Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Neurochem Res ; 48(1): 210-228, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36064822

RESUMO

Temporal lobe epilepsy is the most drug-resistant type with the highest incidence among the other focal epilepsies. Metabolic manipulations are of great interest among others, glycolysis inhibitors like 2-deoxy D-glucose (2-DG) being the most promising intervention. Here, we sought to investigate the effects of 2-DG treatment on cellular and circuit level electrophysiological properties using patch-clamp and local field potentials recordings and behavioral alterations such as depression and anxiety behaviors, and changes in nitric oxide signaling in the intrahippocampal kainic acid model. We found that epileptic animals were less anxious, more depressed, with more locomotion activity. Interestingly, by masking the effect of increased locomotor activity on the parameters of the zero-maze test, no altered anxiety behavior was noted in epileptic animals. However, 2-DG could partially reverse the behavioral changes induced by kainic acid. The findings also showed that 2-DG treatment partially suppresses cellular level alterations while failing to reverse circuit-level changes resulting from kainic acid injection. Analysis of NADPH-diaphorase positive neurons in the CA1 area of the hippocampus revealed that the number of positive neurons was significantly reduced in dorsal CA1 of the epileptic animals and 2-DG treatment did not affect the diminishing effect of kainic acid on NADPH-d+ neurons in the CA1 area. In the control group receiving 2-DG, however, an augmented NADPH-d+ cell number was noted. These data suggest that 2-DG cannot suppress epileptiform activity at the circuit-level in this model of epilepsy and therefore, may fail to control the seizures in temporal lobe epilepsy cases.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/prevenção & controle , Ácido Caínico/toxicidade , NADPH Desidrogenase/metabolismo , NADPH Desidrogenase/farmacologia , Glucose/metabolismo , NADP/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Neurônios/metabolismo , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Glicólise , Modelos Animais de Doenças
2.
Exp Cell Res ; 400(1): 112517, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582094

RESUMO

To investigate mechanisms that TMEM2 activation inhibits hepatitis B virus (HBV) infection in hepatocarcinoma (HCC) cells, co-immunoprecipitation (Co-IP) and mass spectrometry were used in screening interacting proteins for TMEM2. Levels of casein kinase 2 subunit α3 (CSNK2A3) in HCC cells were found to be inhibited or overexpressed using siRNAs and pcDNA3.1-CSNK2A3, respectively. Effect of CSNK2A3 expression on cell proliferation was analyzed using MTS, while its effect on HBV infection was measured using ddPCR and IHC. Western blotting and JAK inhibitor ruxolitinib were also used to determine whether TMEM2-regulated CSNK2A3 expression and HBV infection were affected by JAK-STAT signaling. Co-IP and mass spectrometry results showed that CSNK2A3 interacts with TMEM2. Moreover, overexpression of CSNK2A3 significantly inhibited cell proliferation, while inhibition of CSNK2A3 promoted proliferation of HCC cells. In addition, overexpression of CSNK2A3 was observed to significantly enhance HBV infection, while siRNA knockdown of CSNK2A3 inhibited HBV infection. Notably, effect of CSNK2A3 overexpression on HBV infection was suppressed by TMEM2 overexpression. Further mechanistic analyses have revealed that TMEM2 could antagonize the effects of CSNK2A3 on cell proliferation and HBV infection via JAK-STAT pathway activation. In conclusion, TMEM2 has been determined to bind to CSNK2A3 to inhibit HBV infection via activation of the JAK-STAT pathway.


Assuntos
Caseína Quinase II/metabolismo , Epilepsia do Lobo Temporal/prevenção & controle , Hepatite B/prevenção & controle , Janus Quinase 1/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição STAT/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Caseína Quinase II/genética , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Hepatite B/metabolismo , Hepatite B/patologia , Hepatite B/virologia , Vírus da Hepatite B/fisiologia , Humanos , Janus Quinase 1/genética , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Proteínas de Membrana/genética , PPAR gama/genética , PPAR gama/metabolismo , Fatores de Transcrição STAT/genética , Células Tumorais Cultivadas
3.
Neurobiol Dis ; 158: 105446, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34280524

RESUMO

Prevention or modification of acquired epilepsy in patients at risk is an urgent, yet unmet, clinical need. Following acute brain insults, there is an increased risk of mesial temporal lobe epilepsy (mTLE), which is often associated with debilitating comorbidities and reduced life expectancy. The latent period between brain injury and the onset of epilepsy may offer a therapeutic window for interfering with epileptogenesis. The pilocarpine model of mTLE is widely used in the search for novel antiepileptogenic treatments. Recent biochemical studies indicated that cholinergic mechanisms play a role in the epileptogenic alterations induced by status epilepticus (SE) in this and other models of mTLE, which prompted us to evaluate whether treatment with the muscarinic antagonist scopolamine during the latent period after SE is capable of preventing or modifying epilepsy and associated behavioral and cognitive alterations in female Sprague-Dawley rats. First, in silico pharmacokinetic modeling was used to select a dosing protocol by which M-receptor inhibitory brain levels of scopolamine are maintained during prolonged treatment. This protocol was verified by drug analysis in vivo. Rats were then treated twice daily with scopolamine over 17 days after SE, followed by drug wash-out and behavioral and video/EEG monitoring up to ~6 months after SE. Compared to vehicle controls, rats that were treated with scopolamine during the latent period exhibited a significantly lower incidence of spontaneous recurrent seizures during periods of intermittent recording in the chronic phase of epilepsy, less behavioral excitability, less cognitive impairment, and significantly reduced aberrant mossy fiber sprouting in the hippocampus. The present data may indicate that scopolamine exerts antiepileptogenic/disease-modifying activity in the lithium-pilocarpine rat model, possibly involving increased remission of epilepsy as a new mechanism of disease-modification. For evaluating the rigor of the present data, we envision a study that more thoroughly addresses the gender bias and video-EEG recording limitations of the present study.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Epilepsia do Lobo Temporal/prevenção & controle , Fibras Musgosas Hipocampais/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Escopolamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Simulação por Computador , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/etiologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Lítio , Antagonistas Muscarínicos/farmacocinética , Antagonistas Muscarínicos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Escopolamina/farmacocinética , Escopolamina/uso terapêutico , Convulsões/prevenção & controle
4.
Epilepsia ; 62(7): 1677-1688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34080183

RESUMO

OBJECTIVE: The kainic acid (KA)-induced status epilepticus (SE) model in rats is a well-defined model of epileptogenesis. This model closely recapitulates many of the clinical and pathological characteristics of human temporal lobe epilepsy (TLE) that arise following SE or another neurological insult. Spontaneous recurrent seizures (SRS) in TLE can present after a latent period following a neurological insult (traumatic brain injury, SE event, viral infection, etc.). Moreover, this model is suitable for preclinical studies to evaluate the long-term process of epileptogenesis and screen putative disease-modifying/antiepileptogenic agents. The burden of human TLE is highly variable, similar to the post-KA SE rat model. In this regard, this model may have broad translational relevance. This report thus details the pharmacological characterization and methodological refinement of a moderate-throughput drug screening program using the post-KA-induced SE model of epileptogenesis in male Sprague Dawley rats to identify potential agents that may prevent or modify the burden of SRS. Specifically, we sought to demonstrate whether our protocol could prevent the development of SRS or lead to a reduced frequency/severity of SRS. METHODS: Rats were administered either everolimus (2-3 mg/kg po) beginning 1, 2, or 24 h after SE onset, or phenobarbital (60 mg/kg ip) beginning 1 h after SE onset. All treatments were administered once/day for 5-7 days. Rats in all studies (n = 12/treatment dose/study) were then monitored intermittently by video-electroencephalography (2 weeks on, 2 weeks off, 2 weeks on epochs) to determine latency to onset of SRS and disease burden. RESULTS: Although no adverse side effects were observed in our studies, no treatment significantly modified disease or prevented the presentation of SRS by 6 weeks after SE onset. SIGNIFICANCE: Neither phenobarbital nor everolimus administered at several time points after SE onset prevented the development of SRS. Nonetheless, we demonstrate a practical and moderate-throughput screen for potential antiepileptogenic agents in a rat model of TLE.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia do Lobo Temporal/prevenção & controle , Everolimo/uso terapêutico , Fenobarbital/uso terapêutico , Animais , Anticonvulsivantes/efeitos adversos , Peso Corporal , Convulsivantes , Efeitos Psicossociais da Doença , Modelos Animais de Doenças , Composição de Medicamentos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Everolimo/efeitos adversos , Ensaios de Triagem em Larga Escala , Ácido Caínico , Masculino , Fenobarbital/efeitos adversos , Ratos , Ratos Sprague-Dawley , Convulsões/prevenção & controle , Pesquisa Translacional Biomédica
5.
Brain ; 143(3): 891-905, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129831

RESUMO

Epilepsy is a major health burden, calling for new mechanistic insights and therapies. CRISPR-mediated gene editing shows promise to cure genetic pathologies, although hitherto it has mostly been applied ex vivo. Its translational potential for treating non-genetic pathologies is still unexplored. Furthermore, neurological diseases represent an important challenge for the application of CRISPR, because of the need in many cases to manipulate gene function of neurons in situ. A variant of CRISPR, CRISPRa, offers the possibility to modulate the expression of endogenous genes by directly targeting their promoters. We asked if this strategy can effectively treat acquired focal epilepsy, focusing on ion channels because their manipulation is known be effective in changing network hyperactivity and hypersynchronziation. We applied a doxycycline-inducible CRISPRa technology to increase the expression of the potassium channel gene Kcna1 (encoding Kv1.1) in mouse hippocampal excitatory neurons. CRISPRa-mediated Kv1.1 upregulation led to a substantial decrease in neuronal excitability. Continuous video-EEG telemetry showed that AAV9-mediated delivery of CRISPRa, upon doxycycline administration, decreased spontaneous generalized tonic-clonic seizures in a model of temporal lobe epilepsy, and rescued cognitive impairment and transcriptomic alterations associated with chronic epilepsy. The focal treatment minimizes concerns about off-target effects in other organs and brain areas. This study provides the proof-of-principle for a translational CRISPR-based approach to treat neurological diseases characterized by abnormal circuit excitability.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Disfunção Cognitiva/genética , Disfunção Cognitiva/prevenção & controle , Epilepsia do Lobo Temporal/prevenção & controle , Edição de Genes/métodos , Canal de Potássio Kv1.1/biossíntese , Adenoviridae , Animais , Eletroencefalografia , Epilepsia do Lobo Temporal/complicações , Feminino , Hipocampo/metabolismo , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Neurônios/fisiologia , Cultura Primária de Células , Transfecção , Regulação para Cima
6.
J Physiol ; 598(1): 171-187, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682010

RESUMO

KEY POINTS: On-demand optogenetic inhibition of glutamatergic neurons in the fastigial nucleus of the cerebellum does not alter hippocampal seizures in a mouse model of temporal lobe epilepsy. In contrast, on-demand optogenetic excitation of glutamatergic neurons in the fastigial nucleus successfully inhibits hippocampal seizures. With this approach, even a single 50 ms pulse of light is able to significantly inhibit seizures. On-demand optogenetic excitation of glutamatergic fastigial neurons either ipsilateral or contralateral to the seizure focus is able to inhibit seizures. Selective excitation of glutamatergic nuclear neurons provides greater seizure inhibition than broadly exciting nuclear neurons without cell-type specificity. ABSTRACT: Temporal lobe epilepsy is the most common form of epilepsy in adults, but current treatment options provide limited efficacy, leaving as many as one-third of patients with uncontrolled seizures. Recently, attention has shifted towards more closed-loop therapies for seizure control, and on-demand optogenetic modulation of the cerebellar cortex was shown to be highly effective at attenuating hippocampal seizures. Intriguingly, both optogenetic excitation and inhibition of cerebellar cortical output neurons, Purkinje cells, attenuated seizures. The mechanisms by which the cerebellum impacts seizures, however, are unknown. In the present study, we targeted the immediate downstream projection of vermal Purkinje cells - the fastigial nucleus - in order to determine whether increases and/or decreases in fastigial output can underlie seizure cessation. Though Purkinje cell input to fastigial neurons is inhibitory, direct optogenetic inhibition of the fastigial nucleus had no effect on seizure duration. Conversely, however, fastigial excitation robustly attenuated hippocampal seizures. Seizure cessation was achieved at multiple stimulation frequencies, regardless of laterality relative to seizure focus, and even with single light pulses. Seizure inhibition was greater when selectively targeting glutamatergic fastigial neurons than when an approach that lacked cell-type specificity was used. Together, these results suggest that stimulating excitatory neurons in the fastigial nucleus may be a promising approach for therapeutic intervention in temporal lobe epilepsy.


Assuntos
Núcleos Cerebelares/fisiopatologia , Epilepsia do Lobo Temporal/prevenção & controle , Optogenética , Convulsões/prevenção & controle , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lobo Temporal/fisiopatologia
7.
Int J Neurosci ; 130(11): 1151-1155, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32053411

RESUMO

Temporal lobe epilepsy (TLE) is the most common type of drug-resistant epilepsy and hippocampal sclerosis (HS) is the most common pathological substrate of TLE. Considering the significant consequences of uncontrolled seizures (e.g. increased morbidity and mortality), epilepsy prevention remains a necessity that potentially could save many lives. Human herpes virus-6 (HHV-6) has been linked to TLE in humans. The relationship between HHV-6 and HS-TLE could be attributed to a neuro-inflammatory cascade triggered by the infection, involving direct neuronal damage and production of several pro-inflammatory cytokines under certain conditions that are still incompletely understood. Hepatitis B virus (HBV) infection is another chronic viral infection with a life-long latency. HBV infection is linked to various clinical conditions, including liver cirrhosis. There are currently three ways to fight HBV infection and its consequences; primary prevention (by vaccination), secondary prevention (by drug therapy), and tertiary prevention (by liver transplantation). Considering the similarities between the natural histories of HHV-6 and HBV infections, and also the successful strategies which are currently available to fight HBV infection and its long-term consequences, here, we propose three strategies to fight HHV-6 and its possible long-term consequence (i.e. HS-TLE): Primary prevention: by developing vaccines to prevent HHV-6 infection; Secondary prevention: by considering trials of antiviral drugs to treat HHV-6 infection, when it happens in the childhood to hopefully prevent its long-term consequences; and, Tertiary prevention: by stem cell therapy for drug-resistant epilepsy.


Assuntos
Antivirais , Epilepsia do Lobo Temporal/etiologia , Epilepsia do Lobo Temporal/terapia , Hepatite B/terapia , Herpesvirus Humano 6/patogenicidade , Infecções por Roseolovirus/complicações , Infecções por Roseolovirus/terapia , Transplante de Células-Tronco , Vacinas Virais , Epilepsia do Lobo Temporal/prevenção & controle , Hepatite B/tratamento farmacológico , Hepatite B/prevenção & controle , Hepatite B/cirurgia , Humanos , Infecções por Roseolovirus/prevenção & controle
8.
Epilepsia ; 60(11): 2314-2324, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31608439

RESUMO

OBJECTIVE: More than one-third of patients with temporal lobe epilepsy (TLE) continue to have seizures despite treatment with antiepileptic drugs, and many experience severe drug-related side effects, illustrating the need for novel therapies. Selective expression of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) allows cell-type-specific reduction of neuronal excitability. In this study, we evaluated the effect of chemogenetic suppression of excitatory pyramidal and granule cell neurons of the sclerotic hippocampus in the intrahippocampal mouse model (IHKA) for temporal lobe epilepsy. METHODS: Intrahippocampal IHKA mice were injected with an adeno-associated viral vector carrying the genes for an inhibitory DREADD hM4Di in the sclerotic hippocampus or control vector. Next, animals were treated systemically with different single doses of clozapine-N-oxide (CNO) (1, 3, and 10 mg/kg) and clozapine (0.03 and 0.1 mg/kg) and the effect on spontaneous hippocampal seizures, hippocampal electroencephalography (EEG) power, fast ripples (FRs) and behavior in the open field test was evaluated. Finally, animals received prolonged treatment with clozapine for 3 days and the effect on seizures was monitored. RESULTS: Treatment with both CNO and clozapine resulted in a robust suppression of hippocampal seizures for at least 15 hours only in DREADD-expressing animals. Moreover, total EEG power and the number of FRs were significantly reduced. CNO and/or clozapine had no effects on interictal hippocampal EEG, seizures, or locomotion/anxiety in the open field test in non-DREADD epileptic IHKA mice. Repeated clozapine treatment every 8 hours for 3 days resulted in almost complete seizure suppression in DREADD animals. SIGNIFICANCE: This study shows the potency of chemogenetics to robustly and sustainably suppress spontaneous epileptic seizures and pave the way for an epilepsy therapy in which a systemically administered exogenous drug selectively modulates specific cell types in a seizure network, leading to a potent seizure suppression devoid of the typical drug-related side effects.


Assuntos
Anticonvulsivantes/administração & dosagem , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/prevenção & controle , Convulsões/genética , Convulsões/prevenção & controle , Animais , Clozapina/administração & dosagem , Clozapina/análogos & derivados , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Vetores Genéticos/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Ácido Caínico/administração & dosagem , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/fisiopatologia
9.
J Physiol ; 596(19): 4729-4752, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30016551

RESUMO

KEY POINTS: ERG3 channels have a high expression level in the central nervous system. Knockdown of ERG3 channels enhances neuronal intrinsic excitability (caused by decreased fast afterhyperpolarization, shortened delay time to the generation of an action potential and enhanced summation of somatic excitatory postsynaptic potentials) in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. The expression of ERG3 protein is reduced in human and mouse hippocampal epileptogenic foci. Knockdown of ERG3 channels in hippocampus enhanced seizure susceptibility, while mice treated with the ERG channel activator NS-1643 were less prone to epileptogenesis. The results provide strong evidence that ERG3 channels have a crucial role in the regulation of neuronal intrinsic excitability in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells and are critically involved in the onset and development of epilepsy. ABSTRACT: The input-output relationship of neuronal networks depends heavily on the intrinsic properties of their neuronal elements. Profound changes in intrinsic properties have been observed in various physiological and pathological processes, such as learning, memory and epilepsy. However, the cellular and molecular mechanisms underlying acquired changes in intrinsic excitability are still not fully understood. Here, we demonstrate that ERG3 channels are critically involved in the regulation of intrinsic excitability in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. Knock-down of ERG3 channels significantly increases neuronal intrinsic excitability, which is mainly caused by decreased fast afterhyperpolarization, shortened delay time to the generation of an action potential and enhanced summation of somatic excitatory postsynaptic potentials. Interestingly, the expression level of ERG3 protein is significantly reduced in human and mouse brain tissues with temporal lobe epilepsy. Moreover, ERG3 channel knockdown in hippocampus significantly enhanced seizure susceptibility, while mice treated with the ERG channel activator NS-1643 were less prone to epileptogenesis. Taken together, our results suggest ERG3 channels play an important role in determining the excitability of hippocampal neurons and dysregulation of these channels may be involved in the generation of epilepsy. ERG3 channels may thus be a novel therapeutic target for the prevention of epilepsy.


Assuntos
Giro Denteado/fisiologia , Epilepsia do Lobo Temporal/prevenção & controle , Canais de Potássio Éter-A-Go-Go/metabolismo , Hipocampo/fisiologia , Canais de Potássio/metabolismo , Células Piramidais/fisiologia , Convulsões/prevenção & controle , Potenciais de Ação , Adulto , Animais , Estudos de Casos e Controles , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Canais de Potássio Éter-A-Go-Go/genética , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Canais de Potássio/genética , Convulsões/metabolismo , Convulsões/patologia
10.
J Pharmacol Exp Ther ; 364(1): 97-109, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101217

RESUMO

Epilepsy is a chronic brain disease characterized by repeated unprovoked seizures. Currently, no drug therapy exists for curing epilepsy or disease modification in people at risk. Despite several emerging mechanisms, there have been few studies of epigenetic signaling in epileptogenesis, the process whereby a normal brain becomes progressively epileptic because of precipitating factors. Here, we report a novel role of histone deacetylation as a critical epigenetic mechanism in epileptogenesis. Experiments were conducted using the histone deacetylase (HDAC) inhibitor sodium butyrate in the hippocampus kindling model of temporal lobe epilepsy (TLE), a classic model heavily used to approve drugs for treatment of epilepsy. Daily treatment with butyrate significantly inhibited HDAC activity and retarded the development of limbic epileptogenesis without affecting after-discharge signal. HDAC inhibition markedly impaired the persistence of seizure expression many weeks after epilepsy development. Moreover, subchronic HDAC inhibition for 2 weeks resulted in a striking retardation of epileptogenesis. HDAC inhibition, unexpectedly, also showed erasure of the epileptogenic state in epileptic animals. Finally, butyrate-treated animals exhibited a powerful reduction in mossy fiber sprouting, a morphologic index of epileptogenesis. Together these results underscore that HDAC inhibition prevents the development of TLE, indicating HDAC's critical signaling role in epileptogenesis. These findings, therefore, envisage a unique novel therapy for preventing or curing epilepsy by targeting the epigenetic HDAC pathway.


Assuntos
Epigênese Genética/efeitos dos fármacos , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/prevenção & controle , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Pharm Biol ; 56(1): 217-224, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29560767

RESUMO

CONTEXT: Temporal lobe epilepsy (TLE) is resistant to antiepileptic drugs (AEDs) and is associated with cognitive impairment. The modern Chinese medicine, compound Danshen dripping pills (CDDP), is clinically effective in treating epilepsy and improving cognitive impairment. OBJECTIVE: This study evaluated the protective effects of CDDP alone and in combination with carbamazepine (CBZ) on kainic acid-induced TLE and cognitive impairment in rats. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into five groups: control (sham operated), model, CDDP, CBZ and combined. A TLE model was then created via bilateral intrahippocampal injection of 0.35 µg kainic acid (KA). Rats received CDDP (85 mg/kg), CBZ (100 mg/kg) or combined (85 mg/kg CDDP +100 mg/kg CBZ) via intragastric administration for 90 d, respectively. Seizure intensity, apoptosis and glial cell line-derived neurotrophic factor (GDNF) were measured. Furthermore, the improvement in cognitive impairment and hippocampal neuronal damage was evaluated. RESULTS: CDDP combined with CBZ significantly decreased seizure severity and frequency (p < 0.05) and ameliorated cognitive impairment (p < 0.05). The model group showed a significant reduction of neurons and Bcl-2/Bax expression in the hippocampus CA3 area (p < 0.01), the combined groups significantly reversed these change (p < 0.01). GDNF expression in the combined groups showed a clear increase over the model group (p < 0.05). CONCLUSION: These findings support the use of CDDP as an adjuvant drug for the treatment of TLE and cognitive deficit. Its mechanism might be related to an anti-apoptosis effect and up-regulation of GDNF.


Assuntos
Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Carbamazepina/farmacologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Epilepsia do Lobo Temporal/prevenção & controle , Ácido Caínico , Animais , Apoptose/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Região CA3 Hipocampal/fisiopatologia , Canfanos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Quimioterapia Combinada , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/fisiopatologia , Reação de Fuga/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Panax notoginseng , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Salvia miltiorrhiza , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo
12.
J Neurosci ; 36(13): 3777-88, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030762

RESUMO

Epilepsy is a chronic disorder characterized by spontaneous recurrent seizures. Brain inflammation is increasingly recognized as a critical factor for seizure precipitation, but the molecular mediators of such proconvulsant effects are only partly understood. The chemokine CCL2 is one of the most elevated inflammatory mediators in patients with pharmacoresistent epilepsy, but its contribution to seizure generation remains unexplored. Here, we show, for the first time, a crucial role for CCL2 and its receptor CCR2 in seizure control. We imposed a systemic inflammatory challenge via lipopolysaccharide (LPS) administration in mice with mesial temporal lobe epilepsy. We found that LPS dramatically increased seizure frequency and upregulated the expression of many inflammatory proteins, including CCL2. To test the proconvulsant role of CCL2, we administered systemically either a CCL2 transcription inhibitor (bindarit) or a selective antagonist of the CCR2 receptor (RS102895). We found that interference with CCL2 signaling potently suppressed LPS-induced seizures. Intracerebral administration of anti-CCL2 antibodies also abrogated LPS-mediated seizure enhancement in chronically epileptic animals. Our results reveal that CCL2 is a key mediator in the molecular pathways that link peripheral inflammation with neuronal hyperexcitability. SIGNIFICANCE STATEMENT: Substantial evidence points to a role for inflammation in epilepsy, but currently there is little insight as to how inflammatory pathways impact on seizure generation. Here, we examine the molecular mediators linking peripheral inflammation with seizure susceptibility in mice with mesial temporal lobe epilepsy. We show that a systemic inflammatory challenge via lipopolysaccharide administration potently enhances seizure frequency and upregulates the expression of the chemokine CCL2. Remarkably, selective pharmacological interference with CCL2 or its receptor CCR2 suppresses lipopolysaccharide-induced seizure enhancement. Thus, CCL2/CCR2 signaling plays a key role in linking systemic inflammation with seizure susceptibility.


Assuntos
Quimiocina CCL2/metabolismo , Epilepsia do Lobo Temporal/complicações , Inflamação/etiologia , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Benzoxazinas/farmacologia , Benzoxazinas/uso terapêutico , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/prevenção & controle , Agonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/patologia , Hipocampo/fisiopatologia , Indazóis/farmacologia , Ácido Caínico/toxicidade , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Propionatos/farmacologia , RNA Mensageiro/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/genética , Receptores CCR2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
Neurobiol Dis ; 104: 1-14, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28438504

RESUMO

Recent studies about the novel antidepressant agomelatine, which is a mixed MT1 and MT2 melatonin receptor agonist and 5HT2C serotonin receptor antagonist possessing an anticonvulsant and neuroprotective action, suggest that it may have potential to contribute against epileptogenesis and epilepsy-induced memory impairment. In order to ascertain whether protection of some brain structures could suppress epileptogenesis, in the present study, we evaluated the effect of chronic post-status treatment with agomelatine on epileptogenesis, behavioral and neuronal damage induced by kainate acid (KA) status epilepticus (SE). Agomelatine/vehicle treatment (40mg/kg, i.p.) started one hour after SE and continued up to 10weeks in Wistar rats. Latency for onset of spontaneous motor seizures (SMS) and their frequency was detected by a 24-h video-recording. Locomotor activity, anxiety and hippocampus-dependent spatial memory in open field (OF), elevated plus maze (EPM), light-dark test (LDT) and radial arm maze (RAM) test, respectively, were evaluated during the last two weeks after SE. Agomelatine significantly decreased the latency for onset of SMS and increased the seizure frequency during the 2nd and the 3rd week of treatment. The MT1 and MT2 receptor agonist and serotonin 5HT2C receptor antagonist exacerbated the KA-induced hyperlocomotion and impulsive behavior and it was unable to prevent spatial memory impairment of epileptic rats. However, agomelatine induced a neuroprotection in the dorsal hippocampus, specifically in the CA1, septal CA2 and partially in the CA3c region, the hilus of the dentate gyrus, piriform cortex and septo-temporal and temporal basolateral amygdala. Our findings suggest that the beneficial impact against SE-induced neuronal loss exerted by agomelatine is not crucial for the suppression of epileptogenesis and its deleterious consequences in KA model of temporal lobe epilepsy.


Assuntos
Acetamidas/uso terapêutico , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/prevenção & controle , Hipocampo/patologia , Neurônios/efeitos dos fármacos , Adaptação Ocular/efeitos dos fármacos , Análise de Variância , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Agonistas de Aminoácidos Excitatórios/toxicidade , Comportamento Exploratório/efeitos dos fármacos , Hipnóticos e Sedativos/uso terapêutico , Ácido Caínico/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo
14.
Ann Neurol ; 80(6): 896-908, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27761920

RESUMO

OBJECTIVE: Acquired epilepsy is a devastating long-term risk of various brain insults, including trauma, stroke, infections, and status epilepticus (SE). There is no preventive treatment for patients at risk. Attributable to the complex alterations involved in epileptogenesis, it is likely that multitargeted approaches are required for epilepsy prevention. We report novel preclinical findings with isoflurane, which exerts various nonanesthetic effects that may be relevant for antiepileptogenesis. METHODS: The effects of isoflurane were investigated in two rat models of SE-induced epilepsy: intrahippocampal kainate and systemic administration of paraoxon. Isoflurane was either administered during (kainate) or after (paraoxon) induction of SE. Magnetic resonance imaging was used to assess blood-brain barrier (BBB) dysfunction. Positron emission tomography was used to visualize neuroinflammation. Long-term electrocorticographic recordings were used to monitor spontaneous recurrent seizures. Neuronal damage was assessed histologically. RESULTS: In the absence of isoflurane, spontaneous recurrent seizures were common in the majority of rats in both models. When isoflurane was administered during kainate injection, duration and severity of SE were not affected, but only few rats developed spontaneous recurrent seizures. A similar antiepileptogenic effect was found when paraoxon-treated rats were exposed to isoflurane after SE. Moreover, in the latter model, isoflurane prevented BBB dysfunction and neurodegeneration, whereas isoflurane reduced neuroinflammation in the kainate model. INTERPRETATION: Given that isoflurane is a widely used volatile anesthetic, and is used for inhalational long-term sedation in critically ill patients at risk to develop epilepsy, our findings hold a promising potential to be successfully translated into the clinic. Ann Neurol 2016;80:896-908.


Assuntos
Epilepsia do Lobo Temporal/prevenção & controle , Isoflurano/farmacologia , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Modelos Animais de Doenças , Eletrocorticografia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Feminino , Inflamação/diagnóstico por imagem , Inflamação/prevenção & controle , Ácido Caínico , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Neurônios/patologia , Paraoxon , Tomografia por Emissão de Pósitrons , Ratos
15.
Epilepsy Behav ; 58: 119-26, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27070861

RESUMO

The effects of hippocampal partial kindling on gating of hippocampal auditory-evoked potentials (AEPs), prepulse inhibition (PPI) to an acoustic startle response, and methamphetamine-induced locomotion were examined in selectively bred kindling-prone (Fast) and kindling-resistant (Slow) rats. Ten electrographic seizures (afterdischarges, ADs) induced by high-frequency stimulation of the hippocampal CA1 region resulted in deficits in gating of hippocampal AEP and PPI in Fast, but not Slow, rats. The increase in AD duration with kindling was similar in Fast and Slow rats. Kindling-induced changes in hippocampal AEP and PPI in Fast rats were abolished by pretest injection of CGP7930 (1mg/kg i.p.), a positive allosteric modulator of GABAB receptors. Injection of haloperidol (0.1mg/kg i.p.) daily before kindling also prevented kindling-induced changes in PPI and hippocampal AEP in Fast rats. Interestingly, methamphetamine-induced hyperlocomotion was enhanced by kindling in Slow, but not Fast, rats. However, the methamphetamine-induced hyperlocomotion in Slow rats was not suppressed by daily injection of 0.1mg/kg i.p. haloperidol before kindling, as compared with kindling without haloperidol. It is concluded that genetic disposition affected the behavioral consequences of repeated seizures. Fast rats required fewer hippocampal ADs to induce sensory (AEP) and sensorimotor (PPI) deficits, while Slow kindled rats were more sensitive to methamphetamine-induced locomotion. Dopaminergic blockade by haloperidol during kindling, or acute injection of CGP7930 before testing, attenuated some of the behavioral deficits induced by repeated hippocampal seizures, suggesting possible therapeutic strategies to treat the schizophrenic-like symptoms associated with temporal lobe epilepsy.


Assuntos
Região CA1 Hipocampal/fisiologia , Excitação Neurológica/fisiologia , Locomoção/fisiologia , Metanfetamina/farmacologia , Filtro Sensorial/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/prevenção & controle , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/fisiologia , Agonistas dos Receptores de GABA-B/farmacologia , Agonistas dos Receptores de GABA-B/uso terapêutico , Excitação Neurológica/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Metanfetamina/toxicidade , Ratos , Ratos Long-Evans , Receptores de GABA-B/fisiologia , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/efeitos dos fármacos
16.
Clin Sci (Lond) ; 129(12): 1047-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26286172

RESUMO

Insulin-like growth factor-1 (IGF-1) is known to promote neurogenesis and survival. However, recent studies have suggested that IGF-1 regulates neuronal firing and excitatory neurotransmission. In the present study, focusing on temporal lobe epilepsy, we found that IGF-1 levels and IGF-1 receptor activation are increased in human epileptogenic tissues, and pilocarpine- and pentylenetetrazole-treated rat models. Using an acute model of seizures, we showed that lateral cerebroventricular infusion of IGF-1 elevates IGF-1 receptor (IGF-1R) signalling before pilocarpine application had proconvulsant effects. In vivo electroencephalogram recordings and power spectrogram analysis of local field potential revealed that IGF-1 promotes epileptiform activities. This effect is diminished by co-application of an IGF-1R inhibitor. In an in vitro electrophysiological study, we demonstrated that IGF-1 enhancement of excitatory neurotransmission and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor- and N-methyl-D-aspartate receptor-mediated currents is inhibited by IGF-1R inhibitor. Finally, activation of extracellular signal-related kinase (ERK)-1/2 and protein kinase B (Akt) in seizures in rats is increased by exogenous IGF-1 and diminished by picropodophyllin. A behavioural study reveals that the ERK1/2 or Akt inhibitor attenuates seizure activity. These results indicate that increased IGF-1 levels after recurrent hippocampal neuronal firings might, in turn, promote seizure activity via IGF-1R-dependent mechanisms. The present study presents a previously unappreciated role of IGF-1R in the development of seizure activity.


Assuntos
Ondas Encefálicas , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Receptores de Somatomedina/metabolismo , Adolescente , Adulto , Animais , Anticonvulsivantes/farmacologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Eletroencefalografia , Ativação Enzimática , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/prevenção & controle , Potenciais Pós-Sinápticos Excitadores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Pessoa de Meia-Idade , Pentilenotetrazol , Fosforilação , Pilocarpina , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores , Transdução de Sinais , Fatores de Tempo , Regulação para Cima , Adulto Jovem
17.
Clin Sci (Lond) ; 129(12): 1207-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26415648

RESUMO

Dysfunction of γ-aminobutyric acid A (GABAA) receptors (GABAARs) is a prominent factor affecting intractable epilepsy. Plic-1, an ubiquitin-like protein enriched in the inhibitory synapses connecting GABAARs and the ubiquitin protease system (UPS), plays a key role in the modification of GABAAR functions. However, the relationship between Plic-1 and epileptogenesis is not known. In the present study, we aimed to investigate Plic-1 levels in patients with temporal lobe epilepsy, as well as the role of Plic-1 in regulating onset and progression of epilepsy in animal models. We found that Plic-1 expression was significantly decreased in patients with epilepsy as well as pilocarpine- and pentylenetetrazol (PTZ)-induced rat epileptic models. Intrahippocampal injection of the PePα peptide, which disrupts Plic-1 binding to GABAARs, significantly shortened the latency of seizure onset, and increased the seizure severity and duration in these two epileptic models. Overexpressed Plic-1 through lentivirus transfection into a PTZ model resulted in a reduction in both seizure severity and generalized tonic-clonic seizure duration. Whole-cell clamp recordings revealed that the PePα peptide decreased miniature inhibitory postsynaptic currents (mIPSCs) whereas overexpressed Plic-1 increased mIPSCs in the pyramidal neurons of the hippocampus. These effects can be blocked by picrotoxin, a GABAAR inhibitor. Our results indicate that Plic-1 plays an important role in managing epileptic seizures by enhancing seizure inhibition through regulation of GABAARs at synaptic sites.


Assuntos
Ondas Encefálicas , Região CA1 Hipocampal/metabolismo , Epilepsia do Lobo Temporal/prevenção & controle , Chaperonas Moleculares/metabolismo , Células Piramidais/metabolismo , Receptores de GABA-A/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Adulto , Animais , Anticonvulsivantes/farmacologia , Proteínas Relacionadas à Autofagia , Ondas Encefálicas/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiopatologia , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Proteínas de Ciclo Celular/metabolismo , Criança , Pré-Escolar , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Vetores Genéticos , Humanos , Potenciais Pós-Sinápticos Inibidores , Lentivirus/genética , Masculino , Potenciais Pós-Sinápticos em Miniatura , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Oligopeptídeos/farmacologia , Pentilenotetrazol , Pilocarpina , Células Piramidais/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de GABA-A/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transdução Genética , Adulto Jovem
18.
Pharm Biol ; 53(12): 1818-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874386

RESUMO

CONTEXT: Temporal lobe epilepsy (TLE) is an intractable neurological disorder. Rosmarinic acid (RA) is a natural polyphenol with antioxidant, anti-apoptotic, and anti-inflammatory properties. OBJECTIVE: This study evaluates beneficial effect of RA in intrahippocampal kainate-induced model of TLE. MATERIALS AND METHODS: Rats were divided into sham, RA-pretreated sham, kainate, and sodium valproate (VA) or RA-pretreated kainate groups. Rats received RA or VA p.o. at doses of 10 or 300 mg/kg/d, respectively, starting 1 week before the surgery. After 6 weeks, seizure intensity, apoptosis, and oxidative stress markers were evaluated in addition to determination of Timm index as an indicator of mossy fiber sprouting (MFS) and the number of Nissl-stained neurons. RESULTS: All rats in the kainate group had seizure and 24.3% of rats in the kainate + VA group and 36.7% of rats in the kainate + RA group showed seizure. The kainate group had a significant elevation of malondialdehyde (MDA) (p < 0.05) and nitrite (p < 0.01) and reduction of glutathione (GSH) and catalase activity (p < 0.05) and pretreatment of kainate-lesioned rats with RA or VA significantly lowered MDA and nitrite content (p < 0.05) and raised activity of catalase (p < 0.05). The kainate group also had a significant reduction of neurons in CA1 and CA3 regions and an elevation of Timm index (p < 0.05-0.001) and RA or VA significantly (p < 0.05-0.01) prevented these changes. DISCUSSION AND CONCLUSION: RA could attenuate seizure, mitigates oxidative stress, augments the activity of defensive systems, and prevent hippocampal neuronal loss and MFS in the kainate model of TLE.


Assuntos
Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/prevenção & controle , Ácido Caínico/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Cinamatos/isolamento & purificação , Depsídeos/isolamento & purificação , Epilepsia do Lobo Temporal/patologia , Masculino , Ratos , Ratos Wistar , Ácido Rosmarínico
19.
J Neurochem ; 131(5): 675-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25066807

RESUMO

Temporal lobe epilepsy (TLE) often becomes refractory, and patients with TLE show a high incidence of psychiatric symptoms, including anxiety and depression. Therefore, it is necessary to identify molecules that were previously unknown to contribute to epilepsy and its associated disorders. We previously found that the sialyltransferase ST3Gal IV is up-regulated within the neural circuits through which amygdala-kindling stimulation propagates epileptic seizures. In contrast, this study demonstrated that kindling stimulation failed to evoke epileptic seizures in ST3Gal IV-deficient mice. Furthermore, approximately 80% of these mice failed to show tonic-clonic seizures with stimulation, whereas all littermate wild-type mice showed tonic-clonic seizures. This indicates that the loss of ST3Gal IV does not cause TLE in mice. Meanwhile, ST3Gal IV-deficient mice exhibited decreased acclimation in the open field test, increased immobility in the forced swim test, enhanced freezing during delay auditory fear conditioning, and sleep disturbances. Thus, the loss of ST3Gal IV modulates anxiety-related behaviors. These findings indicate that ST3Gal IV is a key molecule in the mechanisms underlying anxiety - a side effect of TLE - and may therefore also be an effective target for treating epilepsy, acting through the same circuits.


Assuntos
Epilepsia do Lobo Temporal/prevenção & controle , Deleção de Sequência/genética , Sialiltransferases/deficiência , Animais , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Estimulação Elétrica/efeitos adversos , Eletroencefalografia , Epilepsia do Lobo Temporal/etiologia , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/fisiopatologia , Comportamento Exploratório/fisiologia , Medo/psicologia , Elevação dos Membros Posteriores , Hipocampo/fisiopatologia , Excitação Neurológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sialiltransferases/genética , Sono/genética , Natação/psicologia , beta-Galactosídeo alfa-2,3-Sialiltransferase
20.
Exp Neurol ; 376: 114767, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522659

RESUMO

The Wnt signaling pathway mediates the development of dentate granule cell neurons in the hippocampus. These neurons are central to the development of temporal lobe epilepsy and undergo structural and physiological remodeling during epileptogenesis, which results in the formation of epileptic circuits. The pathways responsible for granule cell remodeling during epileptogenesis have yet to be well defined, and represent therapeutic targets for the prevention of epilepsy. The current study explores Wnt signaling during epileptogenesis and for the first time describes the effect of Wnt activation using Wnt activator Chir99021 as a novel anti-epileptogenic therapeutic approach. Focal mesial temporal lobe epilepsy was induced by intrahippocampal kainate (IHK) injection in wild-type and POMC-eGFP transgenic mice. Wnt activator Chir99021 was administered daily, beginning 3 h after seizure induction, and continued up to 21-days. Immature granule cell morphology was quantified in the ipsilateral epileptogenic zone and the contralateral peri-ictal zone 14 days after IHK, targeting the end of the latent period. Bilateral hippocampal electrocorticographic recordings were performed for 28-days, 7-days beyond treatment cessation. Hippocampal behavioral tests were performed after completion of Chir99021 treatment. Consistent with previous studies, IHK resulted in the development of epilepsy after a 14 day latent period in this well-described mouse model. Activation of the canonical Wnt pathway with Chir99021 significantly reduced bilateral hippocampal seizure number and duration. Critically, this effect was retained after treatment cessation, suggesting a durable antiepileptogenic change in epileptic circuitry. Morphological analyses demonstrated that Wnt activation prevented pathological remodeling of the primary dendrite in both the epileptogenic zone and peri-ictal zone, changes in which may serve as a biomarker of epileptogenesis and anti-epileptogenic treatment response in pre-clinical studies. These findings were associated with improved object location memory with Chir99021 treatment after IHK. This study provides novel evidence that canonical Wnt activation prevents epileptogenesis in the IHK mouse model of mesial temporal lobe epilepsy, preventing pathological remodeling of dentate granule cells. Wnt signaling may therefore play a key role in mesial temporal lobe epileptogenesis, and Wnt modulation may represent a novel therapeutic strategy in the prevention of epilepsy.


Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Hipocampo , Ácido Caínico , Camundongos Transgênicos , Piridinas , Pirimidinas , Animais , Piridinas/farmacologia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/prevenção & controle , Camundongos , Ácido Caínico/toxicidade , Pirimidinas/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA