Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.039
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 227(6)2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38362616

RESUMO

Previous studies often inferred the focus of a bird's attention from its head movements because it provides important clues about their perception and cognition. However, it remains challenging to do so accurately, as the details of how they orient their visual field toward the visual targets remain largely unclear. We thus examined visual field configurations and the visual field use of large-billed crows (Corvus macrorhynchos Wagler 1827). We used an established ophthalmoscopic reflex technique to identify the visual field configuration, including the binocular width and optical axes, as well as the degree of eye movement. A newly established motion capture system was then used to track the head movements of freely moving crows to examine how they oriented their reconstructed visual fields toward attention-getting objects. When visual targets were moving, the crows frequently used their binocular visual fields, particularly around the projection of the beak-tip. When the visual targets stopped moving, crows frequently used non-binocular visual fields, particularly around the regions where their optical axes were found. On such occasions, the crows slightly preferred the right eye. Overall, the visual field use of crows is clearly predictable. Thus, while the untracked eye movements could introduce some level of uncertainty (typically within 15 deg), we demonstrated the feasibility of inferring a crow's attentional focus by 3D tracking of their heads. Our system represents a promising initial step towards establishing gaze tracking methods for studying corvid behavior and cognition.


Assuntos
Corvos , Animais , Tecnologia de Rastreamento Ocular , Captura de Movimento , Visão Ocular , Campos Visuais
2.
Psychophysiology ; : e14647, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987662

RESUMO

Response inhibition is a crucial component of executive control. Although mainly studied in upper limb tasks, it is fully implicated in gait initiation. Here, we assessed the influence of proactive and reactive inhibitory control during gait initiation in healthy adult participants. For this purpose, we measured kinematics and electroencephalography (EEG) activity (event-related potential [ERP] and time-frequency data) during a modified Go/NoGo gait initiation task in 23 healthy adults. The task comprised Go-certain, Go-uncertain, and NoGo conditions. Each trial included preparatory and imperative stimuli. Our results showed that go-uncertainty resulted in delayed reaction time, without any difference for the other parameters of gait initiation. Proactive inhibition, that is, Go uncertain versus Go certain conditions, influenced EEG activity as soon as the preparatory stimulus. Moreover, both proactive and reactive inhibition influenced the amplitude of the ERPs (central P1, occipito-parietal N1, and N2/P3) and theta and alpha/low beta band activities in response to the imperative-Go-uncertain versus Go-certain and NoGo versus Go-uncertain-stimuli. These findings demonstrate that the uncertainty context; induced proactive inhibition, as reflected in delayed gait initiation. Proactive and reactive inhibition elicited extended and overlapping modulations of ERP and time-frequency activities. This study shows the protracted influence of inhibitory control in gait initiation.

3.
Dev Sci ; 27(4): e13483, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38470174

RESUMO

Impaired sensorimotor synchronization (SMS) to acoustic rhythm may be a marker of atypical language development. Here, Motion Capture was used to assess gross motor rhythmic movement at six time points between 5- and 11 months of age. Infants were recorded drumming to acoustic stimuli of varying linguistic and temporal complexity: drumbeats, repeated syllables and nursery rhymes. Here we show, for the first time, developmental change in infants' movement timing in response to auditory stimuli over the first year of life. Longitudinal analyses revealed that whilst infants could not yet reliably synchronize their movement to auditory rhythms, infant spontaneous motor tempo became faster with age, and by 11 months, a subset of infants decelerate from their spontaneous motor tempo, which better accords with the incoming tempo. Further, infants became more regular drummers with age, with marked decreases in the variability of spontaneous motor tempo and variability in response to drumbeats. This latter effect was subdued in response to linguistic stimuli. The current work lays the foundation for using individual differences in precursors of SMS in infancy to predict later language outcomes. RESEARCH HIGHLIGHT: We present the first longitudinal investigation of infant rhythmic movement over the first year of life Whilst infants generally move more quickly and with higher regularity over their first year, by 11 months infants begin to counter this pattern when hearing slower infant-directed song Infant movement is more variable to speech than non-speech stimuli In the context of the larger Cambridge UK BabyRhythm Project, we lay the foundation for rhythmic movement in infancy to predict later language outcomes.


Assuntos
Estimulação Acústica , Desenvolvimento da Linguagem , Fala , Humanos , Lactente , Estudos Longitudinais , Fala/fisiologia , Feminino , Masculino , Desenvolvimento Infantil/fisiologia , Movimento/fisiologia , Periodicidade , Percepção Auditiva/fisiologia
4.
Biomed Eng Online ; 23(1): 11, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281988

RESUMO

BACKGROUND: Tele-rehabilitation, also known as tele-rehab, uses communication technologies to provide rehabilitation services from a distance. The COVID-19 pandemic has highlighted the importance of tele-rehab, where the in-person visits declined and the demand for remote healthcare rises. Tele-rehab offers enhanced accessibility, convenience, cost-effectiveness, flexibility, care quality, continuity, and communication. However, the current systems are often not able to perform a comprehensive movement analysis. To address this, we propose and validate a novel approach using depth technology and skeleton tracking algorithms. METHODS: Our data involved 14 participants (8 females, 6 males) performing shoulder abduction exercises. We collected depth videos from an LiDAR camera and motion data from a Motion Capture (Mocap) system as our ground truth. The data were collected at distances of 2 m, 2.5 m, and 3.5 m from the LiDAR sensor for both arms. Our innovative approach integrates LiDAR with the Cubemos and Mediapipe skeleton tracking frameworks, enabling the assessment of 3D joint angles. We validated the system by comparing the estimated joint angles versus Mocap outputs. Personalized calibration was applied using various regression models to enhance the accuracy of the joint angle calculations. RESULTS: The Cubemos skeleton tracking system outperformed Mediapipe in joint angle estimation with higher accuracy and fewer errors. The proposed system showed a strong correlation with Mocap results, although some deviations were present due to noise. Precision decreased as the distance from the camera increased. Calibration significantly improved performance. Linear regression models consistently outperformed nonlinear models, especially at shorter distances. CONCLUSION: This study showcases the potential of a marker-less system, to proficiently track body joints and upper-limb angles. Signals from the proposed system and the Mocap system exhibited robust correlation, with Mean Absolute Errors (MAEs) consistently below [Formula: see text]. LiDAR's depth feature enabled accurate computation of in-depth angles beyond the reach of traditional RGB cameras. Altogether, this emphasizes the depth-based system's potential for precise joint tracking and angle calculation in tele-rehab applications.


Assuntos
Organotiofosfatos , Pandemias , Ombro , Masculino , Feminino , Humanos , Amplitude de Movimento Articular , Movimento , Fenômenos Biomecânicos
5.
Int Urogynecol J ; 35(5): 1027-1034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619613

RESUMO

INTRODUCTION AND HYPOTHESIS: Surgeon kinematics play a significant role in the prevention of patient injury. We hypothesized that elbow extension and ulnar wrist deviation are associated with bladder injury during simulated midurethral sling (MUS) procedures. METHODS: We used motion capture technology to measure surgeons' flexion/extension, abduction/adduction, and internal/external rotation angular time series for shoulder, elbow, and wrist joints. Starting and ending angles, minimum and maximum angles, and range of motion (ROM) were extracted from each time series. We created anatomical multibody models and applied linear mixed modeling to compare kinematics between trials with versus without bladder penetration and attending versus resident surgeons. A total of 32 trials would provide 90% power to detect a difference. RESULTS: Out of 85 passes, 62 were posterior to the suprapubic bone and 20 penetrated the bladder. Trials with versus without bladder penetration were associated with more initial wrist dorsiflexion (-27.32 vs -9.03°, p = 0.01), less final elbow flexion (39.49 vs 60.81, p = 0.03), and greater ROM in both the wrist (27.48 vs 14.01, p = 0.02), and elbow (20.45 vs 12.87, p = 0.04). Wrist deviation and arm pronation were not associated with bladder penetration. Compared with attendings, residents had more ROM in elbow flexion (14.61 vs 8.35°, p < 0.01), but less ROM in wrist dorsiflexion (13.31 vs 20.33, p = 0.02) and arm pronation (4.75 vs 38.46, p < 0.01). CONCLUSIONS: Bladder penetration during MUS is associated with wrist dorsiflexion and elbow flexion but not internal wrist deviation and arm supination. Attending surgeons exerted control with the wrist and forearm, surgical trainees with the elbow. Our findings have direct implications for MUS teaching.


Assuntos
Amplitude de Movimento Articular , Humanos , Fenômenos Biomecânicos , Feminino , Extremidade Superior , Cirurgiões , Articulação do Punho/fisiologia , Articulação do Punho/cirurgia , Slings Suburetrais , Bexiga Urinária/fisiologia , Articulação do Cotovelo , Articulação do Ombro/cirurgia , Articulação do Ombro/fisiologia
6.
BMC Pregnancy Childbirth ; 24(1): 253, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589802

RESUMO

BACKGROUND: The objective of this study was to identify and qualify, by means of a three-dimensional kinematic analysis, the postures and movements of obstetricians during a simulated forceps birth, and then to study the association of the obstetricians' experience with the technique adopted. METHOD: Fifty-seven volunteer obstetricians, 20 from the Limoges and 37 from the Poitiers University hospitals, were included in this multi-centric study. They were classified into 3 groups: beginners, intermediates, and experts, beginners having performed fewer than 10 forceps deliveries in real conditions, intermediates between 10 and 100, and experts more than 100. The posture and movements of the obstetricians were recorded between December 2020 and March 2021 using an optoelectronic motion capture system during simulated forceps births. Joint angles qualifying these postures and movements were analysed between the three phases of the foetal traction. These phases were defined by the passage of a virtual point associated with the forceps blade through two anatomical planes: the mid-pelvis and the pelvic outlet. Then, a consolidated ascending hierarchical classification (AHC) was applied to these data in order to objectify the existence of groups of similar behaviours. RESULTS: The AHC distinguished four different postures adopted when crossing the first plane and three different traction techniques. 48% of the beginners adopted one of the two raised posture, 22% being raised without trunk flexion and 26% raised with trunk flexion. Conversely, 58% of the experts positioned themselves in a "chevalier servant" posture (going down on one knee) and 25% in a "squatting" posture before initiating traction. The results also show that the joint movement amplitude tends to reduce with the level of expertise. CONCLUSION: Forceps delivery was performed in different ways, with the experienced obstetricians favouring postures that enabled observation at the level of the maternal perineum and techniques reducing movement amplitude. The first perspective of this work is to relate these different techniques to the traction force generated. The results of these studies have the potential to contribute to the training of obstetricians in forceps delivery, and to improve the safety of women and newborns.


Assuntos
Extração Obstétrica , Obstetra , Gravidez , Humanos , Feminino , Recém-Nascido , Extração Obstétrica/métodos , Parto Obstétrico , Forceps Obstétrico , Postura
7.
Arch Phys Med Rehabil ; 105(4): 673-681.e2, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37981256

RESUMO

OBJECTIVE: To investigate the validity and test-retest reliability of a customized markerless motion capture (MMC) system that used iPad Pros with a Light Detection And Ranging scanner at two different viewing angles to measure the active range of motion (AROM) and the angular waveform of the upper-limb-joint angles of healthy adults performing functional tasks. DESIGN: Participants were asked to perform shoulder and elbow actions for the investigator to take AROM measurements, followed by four tasks that simulated daily functioning. Each participant attended 2 experimental sessions, which were held at least 2 days and at most 14 days apart. SETTING: A Vicon system and 2 iPad Pros installed with our MMC system were placed at 2 different angles to the participants and recorded their movements concurrently during each task. PARTICIPANTS: Thirty healthy adults (mean age: 28.9, M/F ratio: 40/60). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The AROM and the angular waveform of the upper-limb-joint angles. RESULTS: The iPad Pro MMC system underestimated the shoulder joint and elbow joint angles in all four simulated functional tasks. The MMC demonstrated good to excellent test-retest reliability for the shoulder joint AROM measurements in all 4 tasks. CONCLUSIONS: The maximal AROM measurements calculated by the MMC system had consistently smaller values than those measured by the goniometer. An MMC in iPad Pro system might not be able to replace conventional goniometry for clinical ROM measurements, but it is still suggested for use in home-based and telerehabilitation training for intra-subject measurements because of its good reliability, low cost, and portability. Further development to improve its performance in motion capture and analysis in disease populations is warranted.


Assuntos
Captura de Movimento , Extremidade Superior , Adulto , Humanos , Projetos Piloto , Fenômenos Biomecânicos , Reprodutibilidade dos Testes , Amplitude de Movimento Articular
8.
Scand J Med Sci Sports ; 34(7): e14691, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38970442

RESUMO

Quantifying movement coordination in cross-country (XC) skiing, specifically the technique with its elemental forms, is challenging. Particularly, this applies when trying to establish a bidirectional transfer between scientific theory and practical experts' knowledge as expressed, for example, in ski instruction curricula. The objective of this study was to translate 14 curricula-informed distinct elements of the V2 ski-skating technique (horizontal and vertical posture, lateral tilt, head position, upper body rotation, arm swing, shoulder abduction, elbow flexion, hand and leg distance, plantar flexion, ski set-down, leg push-off, and gliding phase) into plausible, valid and applicable measures to make the technique training process more quantifiable and scientifically grounded. Inertial measurement unit (IMU) data of 10 highly experienced XC skiers who demonstrated the technique elements by two extreme forms each (e.g., anterior versus posterior positioning for the horizontal posture) were recorded. Element-specific principal component analyses (PCAs)-driven by the variance produced by the technique extremes-resulted in movement components that express quantifiable measures of the underlying technique elements. Ten measures were found to be sensitive in distinguishing between the inputted extreme variations using statistical parametric mapping (SPM), whereas for four elements the SPM did not detect differences (lateral tilt, plantar flexion, ski set-down, and leg push-off). Applicability of the established technique measures was determined based on quantifying individual techniques through them. The study introduces a novel approach to quantitatively assess V2 ski-skating technique, which might help to enhance technique feedback and bridge the communication gap that often exists between practitioners and scientists.


Assuntos
Postura , Análise de Componente Principal , Esqui , Esqui/fisiologia , Humanos , Masculino , Postura/fisiologia , Fenômenos Biomecânicos , Adulto , Movimento/fisiologia , Feminino , Adulto Jovem , Braço/fisiologia , Ombro/fisiologia , Rotação
9.
BMC Geriatr ; 24(1): 118, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297201

RESUMO

BACKGROUND: Fine motor skills are closely related to cognitive function. However, there is currently no comprehensive assessment of fine motor movement and how it corresponds with cognitive function. To conduct a complete assessment of fine motor and clarify the relationship between various dimensions of fine motor and cognitive function. METHODS: We conducted a cross-sectional study with 267 community-based participants aged ≥ 60 years in Beijing, China. We assessed four tests performance and gathered detailed fine motor indicators using Micro-Electro-Mechanical System (MEMS) motion capture technology. The wearable MEMS device provided us with precise fine motion metrics, while Chinese version of the Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. We adopted logistic regression to analyze the relationship between fine motor movement and cognitive function. RESULTS: 129 (48.3%) of the participants had cognitive impairment. The vast majority of fine motor movements have independent linear correlations with MoCA-BJ scores. According to logistic regression analysis, completion time in the Same-pattern tapping test (OR = 1.033, 95%CI = 1.003-1.063), Completion time of non-dominant hand in the Pieces flipping test (OR = 1.006, 95%CI = 1.000-1.011), and trajectory distance of dominant hand in the Pegboard test (OR = 1.044, 95%CI = 1.010-1.068), which represents dexterity, are related to cognitive impairment. Coordination, represented by lag time between hands in the Same-pattern tapping (OR = 1.663, 95%CI = 1.131-2.444), is correlated with cognitive impairment. Coverage in the Dual-hand drawing test as an important indicator of stability is negatively correlated with cognitive function (OR = 0.709, 95%CI = 0.6501-0.959). Based on the above 5-feature model showed consistently high accuracy and sensitivity at the MoCA-BJ score (ACU = 0.80-0.87). CONCLUSIONS: The results of a comprehensive fine-motor assessment that integrates dexterity, coordination, and stability are closely related to cognitive functioning. Fine motor movement has the potential to be a reliable predictor of cognitive impairment.


Assuntos
Cognição , Disfunção Cognitiva , Humanos , Idoso , Estudos Transversais , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , China/epidemiologia , Testes de Estado Mental e Demência
10.
BMC Musculoskelet Disord ; 25(1): 589, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060988

RESUMO

BACKGROUND: This study validated the accuracy of the acromion marker cluster (AMC) and scapula spinal marker cluster (SSMC) methods compared with upright four-dimensional computed tomography (4DCT) analysis. METHODS: Sixteen shoulders of eight healthy males underwent AMC and SSMC assessments. Active shoulder elevation was tracked using upright 4DCT and optical motion capture system. The scapulothoracic and glenohumeral rotation angles calculated from AMC and SSMC were compared with 4DCT. Additionally, the motion of these marker clusters on the skin with shoulder elevation was evaluated. RESULTS: The average differences between AMC and 4DCT during 10°-140° of humerothoracic elevation were - 2.2° ± 7.5° in scapulothoracic upward rotation, 14.0° ± 7.4° in internal rotation, 6.5° ± 7.5° in posterior tilting, 3.7° ± 8.1° in glenohumeral elevation, - 8.3° ± 10.7° in external rotation, and - 8.6° ± 8.9° in anterior plane of elevation. The difference between AMC and 4DCT was significant at 120° of humerothoracic elevation in scapulothoracic upward rotation, 50° in internal rotation, 90° in posterior tilting, 120° in glenohumeral elevation, 100° in external rotation, and 100° in anterior plane of elevation. However, the average differences between SSMC and 4DCT were - 7.5 ± 7.7° in scapulothoracic upward rotation, 2.0° ± 7.0° in internal rotation, 2.3° ± 7.2° in posterior tilting, 8.8° ± 7.9° in glenohumeral elevation, 2.0° ± 9.1° in external rotation, and 1.9° ± 10.1° in anterior plane of elevation. The difference between SSMC and 4DCT was significant at 50° of humerothoracic elevation in scapulothoracic upward rotation and 60° in glenohumeral elevation, with no significant differences observed in other rotations. Skin motion was significantly smaller in AMC (28.7 ± 4.0 mm) than SSMC (38.6 ± 5.8 mm). Although there was smaller skin motion in AMC, SSMC exhibited smaller differences in scapulothoracic internal rotation, posterior tilting, glenohumeral external rotation, and anterior plane of elevation compared to 4DCT. CONCLUSION: This study demonstrates that AMC is more accurate for assessing scapulothoracic upward rotation and glenohumeral elevation, while SSMC is preferable for evaluating scapulothoracic internal rotation, posterior tilting, glenohumeral external rotation, and anterior plane of elevation, with smaller differences compared to 4DCT.


Assuntos
Acrômio , Tomografia Computadorizada Quadridimensional , Amplitude de Movimento Articular , Escápula , Articulação do Ombro , Humanos , Masculino , Escápula/diagnóstico por imagem , Escápula/fisiologia , Tomografia Computadorizada Quadridimensional/métodos , Adulto , Fenômenos Biomecânicos/fisiologia , Acrômio/diagnóstico por imagem , Acrômio/fisiologia , Amplitude de Movimento Articular/fisiologia , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/fisiologia , Adulto Jovem , Rotação
11.
J Neuroeng Rehabil ; 21(1): 118, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003450

RESUMO

BACKGROUND: How the joints exactly move and interact and how this reflects PD-related gait abnormalities and the response to dopaminergic treatment is poorly understood. A detailed understanding of these kinematics can inform clinical management and treatment decisions. The aim of the study was to investigate the influence of different gait speeds and medication on/off conditions on inter-joint coordination, as well as kinematic differences throughout the whole gait cycle in well characterized pwPD. METHODS: 29 controls and 29 PD patients during medication on, 8 of them also during medication off walked a straight walking path in slow, preferred and fast walking speeds. Gait data was collected using optical motion capture system. Kinematics of the hip and knee and coordinated hip-knee kinematics were evaluated using Statistical Parametric Mapping (SPM) and cyclograms (angle-angle plots). Values derived from cyclograms were compared using repeated-measures ANOVA for within group, and ttest for between group comparisons. RESULTS: PD gait differed from controls mainly by lower knee range of motion (ROM). Adaptation to gait speed in PD was mainly achieved by increasing hip ROM. Regularity of gait was worse in PD but only during preferred speed. The ratios of different speed cyclograms were smaller in the PD groups. SPM analyses revealed that PD participants had smaller hip and knee angles during the swing phase, and PD participants reached peak hip flexion later than controls. Withdrawal of medication showed an exacerbation of only a few parameters. CONCLUSIONS: Our findings demonstrate the potential of granular kinematic analyses, including > 1 joint, for disease and treatment monitoring in PD. Our approach can be extended to further mobility-limiting conditions and other joint combinations. TRIAL REGISTRATION: The study is registered in the German Clinical Trials Register (DRKS00022998, registered on 04 Sep 2020).


Assuntos
Dopaminérgicos , Doença de Parkinson , Amplitude de Movimento Articular , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Estudos de Casos e Controles , Fenômenos Biomecânicos , Pessoa de Meia-Idade , Idoso , Dopaminérgicos/uso terapêutico , Amplitude de Movimento Articular/fisiologia , Articulação do Joelho/fisiopatologia , Marcha/fisiologia , Marcha/efeitos dos fármacos , Articulação do Quadril/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Articulações/fisiopatologia
12.
J Neuroeng Rehabil ; 21(1): 3, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172799

RESUMO

BACKGROUND: Technological advancements in functional neuroimaging and motion capture have led to the development of novel methods that facilitate the diagnosis and rehabilitation of motor deficits. These advancements allow for the synchronous acquisition and analysis of complex signal streams of neurophysiological data (e.g., EEG, fNIRS) and behavioral data (e.g., motion capture). The fusion of those data streams has the potential to provide new insights into cortical mechanisms during movement, guide the development of rehabilitation practices, and become a tool for assessment and therapy in neurorehabilitation. RESEARCH OBJECTIVE: This paper aims to review the existing literature on the combined use of motion capture and functional neuroimaging in motor rehabilitation. The objective is to understand the diversity and maturity of technological solutions employed and explore the clinical advantages of this multimodal approach. METHODS: This paper reviews literature related to the combined use of functional neuroimaging and motion capture for motor rehabilitation following the PRISMA guidelines. Besides study and participant characteristics, technological aspects of the used systems, signal processing methods, and the nature of multimodal feature synchronization and fusion were extracted. RESULTS: Out of 908 publications, 19 were included in the final review. Basic or translation studies were mainly represented and based predominantly on healthy participants or stroke patients. EEG and mechanical motion capture technologies were most used for biomechanical data acquisition, and their subsequent processing is based mainly on traditional methods. The system synchronization techniques at large were underreported. The fusion of multimodal features mainly supported the identification of movement-related cortical activity, and statistical methods were occasionally employed to examine cortico-kinematic relationships. CONCLUSION: The fusion of motion capture and functional neuroimaging might offer advantages for motor rehabilitation in the future. Besides facilitating the assessment of cognitive processes in real-world settings, it could also improve rehabilitative devices' usability in clinical environments. Further, by better understanding cortico-peripheral coupling, new neuro-rehabilitation methods can be developed, such as personalized proprioceptive training. However, further research is needed to advance our knowledge of cortical-peripheral coupling, evaluate the validity and reliability of multimodal parameters, and enhance user-friendly technologies for clinical adaptation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Captura de Movimento , Reprodutibilidade dos Testes , Neuroimagem Funcional
13.
J Neuroeng Rehabil ; 21(1): 128, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085954

RESUMO

BACKGROUND: Systems that capture motion under laboratory conditions limit validity in real-world environments. Mobile motion capture solutions such as Inertial Measurement Units (IMUs) can progress our understanding of "real" human movement. IMU data must be validated in each application to interpret with clinical applicability; this is particularly true for diverse populations. Our IMU analysis method builds on the OpenSim IMU Inverse Kinematics toolkit integrating the Versatile Quaternion-based Filter and incorporates realistic constraints to the underlying biomechanical model. We validate our processing method against the reference standard optical motion capture in a case report with participants with transfemoral amputation fitted with a Percutaneous Osseointegrated Implant (POI) and without amputation walking over level ground. We hypothesis that by using this novel pipeline, we can validate IMU motion capture data, to a clinically acceptable degree. RESULTS: Average RMSE (across all joints) between the two systems from the participant with a unilateral transfemoral amputation (TFA) on the amputated and the intact sides were 2.35° (IQR = 1.45°) and 3.59° (IQR = 2.00°) respectively. Equivalent results in the non-amputated participant were 2.26° (IQR = 1.08°). Joint level average RMSE between the two systems from the TFA ranged from 1.66° to 3.82° and from 1.21° to 5.46° in the non-amputated participant. In plane average RMSE between the two systems from the TFA ranged from 2.17° (coronal) to 3.91° (sagittal) and from 1.96° (transverse) to 2.32° (sagittal) in the non-amputated participant. Coefficients of Multiple Correlation (CMC) results between the two systems in the TFA ranged from 0.74 to > 0.99 and from 0.72 to > 0.99 in the non-amputated participant and resulted in 'excellent' similarity in each data set average, in every plane and at all joint levels. Normalized RMSE between the two systems from the TFA ranged from 3.40% (knee level) to 54.54% (pelvis level) and from 2.18% to 36.01% in the non-amputated participant. CONCLUSIONS: We offer a modular processing pipeline that enables the addition of extra layers, facilitates changes to the underlying biomechanical model, and can accept raw IMU data from any vendor. We successfully validate the pipeline using data, for the first time, from a TFA participant using a POI and have proved our hypothesis.


Assuntos
Amputação Cirúrgica , Membros Artificiais , Humanos , Fenômenos Biomecânicos , Amputação Cirúrgica/reabilitação , Fêmur/cirurgia , Osseointegração/fisiologia , Masculino , Estudo de Prova de Conceito , Amputados/reabilitação , Caminhada/fisiologia , Adulto , Prótese Ancorada no Osso
14.
J Sports Sci ; 42(2): 179-188, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38440835

RESUMO

LEOMO™ is a commercial inertial measurement unit system that provides cycling-specific motion performance indicators (MPIs) and offers a mobile solution for monitoring cyclists. We aimed to validate the LEOMO sensors during sprint cycling using gold-standard marker-based three-dimensional (3D) motion technology (Qualisys, AB). Our secondary aim was to explore the relationship between peak power during sprints and MPIs. Seventeen elite track cyclists performed 3 × 15s seated start maximum efforts on a cycle ergometer. Based on intraclass correlation coefficient (ICC3,1), the MPIs derived from 3D and LEOMO showed moderate agreement (0.50 < 0.75) for the right foot angular range (FAR); left foot angular range first quadrant (FARQ1); right leg angular range (LAR); and mean angle of the pelvis in the sagittal plane. Agreement was poor (ICC < 0.50) between MPIs derived from 3D and LEOMO for the left FAR, right FARQ1, left LAR, and mean range of motion of the pelvis in the frontal and transverse planes. Only one LEOMO-derived (pelvic rotation) and two 3D-derived (right FARQ1 and FAR) MPIs showed large positive significant correlations with peak power. Caution is advised regarding use of the LEOMO for short maximal cycling efforts and derived MPIs to inform peak sprint cycling power production.


Assuntos
Ciclismo , Captura de Movimento , Humanos , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Postura Sentada
15.
Artigo em Inglês | MEDLINE | ID: mdl-39151671

RESUMO

BACKGROUND: Tendon transfers are often utilized to improve shoulder external rotation and abduction in children with brachial plexus birth injuries and are designed to improve glenohumeral (GH) joint motion. However, changes in scapulothoracic (ST) and glenohumeral (GH) joint function after tendon transfer are not well defined. The purpose of this study was to quantify changes in GH, ST, and humerothoracic (HT) joint function before and after tendon transfer, and we hypothesized that tendon transfers would reorient the arc of motion into more external rotation and abduction, but not increase GH motion. METHODS: Motion analysis was performed in 15 children (ages 3-16) before and after transfer of teres major and/or latissimus dorsi. Scapulothoracic, GH, and HT joint angles were measured in a neutral, resting position and each of the modified Mallet positions. Joint angular displacements from the neutral position and the total arc of internal-external rotation for each joint were also calculated. Relevant joint angles, joint angular displacements, and internal-external rotation arcs were compared using multivariate analyses of variance with repeated measures and univariate post-hoc analyses. RESULTS: Glenohumeral and HT external rotation were significantly increased in all positions postoperatively. The arc of GH internal-external rotation was unchanged, but oriented in more external rotation after surgery. Only 6 patients gained active external rotation. Glenohumeral and HT internal rotation were significantly decreased after surgery, but ST internal rotation was significantly increased. Two patients had loss of midline function. In the abduction position, GH elevation joint angles were unchanged, but ST and HT elevation increased. DISCUSSION: Only four patients gained active GH external rotation and maintained their internal rotation. Each of those patients underwent isolated tendon transfer without concomitant joint release. Seven patients maintained their preoperative internal rotation, which was attributed to increased ST internal rotation. The other half of patients lost internal rotation and gained external rotation through reorientation of the arc of rotation. Nine patients gained HT elevation, with three attributed to increased ST upward rotation, five attributed to a combination of increased ST upward rotation and increased GH elevation, and one attributed to increased GH abduction contracture. These findings challenge the dogma that teres major/latissimus dorsi tendon transfers augment GH motion and highlight the importance of ST function for outcome determination.

16.
Sensors (Basel) ; 24(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39065933

RESUMO

Technologies that capture and analyze movement patterns for diagnostic or therapeutic purposes are a major locus of innovation in the United States. Several studies have evaluated their measurement properties in different conditions with variable findings. To date, the authors are not aware of any systematic review of studies conducted to assess the concurrent validity of pressure-sensing walkway technologies. The results of such an analysis could establish the body of evidence needed to confidently use these systems as reference or gold-standard systems when validating novel tools or measures. A comprehensive search of electronic databases including MEDLINE, Embase, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) was performed. The initial search yielded 7670 papers. After removing duplicates and applying study inclusion/exclusion criteria, 11 papers were included in the systematic review with 10 included in a meta-analysis. There were 25 spatial and temporal gait parameters extracted from the included studies. The results showed there was not a significant bias for nearly all spatiotemporal gait parameters when the walkway system was compared to the reference systems. The findings from this analysis should provide confidence in using the walkway systems as reference systems in future studies to support the evaluation and validation of novel technologies deriving gait parameters.


Assuntos
Marcha , Humanos , Marcha/fisiologia , Caminhada/fisiologia , Pressão
17.
Sensors (Basel) ; 24(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38733052

RESUMO

Motion capture technology plays a crucial role in optimizing athletes' skills, techniques, and strategies by providing detailed feedback on motion data. This article presents a comprehensive survey aimed at guiding researchers in selecting the most suitable motion capture technology for sports science investigations. By comparing and analyzing the characters and applications of different motion capture technologies in sports scenarios, it is observed that cinematography motion capture technology remains the gold standard in biomechanical analysis and continues to dominate sports research applications. Wearable sensor-based motion capture technology has gained significant traction in specialized areas such as winter sports, owing to its reliable system performance. Computer vision-based motion capture technology has made significant advancements in recognition accuracy and system reliability, enabling its application in various sports scenarios, from single-person technique analysis to multi-person tactical analysis. Moreover, the emerging field of multimodal motion capture technology, which harmonizes data from various sources with the integration of artificial intelligence, has proven to be a robust research method for complex scenarios. A comprehensive review of the literature from the past 10 years underscores the increasing significance of motion capture technology in sports, with a notable shift from laboratory research to practical training applications on sports fields. Future developments in this field should prioritize research and technological advancements that cater to practical sports scenarios, addressing challenges such as occlusion, outdoor capture, and real-time feedback.


Assuntos
Esportes , Dispositivos Eletrônicos Vestíveis , Humanos , Esportes/fisiologia , Fenômenos Biomecânicos , Inquéritos e Questionários , Movimento (Física) , Inteligência Artificial , Movimento/fisiologia , Captura de Movimento
18.
Sensors (Basel) ; 24(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38544203

RESUMO

This study assesses the agreement of compressive and shear force estimates at the L5-S1 joint using inertial motion capture (IMC) within a musculoskeletal simulation model during manual lifting tasks, compared against a top-down optical motion capture (OMC)-based model. Thirty-six participants completed lifting and lowering tasks while wearing a modified Plug-in Gait marker set for the OMC and a full-body IMC set-up consisting of 17 sensors. The study focused on tasks with variable load weights, lifting heights, and trunk rotation angles. It was found that the IMC system consistently underestimated the compressive forces by an average of 34% (975.16 N) and the shear forces by 30% (291.77 N) compared with the OMC system. A critical observation was the discrepancy in joint angle measurements, particularly in trunk flexion, where the IMC-based model underestimated the angles by 10.92-11.19 degrees on average, with the extremes reaching up to 28 degrees. This underestimation was more pronounced in tasks involving greater flexion, notably impacting the force estimates. Additionally, this study highlights significant differences in the distance from the spine to the box during these tasks. On average, the IMC system showed an 8 cm shorter distance on the X axis and a 12-13 cm shorter distance on the Z axis during lifting and lowering, respectively, indicating a consistent underestimation of the segment length compared with the OMC system. These discrepancies in the joint angles and distances suggest potential limitations of the IMC system's sensor placement and model scaling. The load weight emerged as the most significant factor affecting force estimates, particularly at lower lifting heights, which involved more pronounced flexion movements. This study concludes that while the IMC system offers utility in ergonomic assessments, sensor placement and anthropometric modeling accuracy enhancements are imperative for more reliable force and kinematic estimations in occupational settings.


Assuntos
Vértebras Lombares , Captura de Movimento , Humanos , Movimento , Fenômenos Mecânicos , Fenômenos Biomecânicos , Remoção
19.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894476

RESUMO

(1) Background: Marker-based 3D motion capture systems (MBS) are considered the gold standard in gait analysis. However, they have limitations for which markerless camera-based 3D motion capture systems (MCBS) could provide a solution. The aim of this systematic review and meta-analysis is to compare the accuracy, validity, and reliability of MCBS and MBS. (2) Methods: A total of 2047 papers were systematically searched according to PRISMA guidelines on 7 February 2024, in two different databases: Pubmed (1339) and WoS (708). The COSMIN-tool and EBRO guidelines were used to assess risk of bias and level of evidence. (3) Results: After full text screening, 22 papers were included. Spatiotemporal parameters showed overall good to excellent accuracy, validity, and reliability. For kinematic variables, hip and knee showed moderate to excellent agreement between the systems, while for the ankle joint, poor concurrent validity and reliability were measured. The accuracy and concurrent validity of walking speed were considered excellent in all cases, with only a small bias. The meta-analysis of the inter-rater reliability and concurrent validity of walking speed, step time, and step length resulted in a good-to-excellent intraclass correlation coefficient (ICC) (0.81; 0.98). (4) Discussion and conclusions: MCBS are comparable in terms of accuracy, concurrent validity, and reliability to MBS in spatiotemporal parameters. Additionally, kinematic parameters for hip and knee in the sagittal plane are considered most valid and reliable but lack valid and accurate measurement outcomes in transverse and frontal planes. Customization and standardization of methodological procedures are necessary for future research to adequately compare protocols in clinical settings, with more attention to patient populations.


Assuntos
Análise da Marcha , Marcha , Humanos , Análise da Marcha/métodos , Marcha/fisiologia , Imageamento Tridimensional/métodos , Fenômenos Biomecânicos/fisiologia , Reprodutibilidade dos Testes , Captura de Movimento
20.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001018

RESUMO

Locomotor and balance disorders are major limitations for subjects with hemiparesis. The Timed Up and Go (TUG) test is a complex navigational task involving oriented walking and obstacle circumvention. We hypothesized that subjects with hemiparesis adopt a cautious gait during complex locomotor tasks. The primary aim was to compare spatio-temporal gait parameters, indicators of cautious gait, between the locomotor subtasks of the TUG (Go, Turn, Return) and a Straight-line walk in people with hemiparesis. Our secondary aim was to analyze the relationships between TUG performance and balance measures, compare spatio-temporal gait parameters between fallers and non-fallers, and identify the biomechanical determinants of TUG performance. Biomechanical parameters during the TUG and Straight-line walk were analyzed using a motion capture system. A repeated measures ANOVA and two stepwise ascending multiple regressions (with performance variables and biomechanical variables) were conducted. Gait speed, step length, and % single support phase (SSP) of the 29 participants were reduced during Turn compared to Go and Return and the Straight-line walk, and step width and % double support phase were increased. TUG performance was related to several balance measures. Turn performance (R2 = 63%) and Turn trajectory deviation followed by % SSP on the paretic side and the vertical center of mass velocity during Go (R2 = 71%) determined TUG performance time. People with hemiparesis adopt a cautious gait during complex navigation at the expense of performance.


Assuntos
Marcha , Paresia , Equilíbrio Postural , Humanos , Paresia/fisiopatologia , Marcha/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Equilíbrio Postural/fisiologia , Fenômenos Biomecânicos/fisiologia , Idoso , Caminhada/fisiologia , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA