Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nano Lett ; 24(21): 6417-6424, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38710072

RESUMO

The functional properties of complex oxides, including magnetism and ferroelectricity, are closely linked to subtle structural distortions. Ultrafast optical excitations provide the means to manipulate structural features and ultimately to affect the functional properties of complex oxides with picosecond-scale precision. We report that the lattice expansion of multiferroic BiFeO3 following above-bandgap optical excitation leads to distortion of the oxygen octahedral rotation (OOR) pattern. The continuous coupling between OOR and strain was probed using time-resolved X-ray free-electron laser diffraction with femtosecond time resolution. Density functional theory calculations predict a relationship between the OOR and the elastic strain consistent with the experiment, demonstrating a route to employing this approach in a wider range of systems. Ultrafast control of the functional properties of BiFeO3 thin films is enabled by this approach because the OOR phenomena are related to ferroelectricity, and via the Fe-O-Fe bond angles, the superexchange interaction between Fe atoms.

2.
J Comput Chem ; 45(1): 13-24, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37656428

RESUMO

Multidrug resistance pathogens causing infections and illness remain largely untreated clinically. Efflux pumps are one of the primary processes through which bacteria develop resistance by transferring antibiotics from the interior of their cells to the outside environment. Inhibiting these pumps by developing efficient derivatives appears to be a promising strategy for restoring antibiotic potency. This investigation explores literature-reported inhibitors of E. coli efflux pump fusion proteins AcrB-AcrA and identify potential chemical derivatives of these inhibitors to overcome the limitations. Using computational and structure-guided approaches, a study was conducted with the selected inhibitors (AcrA:25-AcrB:59) obtained by data mining and their derivatives (AcrA:857-AcrB:3891) to identify their inhibitory effect on efflux pump using virtual screening, molecular docking and density functional theory (DFT) calculations. The finding indicates that Compound 2 (ZINC000072136376) has shown better binding and a significant inhibitory effect on AcrA, while Compound 3 (ZINC000072266819) has shown stronger binding and substantial inhibition effect on both non-mutant and mutated AcrB subunits. The identified derivatives could exhibit a better inhibitor and provide a potential approach for restoring the actions of resistant antibiotics.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
3.
Small ; : e2406108, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39397254

RESUMO

Dry reforming of methane (DRM), a pivotal process for converting greenhouse gases into syngas is demanding rationally designed catalysts with high stability and ideal catalytic performance for industrial applications due to its stability of reactant molecules and characteristic of carbon deposition. However, the mechanistic understanding of how the coordination environment of the metal in a single-atom catalytic system may influence the catalytic performance remains limited. In this work, high- and low-coordinating Ru-based (RuHC and RuLC) catalysts with distinct Ru-O coordination numbers are prepared using one-pot and two-step methods. The difference in the stability (12.3% and negligible deactivation during 20 h test for RuLC and RuHC catalysts respectively) and selectivity (0.57 and 0.37 of H2/CO ratio) brought by the coordination environment signified the structure-function relationship of single-atom catalysts in DRM. The impact of the structure on the properties is systematically investigated by thorough structural and operando characterization as well as density functional theory (DFT) calculation. The findings contribute to the optimal design of single-atom catalysts for DRM, offering a theoretical basis for industrial catalyst development and the potential to improve the process's environmental impact.

4.
Small ; 20(38): e2400845, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38881161

RESUMO

Na2Ti3O7-based anodes show great promise for Na+ storage in sodium-ion batteries (SIBs), though the effect of Na2Ti3O7 morphology on battery performance remains poorly understood. Herein, hydrothermal syntheses is used to prepare free-standing Na2Ti3O7 nanosheets or Na2Ti3O7 nanotubes on Ti foil substrates, with the structural and electrochemical properties of the resulting electrodes explored in detail. Results show that the Na2Ti3O7 nanosheet electrode (NTO NSs) delivered superior performance in terms of reversible capacity, rate capability, and especially long-term durability in SIBs compared to its nanotube counterpart (NTO NTs). Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations, combined with density functional theory calculations, demonstrated that the flexible 2D Na2Ti3O7 nanosheets are mechanically more robust than the rigid Na2Ti3O7 nanotube arrays during prolonged battery cycling, explaining the superior durability of the NTO NSs electrode. This work prompts the use of anodes based on Na2Ti3O7 nanosheets in the future development of high-performance SIBs.

5.
Macromol Rapid Commun ; 45(9): e2300652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407457

RESUMO

Pyrrole-based polymers (PBPs), a type of fascinating functional polymers, play a crucial role in materials science. However, efficient synthetic strategies of PBPs with diverse structures are mainly focused on conjugated polypyrroles and still remain challenging. Herein, an atom and step economy protocol is described to access various 2,4-disubstituted PBPs by in situ formation of pyrrole core structure via copper-catalyzed [3+2] polycycloaddition of dialkynones and diisocyanoacetates. A series of PBPs is prepared with high molecular weight (Mw up to 18 200 Da) and moderate to good yield (up to 87%), which possesses a fluorescent emission located in the green to yellow light region. Blending the PBPs with polyvinyl alcohol, the stretchable composite films exhibit a significant strengthening of the mechanical properties (tensile stress up to 59 MPa, elongation at break >400%) and an unprecedented stress-responsive luminescence enhancement that over fourfold fluorescent emission intensity is maintained upon stretching up to 100%. On the basis of computational studies, the unique photophysical and mechanical properties are attributed to the substitution of carbonyl chromophores on the pyrrole unit.


Assuntos
Cobre , Polímeros , Pirróis , Pirróis/química , Cobre/química , Catálise , Polímeros/química , Polímeros/síntese química , Estrutura Molecular , Reação de Cicloadição
6.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468669

RESUMO

There has been a persistent effort to understand and control the incorporation of metal impurities in semiconductors at nanoscale, as it is important for semiconductor processing from growth, doping to making contact. Previously, the injection of metal atoms into nanoscaled semiconductor, with concentrations orders of magnitude higher than the equilibrium solid solubility, has been reported, which is often deemed to be detrimental. Here our theoretical exploration reveals that this colossal injection is because gold or aluminum atoms tend to substitute Si atoms and thus are not mobile in the lattice of Si. In contrast, the interstitial atoms in the Si lattice such as manganese (Mn) are expected to quickly diffuse out conveniently. Experimentally, we confirm the self-inhibition effect of Mn incorporation in nanoscaled silicon, as no metal atoms can be found in the body of silicon (below 1017 atoms per cm-3) by careful three-dimensional atomic mappings using highly focused ultraviolet-laser-assisted atom-probe tomography. As a result of self-inhibition effect of metal incorporation, the corresponding field-effect devices demonstrate superior transport properties. This finding of self-inhibition effect provides a missing piece for understanding the metal incorporation in semiconductor at nanoscale, which is critical not only for growing nanoscale building blocks, but also for designing and processing metal-semiconductor structures and fine-tuning their properties at nanoscale.

7.
Nano Lett ; 23(10): 4533-4540, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155295

RESUMO

Janus transition metal dichalcogenides (TMDCs), with dissimilar chalcogen atoms on each side of TMDCs, have garnered considerable research attention because of the out-of-plane intrinsic polarization in monolayer TMDCs. Although a plasma process has been proposed for synthesizing Janus TMDCs based on the atomic substitution of surface atoms at room temperature, the formation dynamics and intermediate electronic states have not been completely examined. In this study, we investigated the intermediate state between MoSe2 and Janus MoSeS during plasma processing. Atomic composition analysis and atomic-scale structural observations revealed the intermediate partially substituted Janus (PSJ) structure. Combined with theoretical calculations, we successfully clarified the characteristic Raman modes in the intermediate PSJ structure. The PL exhibited discontinuous transitions that could not be explained by the theoretical calculations. These findings will contribute toward understanding the formation process and electronic-state modulation of Janus TMDCs.

8.
Molecules ; 29(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257242

RESUMO

Support effect is an important issue in heterogeneous catalysis, while the explicit role of a catalytic support is often unclear for catalytic reactions. A systematic density functional theory computational study is reported in this paper to elucidate the effect of a model boron nitride (BN) support on the first N-H bond activation step of NH3 on Run (n = 1, 2, 3) metal clusters. Geometry optimizations and energy calculations were carried out using density functional theory (DFT) calculation for intermediates and transition states from the starting materials undergoing the N-H activation process. The primary findings are summarized as follows. The involvement of the model BN support does not significantly alter the equilibrium structure of intermediates and transition states in the most favorable pathway (MFP). Moreover, the involvement of BN support decreases the free energy of activation, ΔG≠, thus improving the reaction rate constant. This improvement is more obvious at high temperatures like 673 K than low temperatures like 298 K. The BN support effect leading to the ΔG≠ decrease is most significant for the single Ru atom case among all three cases studied. Finally, the involvement of the model BN may change the spin transition behavior of the reaction system during the N-H bond activation process. All these findings provide a deeper insight into the support effect on the N-H bond activation of NH3 for the supported Ru catalyst in particular and for supported transition metal catalysts in general.

9.
Angew Chem Int Ed Engl ; 63(33): e202408629, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38831685

RESUMO

The rate performance, power density, and energy efficiency of electrochemical devices are often limited by ionic conductivities in electrolyte and electrode materials. Framework Prussian blue analogs and dense niobium oxides have been identified as high-rate electrodes for sodium- and lithium-ion batteries, respectively, yet the origin of the extremely high solid-state Na+/Li+ transport is not fully understood. Of critical importance is the fact that their ultra-low activation energy and anomalous pre-exponent factor cannot be satisfactorily rationalized from conventional theory of solid-state diffusion in the crystal lattice. Here, assisted by density-functional-theory calculations, we argued that the true origin is a unique surface-like diffusion mechanism of the intercalation ions. In a surface-like migration event, a mobile ion moves along the channel wall via a low coordination number and low migration barrier experiencing minimal steric hindrance. It is similar to surface diffusion in the conventional picture and contrasts with lattice diffusion from one interstitial/vacancy site to another one with high coordination number, crowded saddle-point geometry and high migration barrier. We found that the shifting from solid-state lattice diffusion to surface-like diffusion is determined by the size difference between the mobile ion and the diffusion channel, and a lowest migration energy barrier can be reached by mediating the channel size. The analogy to gas diffusion in molecular sieves shall be discussed. Additionally, the effects of defects and crystal water in Prussian blue analogs were also discussed for better understanding their rate performances in experimental scenarios.

10.
Small ; : e2306113, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088524

RESUMO

The interfacial electron modulation of electrocatalysts is an effective way to realize efficient hydrogen production, which is of great importance for future renewable energy systems. However, systematic theory-guided design of catalysts in heterojunction coupling is lacking. In this work, a multi-level theoretical calculation is performed to screen optimal candidates to form a heterojunction with CoP (101) surface for electrocatalytic hydrogen production. To overcome the weak adsorption of H+ on CoP (101), rational design of electrons potential well at the heterojunction interface can effectively enhance the hydrogen adsorption. All p-type cobalt-based phosphides are considered potential candidates at the beginning. After screening for conductivity, stability, interface matching screening, and ΔGH* evaluation, the CoP/Co2 P-H system is identified to be able to display optimal hydrogen production performance. To verify the theoretical design, CoP, CoP/Co2 P-H, and CoP/Co2 P-O are synthesized and the electrochemical analysis is carried out. The hydrogen evolution reaction (HER) performance is consistent with the prediction. This work utilizes the electron potential well effect and multi-level screening calculations to design highly efficient heterojunction catalysts, which can provide useful theoretical guidance for the rational design of heterojunction-type catalysts.

11.
Small ; 19(26): e2300013, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942683

RESUMO

In optimizing perovskites with ionic liquid (IL), the comparative study on Lewis acid-base (LAB) and hydrogen-bonding (HB) interactions between IL and perovskite is lacking. Herein, methyl is substituted for hydrogen on 2-position of imidazolium ring of N-heterocyclic carbene (NHC) type IL IdH to weaken HB interactions, and the resulting N-heterocyclic olefin (NHO) type IL IdMe with softer Lewis base character is studied in both hybrid quasi-2D (Q-2D) and 3D perovskites. It is revealed that IdMe participates in constructing high-quality Q-2D perovskite (n = 4) and provides stronger passivation for 3D perovskite compared with IdH. Power conversion efficiency (PCE) of Q-2D PEA2 MA3 Pb4 I13 perovskite solar cells (PVSCs) is boosted to 17.68% from 14.03%. PCE and device stability of 3D PVSCs enhances simultaneously. Both theoretical simulations and experimental results show that LAB interactions between NHO and Pb2+ take the primary optimization effects on perovskite. The success of engineering LAB interactions also offers inspiration to develop novel ILs for high-performance PVSCs.

12.
Chemistry ; 29(38): e202300858, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37067457

RESUMO

A remote electronic effect of chiral aminoindanol-derived N-heterocyclic carbene catalyst on an asymmetric benzoin reaction was investigated. The catalyst bearing remote electron-withdrawing substituents increased enantioselectivity of the reaction at the cost of the reaction rate. DFT calculations rationalized the increased enantioselectivity.


Assuntos
Benzoína , Metano , Estereoisomerismo , Catálise
13.
Chemistry ; 29(24): e202203781, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36723438

RESUMO

Water-gas shift (WGS) reaction offers a dominating path to hydrogen generation from fossil fuel, in which heterogeneous metal catalysts play a crucial part in this course. This review highlights and summarizes recent developments on theoretical calculations of metal catalysts developed to date, including surface structure (e. g., monometallic and polymetallic systems) and interface structure (e. g., supported catalysts and metal oxide composites), with special emphasis on the characteristics of crystal-face effect, alloying strategy, and metal-support interaction. A systematic summarization on reaction mechanism was performed, including redox mechanism, associative mechanism as well as hybrid mechanism; the development on chemical kinetics (e. g., molecular dynamics, kinetic Monte Carlo and microkinetic simulation) was then introduced. At the end, challenges associated with theoretical calculations on metal catalysts toward WGS reaction are discussed and some perspectives on the future advance of this field are provided.

14.
Environ Sci Technol ; 57(42): 16141-16151, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37695341

RESUMO

This study constructed hollow multishelled microreactors with a nanoconfined microenvironment for degrading ofloxacin (OFX) through peroxymonosulfate (PMS) activation in Fenton-like advanced oxidation processes (AOPs), resulting in adequate contaminant mineralization. Among the microreactors, a triple-shelled Co-based hollow microsphere (TS-Co/HM) exhibited optimal performance; its OFX degradation rate was 0.598 min-1, which was higher than that of Co3O4 nanoparticles by 8.97-fold. The structural tuning of Co/HM promoted the formation of oxygen vacancies (VO), which then facilitated the evolution of high-valence cobalt-oxo (Co(IV)═O) and shifted the entire t2g orbital of the Co atom upward, promoting catalytic reactions. Co(IV)═O was identified using a phenylmethyl sulfoxide (PMSO) probe and in situ Raman spectroscopy, and theoretical calculations were conducted to identify the lower energy barrier for Co(IV)═O formation on the defect-rich catalyst. Furthermore, the TS-Co/HM catalyst exhibited remarkable stability in inorganic (Cl-, H2PO4-, and NO3-), organic (humic acid), real water samples (tap water, river water, and hospital water), and in a continuous flow system in a microreactor. The nanoconfined microenvironment could enrich reactants in the catalyst cavities, prolong the residence time of molecules, and increase the utilization efficiency of Co(IV)═O. This work describes an activation process involving Co(IV)═O for organic contaminants elimination. Our results may encourage the use of multishelled structures and inform the design of nanoconfined catalysts in AOPs.

15.
J Sep Sci ; 46(18): e2300261, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37386802

RESUMO

Separation science plays a crucial role in the isolation of novel compounds contained in complex matrices. Yet their rationale employment needs preliminary structure elucidation, which usually requires sufficient aliquots of grade substances to characterize the molecule by nuclear magnetic resonance experiments. In this study, two peculiar oxa-tricycloundecane ethers were isolated by means of preparative multidimensional gas chromatography from the brown alga species Dictyota dichotoma (Huds.) Lam., aiming to assign their 3D structures. Density functional theory simulations were carried out to select the correct configurational species matching the experimental NMR data (in terms of enantiomeric couples). In this case, the theoretical approach was crucial as the protonic signal overlap and spectral overcrowding were preventing any other unambiguous structural information. Just after the identification through the density functional theory data matching of the correct relative configuration it was possible to verify an enhanced self-consistency with the experimental data, confirming the stereochemistry. The results obtained further pave the way toward structure elucidation of highly asymmetric molecules, whose configuration cannot be inferred by other means or strategies.


Assuntos
Phaeophyceae , Sesquiterpenos , Éteres , Espectroscopia de Ressonância Magnética/métodos , Cromatografia Gasosa/métodos , Phaeophyceae/química
16.
Small ; 18(3): e2104293, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738716

RESUMO

Antimony sulfide is attracting enormous attention due to its remarkable theoretical capacity as anode for sodium-ion batteries (SIBs). However, it still suffers from poor structural stability and sluggish reaction kinetics. Constructing covalent chemical linkage to anchor antimony sulfide on two-dimension conductive materials is an effective strategy to conquer the challenges. Herein, Ti3 C2 -Sb2 S3 composites are successfully achieved with monodispersed Sb2S3 uniformly pinned on the surface of Ti3 C2 Tx MXene through covalent bonding of Ti-O-Sb and S-Ti. Ti3 C2 Tx MXene serves as both charge storage contributor and flexible conductive buffer to sustain the structural integrity of the electrode. Systematic analysis indicates that construction of efficient interfacial chemical linkage could bridge the physical gap between Sb2S3 nanoparticles and Ti3 C2 Tx MXene, thus promoting the interfacial charge transfer efficiency. Furthermore, the interfacial covalent bonding could also effectively confine Sb2S3 nanoparticles and the corresponding reduced products on the surface of Ti3 C2 Tx MXene. Benefited from the unique structure, Ti3 C2 -Sb2 S3 anode delivers a high reversible capacity of 475 mAh g-1 at 0.2 A g-1 after 300 cycles, even retaining 410 mAh g-1 at 1.0 A g-1 after 500 cycles. This strategy is expected to shed more light on interfacial chemical linkage towards rational design of advanced materials for SIBs.

17.
Chem Pharm Bull (Tokyo) ; 70(10): 735-739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36184457

RESUMO

Computational chemistry is useful in synthetic organic chemistry, as it can be used not only to analyze reaction mechanisms, but also to calculate biosynthetic pathways and to plan and evaluate strategies for total syntheses. Here we report the computation-guided total synthesis of vitisinol G, a resveratrol dimer.


Assuntos
Estilbenos , Resveratrol
18.
Nano Lett ; 21(14): 6014-6021, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34236873

RESUMO

Grain boundaries (GBs) are vital to crystal materials and their applications. Although GBs in bulk and two-dimensional materials have been extensively studied, the segmented GBs observed in transition metal dichalcogenide monolayers by a sequence of folded segments remain a mystery. We visualize the large-area distribution of the segmented GBs in MoSe2 monolayers and unravel their structural origin using ab initio calculations combined with high-resolution atomic characterizations. Unlike normal GBs in two-dimensional materials with commonly one type of dislocation cores, the segmented GBs consist of two basic elements-4|8 and 4|4|8 cores, whose alloying results in structural diversity and distinctly high stability due to relieved stress fields nearby. The defective polygons can uniquely migrate along the segmented GBs via the movement of single molybdenum atoms, unobtrusively endowing a given GB with variable appearances. Furthermore, the segmented GBs can achieve useful functionalities such as intrinsic magnetism and highly active electrocatalysis.

19.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144791

RESUMO

Strawberries are an important fruit in the European diet because of their unique taste and high content of essential nutrients and bioactive compounds. The anthocyanins are known to be colorful phenolics in strawberries. In 17 samples of six strawberry cultivars produced in Serbia, i.e., the common varieties Alba, Asia, and Clery as well as promising breeding materials (11.29.11, 11.34.6, and 11.39.3), the anthocyanin profile as well as antimicrobial and antioxidative activity profiles were determined. All investigated extracts showed antioxidative and antibacterial activities against Gram-negative Aliivibrio fischeri. The responses were quite similar in number and intensity. The HPTLC-DPPH• scavenging assay and HPTLC-Aliivibrio fischeri bioassay coupled with high-resolution mass spectrometry identified pelargonidin-3-O-glucoside (Pg-3-glc) as the main anthocyanin and prominent antioxidative and antimicrobial compound in strawberries. The density functional theory calculations at the M06-2X/6-31+G(d,p) level showed that Pg-3-glc quenches free radicals via sequential proton loss electron transfer mechanism in water and in pentyl ethanoate, where the 5-OH group is the most reactive site for proton and hydrogen atom transfer. The results were confirmed via spectrophotometry. The highest total phenolic content was found in Clery and 11.39.3, while statistically significant differences between the genotypes regarding the antioxidant activity were not confirmed. Although very similar in the anthocyanin, antioxidative, and antimicrobial profile patterns, the strawberry genotypes were successfully classified using principal component analysis.


Assuntos
Antipsicóticos , Fragaria , Antocianinas/análise , Antibacterianos/análise , Antibacterianos/farmacologia , Antioxidantes/química , Quimiometria , Cromatografia , Fragaria/química , Frutas/química , Glucosídeos/análise , Fenóis/análise , Melhoramento Vegetal , Prótons , Água/análise
20.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897926

RESUMO

N-nitrosamines, which are well-known pro-mutagens, are found in drugs, pickled food and tobacco. Therefore, controlling their concentrations is very important. When an HPLC, GC or NMR analysis is conducted to investigate certain asymmetrical N-nitrosamines, two sets of signals attributed to the asymmetric N-nitrosamine isomers are usually observed. However, few reports on the NMR assignment of asymmetrical N-nitrosamine isomers have been published. In this study, we investigated the NMR assignments of the Z/E isomers of six asymmetrical N-nitrosamines by means of density functional theory (DFT) calculations. The configuration of the major isomer of asymmetrical N-nitrosamine 3 was the Z-configuration. The configuration of the major isomers of asymmetrical N-nitrosamines 4-7 was the E-configuration. Then, we determined the Z/E ratios of these asymmetrical N-nitrosamines by means of variable temperature (VT) and room temperature (RT) 1H-NMR experiments. The ratios of the Z/E isomer 3 quickly increased beyond 100% in the VT 1H NMR experiments. The ratios of Z/E isomers 4-7 were increased in the range of 10-60% in the VT 1H NMR experiments. The results of this study indicate that identifying the isomers of asymmetrical N-nitrosamine is necessary to control the quality of N-nitrosamines for active pharmaceutical ingredients (APIs).


Assuntos
Nitrosaminas , Teoria da Densidade Funcional , Isomerismo , Espectroscopia de Ressonância Magnética , Nitrosaminas/análise , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA