% of PWH vs 11% of controls had chronotropic incompetence at baseline (P = .067). AHRR was lower among PWH (91% vs 101%; difference, 10%; 95% CI, 1.9%-18.9%; P = .02). At week 12, AHRR normalized among PWH (+8%; 95% CI, 4%-11%; P < .001) and was sustained at week 24 (+5%; 95% CI, 1%-9%; P = .008) versus no change among controls (95% CI, -4% to 4%; P = .95; interaction P = .004). After 24 weeks of exercise, 15% of PWH and 10% of controls had chronotropic incompetence (P = .70). CONCLUSIONS: Chronotropic incompetence contributes to reduced exercise capacity among PWH and improves with exercise training.
Assuntos
Exercício Físico , Infecções por HIV , Frequência Cardíaca , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Infecções por HIV/fisiopatologia , Idoso , Frequência Cardíaca/fisiologia , Exercício Físico/fisiologia , Envelhecimento Saudável/fisiologiaRESUMO
AIMS/HYPOTHESIS: Diabetic gastroenteropathy frequently causes debilitating gastrointestinal symptoms. Previous uncontrolled studies have shown that transcutaneous vagal nerve stimulation (tVNS) may improve gastrointestinal symptoms. To investigate the effect of cervical tVNS in individuals with diabetes suffering from autonomic neuropathy and gastrointestinal symptoms, we conducted a randomised, sham-controlled, double-blind (participants and investigators were blinded to the allocated treatment) study. METHODS: This study included adults (aged 20-86) with type 1 or 2 diabetes, gastrointestinal symptoms and autonomic neuropathy recruited from three Steno Diabetes Centres in Denmark. Participants were randomly allocated 1:1 to receive active or sham stimulation. Active cervical tVNS or sham stimulation was self-administered over two successive study periods: 1 week of four daily stimulations and 8 weeks of two daily stimulations. The primary outcome measures were gastrointestinal symptom changes as measured using the gastroparesis cardinal symptom index (GCSI) and the gastrointestinal symptom rating scale (GSRS). Secondary outcomes included gastrointestinal transit times and cardiovascular autonomic function. RESULTS: Sixty-eight participants were randomised to the active group, while 77 were randomised to the sham group. Sixty-three in the active and 68 in the sham group remained for analysis in study period 1, while 62 in each group were analysed in study period 2. In study period 1, active and sham tVNS resulted in similar symptom reductions (GCSI: -0.26 ± 0.64 vs -0.17 ± 0.62, p=0.44; GSRS: -0.35 ± 0.62 vs -0.32 ± 0.59, p=0.77; mean ± SD). In study period 2, active stimulation also caused a mean symptom decrease that was comparable to that observed after sham stimulation (GCSI: -0.47 ± 0.78 vs -0.33 ± 0.75, p=0.34; GSRS: -0.46 ± 0.90 vs -0.35 ± 0.79, p=0.50). Gastric emptying time was increased in the active group compared with sham (23 min vs -19 min, p=0.04). Segmental intestinal transit times and cardiovascular autonomic measurements did not differ between treatment groups (all p>0.05). The tVNS was well-tolerated. CONCLUSIONS/INTERPRETATION: Cervical tVNS, compared with sham stimulation, does not improve gastrointestinal symptoms among individuals with diabetes and autonomic neuropathy. TRIAL REGISTRATION: ClinicalTrials.gov NCT04143269 FUNDING: The study was funded by the Novo Nordisk Foundation (grant number NNF180C0052045).
Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Método Duplo-Cego , Estimulação do Nervo Vago/métodos , Adulto , Idoso , Estimulação Elétrica Nervosa Transcutânea/métodos , Neuropatias Diabéticas/terapia , Neuropatias Diabéticas/fisiopatologia , Gastroenteropatias/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/terapia , Resultado do Tratamento , Adulto JovemRESUMO
Sympathetic transduction is the study of how impulses of sympathetic nerve activity (SNA) affect end-organ function. Recently, the transduction of resting bursts of muscle SNA (MSNA) has been investigated and shown to have a role in the maintenance of blood pressure through changes in vascular tone in humans. In the present study, we investigate whether directly recorded resting cardiac SNA (CSNA) regulates heart rate (HR), coronary blood flow (CoBF), coronary vascular conductance (CVC), cardiac output (CO) and mean arterial pressure. Instrumentation was undertaken to record CSNA and relevant vascular variables in conscious sheep. Recordings were performed at baseline, as well as after the infusion of a ß-adrenoceptor blocker (propranolol) to determine the role of ß-adrenergic signalling in sympathetic transduction in the heart. The results show that after every burst of CSNA, there was a significant effect of time on HR (n = 10, ∆: +2.1 ± 1.4 beats min-1 , P = 0.002) and CO (n = 8, ∆: +100 ± 150 mL min-1 , P = 0.002) was elevated, followed by an increase in CoBF (n = 9, ∆: +0.76 mL min-1 , P = 0.001) and CVC (n = 8, ∆: +0.0038 mL min-1 mmHg-1 , P = 0.0028). The changes in HR were graded depending on the size and pattern of CSNA bursts. The HR response was significantly attenuated after the infusion of propranolol. Our study is the first to explore resting sympathetic transduction in the heart, suggesting that CSNA can dynamically change HR mediated by an action on ß-adrenoceptors. KEY POINTS: Sympathetic transduction is the study of how impulses of sympathetic nerve activity (SNA) affect end-organ function. Previous studies have examined sympathetic transduction primarily in the skeletal muscle and shown that bursts of muscle SNA alter blood flow to skeletal muscle and mean arterial pressure, although this has not been examined in the heart. We investigated sympathetic transduction in the heart and show that, in the conscious condition, the size of bursts of SNA to the heart can result in incremental increases in heart rate and coronary blood flow mediated by ß-adrenoceptors. The pattern of bursts of SNA to the heart also resulted in incremental increases in heart rate mediated by ß-adrenoceptors. This is the first study to explore the transduction of bursts of SNA to the heart.
Assuntos
Coração , Propranolol , Humanos , Ovinos , Animais , Propranolol/farmacologia , Coração/inervação , Pressão Arterial , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático/fisiologia , Receptores AdrenérgicosRESUMO
A fundamental question in cardiovascular and muscle physiology is how the heart operates in synchrony with distinct muscles to regulate homeostasis, enable movement and adapt to exercise demands and fatigue. Here we investigate how autonomic regulation of cardiac function synchronizes and integrates as a network with the activity of distinct muscles during exercise. Further, we establish how the network of cardio-muscular interactions reorganizes with fatigue. Thirty healthy young adults performed two body weight squat tests until exhaustion. Simultaneous recordings were taken of a 3-lead electrocardiogram (EKG) along with electromyography (EMG) signals from the left and right vastus lateralis, and left and right erector spinae. We first obtained instantaneous heart rate (HR) derived from the EKG signal and decomposed the EMG recordings in 10 frequency bands (F1-F10). We next quantified pair-wise coupling (cross-correlation) between the time series for HR and all EMG spectral power frequency bands in each leg and back muscle. We uncovered the first profiles of cardio-muscular network interactions, which depend on the role muscles play during exercise and muscle fibre histochemical characteristics. Additionally, we observed a significant decline in the degree of cardio-muscular coupling with fatigue, characterized by complex transitions from synchronous to asynchronous behaviour across a range of timescales. The network approach we utilized introduces new avenues for the development of novel network-based markers, with the potential to characterize multilevel cardio-muscular interactions to assess global health, levels of fatigue, fitness status or the effectiveness of cardiovascular and muscle injury rehabilitation programmes. KEY POINTS: The heart operates in synchrony with muscles to regulate homeostasis, enable movement, and adapt to exercise demands and fatigue. However, the precise mechanisms regulating cardio-muscular coupling remain unknown. This study introduces a pioneering approach to assess cardio-muscular network interactions by examining the synchronization of cardiac function with muscle activity during exercise and fatigue. We uncover the first profiles of cardio-muscular interactions characterized by specific hierarchical organization of link strength. We observe a significant decline in the degree of cardio-muscular coupling with fatigue, marked by complex transitions from synchronous to asynchronous behaviour. This network approach offers new network-based markers to characterize multilevel cardio-muscular interactions to assess global health, levels of fatigue, fitness status or the effectiveness of cardiovascular and muscle injury rehabilitation programmes.
RESUMO
Encoded by ANK2, ankyrin-B (AnkB) is a multifunctional adapter protein critical for the expression and targeting of key cardiac ion channels, transporters, cytoskeletal-associated proteins, and signaling molecules. Mice deficient for AnkB expression are neonatal lethal, and mice heterozygous for AnkB expression display cardiac structural and electrical phenotypes. Human ANK2 loss-of-function variants are associated with diverse cardiac manifestations; however, human clinical 'AnkB syndrome' displays incomplete penetrance. To date, animal models for human arrhythmias have generally been knock-out or transgenic overexpression models and thus the direct impact of ANK2 variants on cardiac structure and function in vivo is not clearly defined. Here, we directly tested the relationship of a single human ANK2 disease-associated variant with cardiac phenotypes utilizing a novel in vivo animal model. At baseline, young AnkBp.E1458G+/+ mice lacked significant structural or electrical abnormalities. However, aged AnkBp.E1458G+/+ mice displayed both electrical and structural phenotypes at baseline including bradycardia and aberrant heart rate variability, structural remodeling, and fibrosis. Young and old AnkBp.E1458G+/+ mice displayed ventricular arrhythmias following acute (adrenergic) stress. In addition, young AnkBp.E1458G+/+ mice displayed structural remodeling following chronic (transverse aortic constriction) stress. Finally, AnkBp.E1458G+/+ myocytes harbored alterations in expression and/or localization of key AnkB-associated partners, consistent with the underlying disease mechanism. In summary, our findings illustrate the critical role of AnkB in in vivo cardiac function as well as the impact of single AnkB loss-of-function variants in vivo. However, our findings illustrate the contribution and in fact necessity of secondary factors (aging, adrenergic challenge, pressure-overload) to phenotype penetrance and severity.
Assuntos
Anquirinas , Miócitos Cardíacos , Animais , Humanos , Camundongos , Adrenérgicos/metabolismo , Anquirinas/metabolismo , Modelos Animais de Doenças , Canais Iônicos/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fenótipo , Envelhecimento/metabolismoRESUMO
BACKGROUND: Studies in individuals with chronic stroke indicate high-intensity training (HIT) focused on walking improves locomotor function, which may be due to repeated activation of locomotor circuits and serotonin-dependent modulation of motor output. Separate studies in animals and individuals with spinal cord injury suggest acute intermittent hypoxia (AIH) can augment the effects of locomotor interventions through similar serotonin-dependent mechanisms, although no studies have coupled AIH with HIT in individuals poststroke. The goal of this study was to evaluate the safety and efficacy of AIH+HIT versus HIT alone in individuals with chronic stroke. METHODS: This phase II double-blind randomized, crossover trial recruited individuals between 18 and 85 years old, >6 months poststroke, and self-selected speeds <1.0 m/s. Participants received up to 15 sessions of AIH for 30 minutes using 15 cycles of hypoxia (60-90 seconds; 8%-9% O2) and normoxia (30-60 seconds; 21% O2), followed by 1 hour of HIT targeting >75% heart rate reserve. The control condition received normoxia for 30 minutes before HIT. Following the first training phase, participants performed the second phase >1 month later. The primary outcomes were self-selected speed and fastest speed, a 6-minute walk test, and peak treadmill speed. A 3-way mixed-model ANOVA assessed the effects of time, training, and order of interventions. RESULTS: Of 55 individuals screened, 35 were randomized to AIH+HIT or normoxia+HIT first, and 28 individuals completed both interventions, revealing greater gains in self-selected speeds (0.14 [0.08-0.18] versus 0.05 [0.01-0.10] m/s), fastest speed (0.16 [0.10-0.21] versus 0.06 [0.02-0.10] m/s), and peak treadmill speed (0.21 [0.14-0.29] versus 0.11 [0.06-0.16] m/s) following AIH+HIT versus normoxia+HIT (P<0.01) with no order effects. Greater gains in spatiotemporal symmetry were observed with AIH+HIT, with worse outcomes for those prescribed serotonin-mediated antidepressant medications. CONCLUSIONS: AIH+HIT resulted in greater gains in locomotor function than normoxia+HIT. Subsequent phase III trials should further evaluate the efficacy of this intervention. REGISTRATION: URL: https://clinicaltrials.gov/; Unique identifier: NCT04472442.
Assuntos
Estudos Cross-Over , Hipóxia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Reabilitação do Acidente Vascular Cerebral/métodos , Método Duplo-Cego , Hipóxia/fisiopatologia , Hipóxia/terapia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Adulto , Marcha/fisiologia , Doença Crônica , Idoso de 80 Anos ou mais , Resultado do Tratamento , Terapia por Exercício/métodos , Treinamento Intervalado de Alta Intensidade/métodosRESUMO
BACKGROUND: Physical inactivity in people with chronic stroke profoundly affects daily function and increases recurrent stroke risk and mortality, making physical activity improvements an important target of intervention. We compared the effects of a high-intensity walking intervention (FAST), a step activity monitoring behavioral intervention (SAM), or a combined intervention (FAST+SAM) on physical activity (ie, steps/day). We hypothesized the combined intervention would yield the greatest increase in steps/day. METHODS: This assessor-blinded multisite randomized controlled trial was conducted at 4 university/hospital-based laboratories. Participants were 21 to 85 years old, walking without physical assistance following a single, unilateral noncerebellar stroke of ≥6 months duration, and randomly assigned to FAST, SAM, or FAST+SAM for 12 weeks (2-3 sessions/week). FAST training consisted of walking-related activities at 70% to 80% heart rate reserve, while SAM received daily feedback and goal setting of walking activity (steps/day). Assessors and study statistician were masked to group assignment. The a priori-determined primary outcome and end point was a comparison of the change in steps/day between the 3 intervention groups from pre- to post-intervention. Adverse events were tracked after randomization. All randomized participants were included in the intent-to-treat analysis. RESULTS: Participants were enrolled from July 18, 2016, to November 16, 2021. Of 2385 participants initially screened, 250 participants were randomized (mean [SE] age, 63 [0.80] years; 116 females/134 males), with 89 assigned to FAST, 81 to SAM, and 80 to FAST+SAM. Steps/day significantly increased in both the SAM (mean [SE], 1542 [267; 95% CI, 1014-2069] P<0.001) and FAST+SAM group (1307 [280; 95% CI, 752-1861] P<0.001) but not in the FAST group (406 [238; 95% CI, -63 to 876] P=0.09). There were no deaths or serious study-related adverse events. CONCLUSIONS: Only individuals with chronic stroke who completed a step activity monitoring behavioral intervention with skilled coaching and goal progression demonstrated improvements in physical activity (steps/day). REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02835313.
Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Adulto , Idoso , Idoso de 80 Anos ou mais , Caminhada/fisiologia , Exercício Físico , Acidente Vascular Cerebral/terapia , Terapia por ExercícioRESUMO
BACKGROUND: Atrial fibrillation (AF) is a frequent underlying cause of cryptogenic stroke (CS) and its detection can be increased using implantable cardiac monitoring (ICM). We sought to evaluate different risk scores and assess their diagnostic ability in identifying patients with CS with underlying AF on ICM. METHODS: Patients with CS, being admitted to a single tertiary stroke center between 2017 and 2022 and receiving ICM, were prospectively evaluated. The CHA2DS2-VASc, HAVOC, Brown ESUS-AF, and C2HEST scores were calculated at baseline. The primary outcome of interest was the detection of AF, which was defined as at least 1 AF episode on ICM lasting for 2 consecutive minutes or more. The diagnostic accuracy measures and the net reclassification improvement were calculated for the 4 risk scores. Stroke recurrence was evaluated as a secondary outcome. RESULTS: A total of 250 patients with CS were included, and AF was detected by ICM in 20.4% (n=51) during a median monitoring period of 16 months. Patients with CS with AF detection were older compared with the rest (P=0.045). The median HAVOC, Brown ESUS-AF, and C2HEST scores were higher among the patients with AF compared with the patients without AF (all P<0.05), while the median CHA2DS2-VASc score was similar between the 2 groups. The corresponding C statistics for CHA2DS2-VASc, HAVOC, Brown ESUS-AF, and C2HEST for AF prediction were 0.576 (95% CI, 0.482-0.670), 0.612 (95% CI, 0.523-0.700), 0.666 (95% CI, 0.587-0.746), and 0.770 (95% CI, 0.699-0.839). The C2HEST score presented the highest diagnostic performance based on C statistics (P<0.05 after correction for multiple comparisons) and provided significant improvement in net reclassification for AF detection (>70%) compared with the other risk scores. Finally, stroke recurrence was documented in 5.6% of the study population, with no difference regarding the 4 risk scores between patients with and without recurrent stroke. CONCLUSIONS: The C2HEST score was superior to the CHA2DS2-VASc, HAVOC, and Brown ESUS-AF scores for discriminating patients with CS with underlying AF using ICM.
Assuntos
Fibrilação Atrial , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Medição de Risco , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , AVC Isquêmico/complicaçõesRESUMO
Autonomic control of heart rate is well known in adult subjects, but limited data are available on the development of the heart rate control during childhood and adolescence. Continuous 12-lead electrocardiograms were recorded in 1045 healthy children and adolescents (550 females) aged 4 to 19 years during postural manoeuvres involving repeated 10-min supine, unsupported sitting, and unsupported standing positions. In each position, heart rate was measured, and heart rate variability indices were evaluated (SDNN, RMSSD, and high (HF) and low (LF) frequency components were obtained). Quasi-normalized HF frequency components were defined as qnHF = HF/(HF + LF). These measurements were, among others, related to age using linear regressions. In supine position, heart rate decreases per year of age were significant in both sexes but lower in females than in males. In standing position, these decreases per year of age were substantially lowered. RMSSD and qnHF indices were independent of age in supine position but significantly decreased with age in sitting and standing positions. Correspondingly, LF/HF proportions showed steep increases with age in sitting and standing positions but not in the supine position. The study suggests that baseline supine parasympathetic influence shows little developmental changes during childhood and adolescence but that in young children, sympathetic branch is less responsive to vagal influence. While vagal influences modulate cardiac periods in young and older children equally, they are less able to suppress the sympathetic influence in younger children.
Assuntos
Sistema Nervoso Autônomo , Frequência Cardíaca , Humanos , Frequência Cardíaca/fisiologia , Adolescente , Feminino , Masculino , Criança , Pré-Escolar , Sistema Nervoso Autônomo/fisiologia , Adulto Jovem , Decúbito Dorsal , Eletrocardiografia/métodos , Postura/fisiologia , AdultoRESUMO
The central autonomic network (CAN) serves as a regulatory hub with top-down regulatory control and integration of bottom-up physiological feedback via the autonomic nervous system. Heart rate variability (HRV)-the time variance of the heart's beat-to-beat intervals-is an index of the CAN's affective and behavioral regulatory capacity. Although neural functional connectivities that are associated with HRV and CAN have been well studied, no published report to date has studied effective (directional) connectivities (EC) that are associated with HRV and CAN. Better understanding of neural EC in the brain has the potential to improve our understanding of how the CAN sub-regions regulate HRV. To begin to address this knowledge gap, we employed resting-state functional magnetic resonance imaging and dynamic causal modeling (DCM) with parametric empirical Bayes analyses in 34 healthy adults (19 females; mean age= 32.68 years [SD= 14.09], age range 18-68 years) to examine the bottom-up and top-down neural circuits associated with HRV. Throughout the whole brain, we identified 12 regions associated with HRV. DCM analyses revealed that the ECs from the right amygdala to the anterior cingulate cortex and to the ventrolateral prefrontal cortex had a negative linear relationship with HRV and a positive linear relationship with heart rate. These findings suggest that ECs from the amygdala to the prefrontal cortex may represent a neural circuit associated with regulation of cardiodynamics.
Assuntos
Sistema Nervoso Autônomo , Encéfalo , Frequência Cardíaca , Imageamento por Ressonância Magnética , Humanos , Frequência Cardíaca/fisiologia , Feminino , Adulto , Masculino , Sistema Nervoso Autônomo/fisiologia , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Idoso , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Conectoma/métodos , Teorema de BayesRESUMO
Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r = 0.49; P < 0.001) and negatively related to resting heart rate (HR, r = -0.39; P < 0.001), which was also negatively related to expression of type I muscle fibers (r = -0.41; P < 0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59 ± 6%; HR = 57 ± 9 beats/min; SIgalvin = 1.8 ± 0.7 units) or low percentage of type I fibers (30 ± 6%; HR = 71 ± 11; SIgalvin = 0.8 ± 0.3 units; P < 0.001 for all variables vs. first group). eNOS expression was 1) higher in subjects with high type I expression; 2) almost twofold higher in pools of type I versus II fibers; 3) only detected in capillaries surrounding muscle fibers; and 4) linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.NEW & NOTEWORTHY Insulin resistance (IR) is a risk factor for the development of several metabolic diseases. In healthy young individuals, an elevated heart rate (HR) correlates with low insulin sensitivity and high expression of type II skeletal muscle fibers, which express low levels of endothelial nitric oxide synthase (eNOS) and, hence, a limited capacity to induce vasodilation in response to insulin. Early targeting of the autonomic nervous system and microvasculature may attenuate development of diseases stemming from insulin resistance.
Assuntos
Frequência Cardíaca , Resistência à Insulina , Músculo Esquelético , Óxido Nítrico Sintase Tipo III , Humanos , Resistência à Insulina/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Masculino , Frequência Cardíaca/fisiologia , Adulto Jovem , Músculo Esquelético/metabolismo , Feminino , Adulto , Teste de Tolerância a Glucose , Fibras Musculares de Contração Lenta/metabolismo , Insulina/metabolismo , Insulina/sangueRESUMO
Recent studies have suggested that adverse outcomes of postterm birth (≥42 completed weeks of gestation), including increased cardiometabolic risk factors, impaired glucose metabolism, and obesity, may extend into adulthood. We studied interconnected determinants of cardiovascular health, including physical activity (based on accelerometry for two weeks), muscular strength (handgrip strength), cardiorespiratory fitness (4-min step test), and cardiac autonomic function (heart rate recovery, heart rate variability, and baroreflex sensitivity) among 46-year-old adults from the Northern Finland Birth Cohort (NFBC) born postterm (n = 805) and at term (n = 2,645). Adults born postterm undertook vigorous-intensity physical activity 2.0 min/day (95% CI 0.4, 3.7) less than term-born adults when adjusted for sex, age, and maternal- and pregnancy-related covariates in multiple linear regression. Postterm birth was associated with reduced cardiorespiratory fitness based on a higher peak heart rate (2.1 bpm, 95% CI 0.9, 3.4) and slower heart rate recovery 30 s after the step test (-0.7 bpm, 95% CI -1.3, -0.1). Postterm birth was associated with lower vigorous-intensity physical activity and cardiorespiratory fitness and slower heart rate recovery in middle age. Our findings reinforce previous suggestions that postterm birth should be included as a perinatal risk factor for adult cardiometabolic disease.
RESUMO
Attention is one of the basic cognitive functions sensitive to high altitude, and most studies have focussed on exposure times of approximately 3 years; however, it is unclear how attention changes in migrants who have lived and worked at high altitude for nearly 20 years. We explored the dynamics of attentional networks and neurophysiological mechanisms in migrants over 3-20 years using the Attentional Network Test combined with Electrocardiograph and Electroencephalography and found a consistent quadratic correlation between exposure and executive control efficiency, P3 amplitude and heart rate variability (HRV), with a decrease followed by an increase/relative stability, with approximately 10 years being the breakpoint. However, neither linear nor quadratic trajectories were observed for the alerting and orienting network. Mediation analysis revealed that the P3 amplitude mediated the decrease and increase in executive control efficiency with exposure time depends on the breakpoint. Correlations between HRV and executive control efficiency and P3 amplitude suggest that U-shaped changes in executive control in migrants may be related to body homeostasis maintained by the autonomic nervous system, and that P3 amplitude may serve as a neurophysiological marker of migrants' adaptation/recovery from high-altitude exposure.