Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.525
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 601(7893): 366-373, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046606

RESUMO

Chirality is a unifying structural metric of biological and abiological forms of matter. Over the past decade, considerable clarity has been achieved in understanding the chemistry and physics of chiral inorganic nanoparticles1-4; however, little is known about their effects on complex biochemical networks5,6. Intermolecular interactions of biological molecules and inorganic nanoparticles show some commonalities7-9, but these structures differ in scale, in geometry and in the dynamics of chiral shapes, which can both impede and strengthen their mirror-asymmetric complexes. Here we show that achiral and left- and right-handed gold biomimetic nanoparticles show different in vitro and in vivo immune responses. We use irradiation with circularly polarized light (CPL) to synthesize nanoparticles with controllable nanometre-scale chirality and optical anisotropy factors (g-factors) of up to 0.4. We find that binding of nanoparticles to two proteins from the family of adhesion G-protein-coupled receptors (AGPCRs)-namely cluster-of-differentiation 97 (CD97) and epidermal-growth-factor-like-module receptor 1 (EMR1)-results in the opening of mechanosensitive potassium-efflux channels, the production of immune signalling complexes known as inflammasomes, and the maturation of mouse bone-marrow-derived dendritic cells. Both in vivo and in vitro immune responses depend monotonically on the g-factors of the nanoparticles, indicating that nanoscale chirality can be used to regulate the maturation of immune cells. Finally, left-handed nanoparticles show substantially higher (1,258-fold) efficiency compared with their right-handed counterparts as adjuvants for vaccination against the H9N2 influenza virus, opening a path to the use of nanoscale chirality in immunology.


Assuntos
Proteínas de Ligação ao Cálcio , Células Dendríticas , Inflamassomos , Nanopartículas Metálicas , Receptores Acoplados a Proteínas G , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Dendríticas/imunologia , Ouro , Vírus da Influenza A Subtipo H9N2 , Mecanotransdução Celular , Nanopartículas Metálicas/química , Camundongos , Canais de Potássio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estereoisomerismo
2.
J Biol Chem ; 300(6): 107395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768812

RESUMO

B2 haplotype major histocompatibility complex (MHC) has been extensively reported to confer resistance to various avian diseases. But its peptide-binding motif is unknown, and the presenting peptide is rarely identified. Here, we identified its peptide-binding motif (X-A/V/I/L/P/S/G-X-X-X-X-X-X-V/I/L) in vitro using Random Peptide Library-based MHC I LC-MS/MS analysis. To further clarify the structure basis of motif, we determined the crystal structure of the BF2∗02:01-PB2552-560 complex at 1.9 Å resolution. We found that BF2∗02:01 had a relatively wide antigen-binding groove, and the structural characterization of pockets was consistent with the characterization of peptide-binding motif. The wider features of the peptide-binding motif and increased number of peptides bound by BF2∗02:01 than BF2∗04:01 might resolve the puzzles for the presence of potential H9N2 resistance in B2 chickens. Afterward, we explored the H9N2 avian influenza virus (AIV)-induced cellular immune response in B2 haplotype chickens in vivo. We found that ratio of CD8+ T cell and kinetic expression of cytotoxicity genes including Granzyme K, interferon-γ, NK lysin, and poly-(ADP-ribose) polymerase in peripheral blood mononuclear cells were significantly increased in defending against H9N2 AIV infection. Especially, we selected 425 epitopes as candidate epitopes based on the peptide-binding motif and further identified four CD8+ T-cell epitopes on H9N2 AIV including NS198-106, PB2552-560, NP182-190, and NP455-463 via ELI-spot interferon-γ detections after stimulating memory lymphocytes with peptides. More importantly, these epitopes were found to be conserved in H7N9 AIV and H9N2 AIV. These findings provide direction for developing effective T cell epitope vaccines using well-conserved internal viral antigens in chickens.


Assuntos
Galinhas , Epitopos de Linfócito T , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Vírus da Influenza A Subtipo H9N2/imunologia , Animais , Epitopos de Linfócito T/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo
3.
J Virol ; 98(4): e0024824, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38466094

RESUMO

The H9N2 avian influenza virus (AIV) represents a significant risk to both the poultry industry and public health. Our surveillance efforts in China have revealed a growing trend of recent H9N2 AIV strains exhibiting a loss of hemagglutination activity at 37°C, posing challenges to detection and monitoring protocols. This study identified a single K141N substitution in the hemagglutinin (HA) glycoprotein as the culprit behind this diminished hemagglutination activity. The study evaluated the evolutionary dynamics of residue HA141 and studied the impact of the N141K substitution on aspects such as virus growth, thermostability, receptor-binding properties, and antigenic properties. Our findings indicate a polymorphism at residue 141, with the N variant becoming increasingly prevalent in recent Chinese H9N2 isolates. Although both wild-type and N141K mutant strains exclusively target α,2-6 sialic acid receptors, the N141K mutation notably impedes the virus's ability to bind to these receptors. Despite the mutation exerting minimal influence on viral titers, antigenicity, and pathogenicity in chicken embryos, it significantly enhances viral thermostability and reduces plaque size on Madin-Darby canine kidney (MDCK) cells. Additionally, the N141K mutation leads to decreased expression levels of HA protein in both MDCK cells and eggs. These findings highlight the critical role of the K141N substitution in altering the hemagglutination characteristics of recent H9N2 AIV strains under elevated temperatures. This emphasizes the need for ongoing surveillance and genetic analysis of circulating H9N2 AIV strains to develop effective control and prevention measures.IMPORTANCEThe H9N2 subtype of avian influenza virus (AIV) is currently the most prevalent low-pathogenicity AIV circulating in domestic poultry globally. Recently, there has been an emerging trend of H9N2 AIV strains acquiring increased affinity for human-type receptors and even losing their ability to bind to avian-type receptors, which raises concerns about their pandemic potential. In China, there has been a growing number of H9N2 AIV strains that have lost their ability to agglutinate chicken red blood cells, leading to false-negative results during surveillance efforts. In this study, we identified a K141N mutation in the HA protein of H9N2 AIV to be responsible for the loss of hemagglutination activity. This finding provides insight into the development of effective surveillance, prevention, and control strategies to mitigate the threat posed by H9N2 AIV to both animal and human health.


Assuntos
Substituição de Aminoácidos , Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Mutação , Animais , Embrião de Galinha , Cães , Humanos , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/metabolismo , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/virologia , Aves Domésticas , Feminino , Camundongos , Linhagem Celular , Evolução Molecular , Temperatura , Receptores Virais/metabolismo
4.
J Virol ; 98(3): e0151223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38415626

RESUMO

H9N2 avian influenza is a low-pathogenic avian influenza circulating in poultry and wild birds worldwide and frequently contributes to chicken salpingitis that is caused by avian pathogenic Escherichia coli (APEC), leading to huge economic losses and risks for food safety. Currently, how the H9N2 virus contributes to APEC infection and facilitates salpingitis remains elusive. In this study, in vitro chicken oviduct epithelial cell (COEC) model and in vivo studies were performed to investigate the role of H9N2 viruses on secondary APEC infection, and we identified that H9N2 virus enhances APEC infection both in vitro and in vivo. To understand the mechanisms behind this phenomenon, adhesive molecules on the cell surface facilitating APEC adhesion were checked, and we found that H9N2 virus could upregulate the expression of fibronectin, which promotes APEC adhesion onto COECs. We further investigated how fibronectin expression is regulated by H9N2 virus infection and revealed that transforming growth factor beta (TGF-ß) signaling pathway is activated by the NS1 protein of the virus, thus regulating the expression of adhesive molecules. These new findings revealed the role of H9N2 virus in salpingitis co-infected with APEC and discovered the molecular mechanisms by which the H9N2 virus facilitates APEC infection, offering new insights to the etiology of salpingitis with viral-bacterial co-infections.IMPORTANCEH9N2 avian influenza virus (AIV) widely infects poultry and is sporadically reported in human infections. The infection in birds frequently causes secondary bacterial infections, resulting in severe symptoms like pneumonia and salpingitis. Currently, the mechanism that influenza A virus contributes to secondary bacterial infection remains elusive. Here we discovered that H9N2 virus infection promotes APEC infection and further explored the underlying molecular mechanisms. We found that fibronectin protein on the cell surface is vital for APEC adhesion and also showed that H9N2 viral protein NS1 increased the expression of fibronectin by activating the TGF-ß signaling pathway. Our findings offer new information on how AIV infection promotes APEC secondary infection, providing potential targets for mitigating severe APEC infections induced by H9N2 avian influenza, and also give new insights on the mechanisms on how viruses promote secondary bacterial infections in animal and human diseases.


Assuntos
Infecções por Escherichia coli , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Salpingite , Animais , Feminino , Humanos , Galinhas , Escherichia coli , Fibronectinas/metabolismo , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/complicações , Oviductos/metabolismo , Aves Domésticas , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/virologia , Salpingite/metabolismo , Salpingite/veterinária , Salpingite/virologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Virais/metabolismo , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/veterinária
5.
J Virol ; 98(3): e0194423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421166

RESUMO

Since the first human infection reported in 2013, H7N9 avian influenza virus (AIV) has been regarded as a serious threat to human health. In this study, we sought to identify the virulence determinant of the H7N9 virus in mammalian hosts. By comparing the virulence of the SH/4664 H7N9 virus, a non-virulent H9N2 virus, and various H7N9-H9N2 hybrid viruses in infected mice, we first pinpointed PB2 as the primary viral factor accounting for the difference between H7N9 and H9N2 in mammalian virulence. We further analyzed the in vivo effects of individually mutating H7N9 PB2 residues different from the closely related H9N2 virus and consequently found residue 473, alongside the well-known residue 627, to be critical for the virulence of the H7N9 virus in mice and the activity of its reconstituted viral polymerase in mammalian cells. The importance of PB2-473 was further strengthened by studying reverse H7N9 substitutions in the H9N2 background. Finally, we surprisingly found that species-specific usage of ANP32A, a family member of host factors connecting with the PB2-627 polymorphism, mediates the contribution of PB2 473 residue to the mammalian adaption of AIV polymerase, as the attenuating effect of PB2 M473T on the viral polymerase activity and viral growth of the H7N9 virus could be efficiently complemented by co-expression of chicken ANP32A but not mouse ANP32A and ANP32B. Together, our studies uncovered the PB2 473 residue as a novel viral host range determinant of AIVs via species-specific co-opting of the ANP32 host factor to support viral polymerase activity.IMPORTANCEThe H7N9 avian influenza virus has been considered to have the potential to cause the next pandemic since the first case of human infection reported in 2013. In this study, we identified PB2 residue 473 as a new determinant of mouse virulence and mammalian adaptation of the viral polymerase of the H7N9 virus and its non-pathogenic H9N2 counterparts. We further demonstrated that the variation in PB2-473 is functionally linked to differential co-opting of the host ANP32A protein in supporting viral polymerase activity, which is analogous to the well-known PB2-627 polymorphism, albeit the two PB2 positions are spatially distant. By providing new mechanistic insight into the PB2-mediated host range determination of influenza A viruses, our study implicated the potential existence of multiple PB2-ANP32 interfaces that could be targets for developing new antivirals against the H7N9 virus as well as other mammalian-adapted influenza viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Proteínas Nucleares , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vírus da Influenza A Subtipo H9N2 , Influenza Humana/virologia , Mamíferos , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Virulência , Replicação Viral
6.
PLoS Pathog ; 19(6): e1011472, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37343022

RESUMO

Tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin ligase, plays a critical role in the host antiviral response. However, the mechanism and antiviral spectrum of TRIM21 in influenza A virus (IAV) remain unclear. Here, we report that TRIM21 inhibits the replication of various IAV subtypes by targeting matrix protein 1 (M1) from H3/H5/H9, but not H1 and H7 M1. Mechanistically, TRIM21 binds to the residue R95 of M1 and facilitates K48 ubiquitination of M1 K242 for proteasome-dependent degradation, leading to the inhibition of H3, H5, and H9 IAV replication. Interestingly, the recombinant viruses with M1 R95K or K242R mutations were resistance to TRIM21 and exhibited more robust replication and severe pathogenicity. Moreover, the amino acid sequence M1 proteins, mainly from avian influenza such as H5N1, H7N9, H9N2, ranging from 1918 to 2022, reveals a gradual dominant accumulation of the TRIM21-driven R95K mutation when the virus jumps into mammals. Thus, TRIM21 in mammals' functions as a host restriction factor and drives a host adaptive mutation of influenza A virus.


Assuntos
Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Humana/genética , Vírus da Influenza A Subtipo H9N2/genética , Virus da Influenza A Subtipo H5N1/genética , Ubiquitinação , Replicação Viral , Mamíferos
7.
PLoS Pathog ; 19(10): e1011685, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819993

RESUMO

Chicken lung is an important target organ of avian influenza virus (AIV) infection, and different pathogenic virus strains lead to opposite prognosis. Using a single-cell RNA sequencing (scRNA-seq) assay, we systematically and sequentially analyzed the transcriptome of 16 cell types (19 clusters) in the lung tissue of chickens infected with H5N1 highly pathogenic avian influenza virus (HPAIV) and H9N2 low pathogenic avian influenza virus (LPAIV), respectively. Notably, we developed a valuable catalog of marker genes for these cell types. Compared to H9N2 AIV infection, H5N1 AIV infection induced extensive virus replication and the immune reaction across most cell types simultaneously. More importantly, we propose that infiltrating inflammatory macrophages (clusters 0, 1, and 14) with massive viral replication, pro-inflammatory cytokines (IFN-ß, IL1ß, IL6 and IL8), and emerging interaction of various cell populations through CCL4, CCL19 and CXCL13, potentially contributed to the H5N1 AIV driven inflammatory lung injury. Our data revealed complex but distinct immune response landscapes in the lung tissue of chickens after H5N1 and H9N2 AIV infection, and deciphered the potential mechanisms underlying AIV-driven inflammatory reactions in chicken. Furthermore, this article provides a rich database for the molecular basis of different cell-type responses to AIV infection.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Lesão Pulmonar , Animais , Galinhas/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H9N2/genética , Análise de Célula Única
8.
Emerg Infect Dis ; 30(8): 1-13, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043566

RESUMO

Influenza A/H9 viruses circulate worldwide in wild and domestic avian species, continuing to evolve and posing a zoonotic risk. A substantial increase in human infections with A/H9N2 subtype avian influenza viruses (AIVs) and the emergence of novel reassortants carrying A/H9N2-origin internal genes has occurred in recent years. Different names have been used to describe the circulating and emerging A/H9 lineages. To address this issue, an international group of experts from animal and public health laboratories, endorsed by the WOAH/FAO Network of Expertise on Animal Influenza, has created a practical lineage classification and nomenclature system based on the analysis of 10,638 hemagglutinin sequences from A/H9 AIVs sampled worldwide. This system incorporates phylogenetic relationships and epidemiologic characteristics designed to trace emerging and circulating lineages and clades. To aid in lineage and clade assignment, an online tool has been created. This proposed classification enables rapid comprehension of the global spread and evolution of A/H9 AIVs.


Assuntos
Influenza Aviária , Influenza Humana , Filogenia , Terminologia como Assunto , Animais , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Aves/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/classificação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
9.
Curr Opin Infect Dis ; 37(5): 431-435, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38975631

RESUMO

PURPOSE OF REVIEW: This review aims to discuss the current state of human infections with Avian Influenza A (H5) and (H9) viruses, to support awareness of the global epidemiology among clinicians and public health professionals interested in emerging respiratory infections. RECENT FINDINGS: Among increasing numbers of detections in avian species of Avian Influenza A(H5N1) clade 2.3.4.4b globally, reported human cases of severe infection have been rare.Enhanced surveillance of persons exposed to avian species infected with Influenza A (H5N1) clade 2.3.4.4b in different countries has identified small numbers of asymptomatic individuals with Avian Influenza A (H5N1) detected by PCR from the upper respiratory tract; some of these instances have been considered to represent contamination rather than infection.There have also been recent sporadic human cases of Avian Influenza A(H9N2) internationally, including in China and Cambodia. SUMMARY: Human infections with Avian Influenza A(H5) and (H9) viruses remain of interest as an emerging infection both to clinicians and public health professionals. While maintaining effective surveillance is essential, one health strategies to control infection in avian species will be key to mitigating these risks.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Zoonoses , Humanos , Animais , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Zoonoses/epidemiologia , Zoonoses/virologia , Zoonoses/transmissão , Aves/virologia , Vírus da Influenza A Subtipo H9N2 , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Doenças Transmissíveis Emergentes/transmissão , Zoonoses Virais/transmissão , Zoonoses Virais/epidemiologia , Zoonoses Virais/virologia , Saúde Global
10.
J Virol ; 97(10): e0074323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800947

RESUMO

IMPORTANCE: Determining the relevant amino acids involved in antigenic drift on the surface protein hemagglutinin (HA) is critical to understand influenza virus evolution and efficient assessment of vaccine strains relative to current circulating strains. We used antigenic cartography to generate an antigenic map of the H9 hemagglutinin (HA) using sera produced in one of the most relevant minor poultry species, Japanese quail. Key antigenic positions were identified and tested to confirm their impact on the antigenic profile. This work provides a better understanding of the antigenic diversity of the H9 HA as it relates to reactivity to quail sera and will facilitate a rational approach for selecting more efficacious vaccines against poultry-origin H9 influenza viruses in minor poultry species.


Assuntos
Deriva e Deslocamento Antigênicos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Coturnix , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Aves Domésticas
11.
J Virol ; 97(2): e0137922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749072

RESUMO

Despite active control strategies, including the vaccination program in poultry, H9N2 avian influenza viruses possessing mutations in hemagglutinin (HA) were frequently isolated. In this study, we analyzed the substitutions at HA residue 193 (H3 numbering) of H9N2 and investigated the impact of these mutations on viral properties. Our study indicated that H9N2 circulating in the Chinese poultry have experienced frequent mutations at HA residue 193 since 2013, with viruses that carried asparagine (N) being replaced by those with alanine (A), aspartic acid (D), glutamic acid (E), glycine (G), and serine (S), etc. Our results showed the N193G mutation impeded the multiple cycles of growth of H9N2, and although most of the variant HAs retained the preference for human-like receptors as did the wild-type N193 HA, the N193E mutation altered the preference for both human and avian-like receptors. Furthermore, these mutations substantially altered the antigenicity of H9N2 as measured by both monoclonal antibodies and antisera. In vivo studies further demonstrated that these mutations showed profound impact on viral replication and transmission of H9N2 in chicken. Viruses with D, E, or S at residue 193 acquired the ability to replicate in lungs of the infected chickens, whereas virus with G193 reduced its transmissibility in infected chickens to those in direct contact. Our findings demonstrated that variations at HA residue 193 altered various properties of H9N2, highlighting the significance of the continued surveillance of HA for better understanding of the etiology and effective control of H9N2 in poultry. IMPORTANCE H9N2 are widespread and have sporadically caused clinical diseases in humans. Extensive vaccinations in poultry helped constrain H9N2; however, they might have facilitated the evolution of the virus. It is therefore of importance to monitor the variation of the circulating H9N2 and evaluate its risk to both veterinary and public health. Here, we found substitutions at position 193 of HA from H9N2 circulated since 2013 and assessed the impact of several mutations on viral properties. Our data showed these mutations resulted in substantial antigenic change. N193E altered the binding preference of HA for human-like to both avian and human-like receptors. More importantly, N193G impaired the growth of H9N2 and its transmission in chickens, whereas mutations from N to D, E, and S enhanced the viral replication in lungs of chickens. Our study enriched the knowledge about H9N2 and may help implement an effective control strategy for H9N2.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Aminoácidos/genética , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Filogenia , Aves Domésticas
12.
J Virol ; 97(6): e0043423, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37289052

RESUMO

Although influenza A viruses of several subtypes have occasionally infected humans, to date only those of the H1, H2, and H3 subtypes have led to pandemics and become established in humans. The detection of two human infections by avian H3N8 viruses in April and May of 2022 raised pandemic concerns. Recent studies have shown the H3N8 viruses were introduced into humans from poultry, although their genesis, prevalence, and transmissibility in mammals have not been fully elucidated. Findings generated from our systematic influenza surveillance showed that this H3N8 influenza virus was first detected in chickens in July 2021 and then disseminated and became established in chickens over wider regions of China. Phylogenetic analyses revealed that the H3 HA and N8 NA were derived from avian viruses prevalent in domestic ducks in the Guangxi-Guangdong region, while all internal genes were from enzootic poultry H9N2 viruses. The novel H3N8 viruses form independent lineages in the glycoprotein gene trees, but their internal genes are mixed with those of H9N2 viruses, indicating continuous gene exchange among these viruses. Experimental infection of ferrets with three chicken H3N8 viruses showed transmission through direct contact and inefficient transmission by airborne exposure. Examination of contemporary human sera detected only very limited antibody cross-reaction to these viruses. The continuing evolution of these viruses in poultry could pose an ongoing pandemic threat. IMPORTANCE A novel H3N8 virus with demonstrated zoonotic potential has emerged and disseminated in chickens in China. It was generated by reassortment between avian H3 and N8 virus(es) and long-term enzootic H9N2 viruses present in southern China. This H3N8 virus has maintained independent H3 and N8 gene lineages but continues to exchange internal genes with other H9N2 viruses to form novel variants. Our experimental studies showed that these H3N8 viruses were transmissible in ferrets, and serological data suggest that the human population lacks effective immunological protection against it. With its wide geographical distribution and continuing evolution in chickens, other spillovers to humans can be expected and might lead to more efficient transmission in humans.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Humana/epidemiologia , Galinhas , Saúde Pública , Vírus da Influenza A Subtipo H9N2/genética , Filogenia , Furões , China/epidemiologia , Aves Domésticas
13.
PLoS Pathog ; 18(7): e1010645, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35793327

RESUMO

Avian influenza virus (AIV) can evolve multiple strategies to combat host antiviral defenses and establish efficient infectivity in mammals, including humans. H9N2 AIV and its reassortants (such as H5N6 and H7N9 viruses) pose an increasing threat to human health; however, the mechanisms involved in their increased virulence remain poorly understood. We previously reported that the M1 mutation T37A has become predominant among chicken H9N2 isolates in China. Here, we report that, since 2010, this mutation has also been found in the majority of human isolates of H9N2 AIV and its emerging reassortants. The T37A mutation of M1 protein enhances the replication of H9N2 AIVs in mice and in human cells. Interestingly, having A37 instead of T37 increases the M1 protein stability and resistance to proteasomal degradation. Moreover, T37 of the H9N2 M1 protein is phosphorylated by protein kinase G (PKG), and this phosphorylation induces the rapid degradation of M1 and reduces viral replication. Similar effects are also observed in the novel H5N6 virus. Additionally, ubiquitination at K187 contributes to M1-37T degradation and decreased replication of the virus harboring T37 in the M1 protein. The prevailing AIVs thereby evolve a phospho-resistant mutation in the M1 protein to avoid viral protein degradation by host factors, which is advantageous in terms of replication in mammalian hosts.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Infecções por Orthomyxoviridae , Animais , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/genética , Mamíferos , Camundongos , Mutação
14.
PLoS Pathog ; 18(9): e1010865, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121893

RESUMO

For diverse viruses, cellular infection with single vs. multiple virions can yield distinct biological outcomes. We previously found that influenza A/guinea fowl/Hong Kong/WF10/99 (H9N2) virus (GFHK99) displays a particularly high reliance on multiple infection in mammalian cells. Here, we sought to uncover the viral processes underlying this phenotype. We found that the need for multiple infection maps to amino acid 26K of the viral PA protein. PA 26K suppresses endonuclease activity and viral transcription, specifically within cells infected at low multiplicity. In the context of the higher functioning PA 26E, inhibition of PA using baloxavir acid augments reliance on multiple infection. Together, these data suggest a model in which sub-optimal activity of the GFHK99 endonuclease results in inefficient priming of viral transcription, an insufficiency which can be overcome with the introduction of additional viral ribonucleoprotein templates to the cell. More broadly, the finding that deficiency in a core viral function is ameliorated through multiple infection suggests that the fitness effects of many viral mutations are likely to be modulated by multiplicity of infection, such that the shape of fitness landscapes varies with viral densities.


Assuntos
Coinfecção , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Aminoácidos , Animais , Endonucleases/metabolismo , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Influenza Humana/genética , Mamíferos , Ribonucleoproteínas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Transcrição Viral
15.
Microb Pathog ; 195: 106871, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163919

RESUMO

The H9N2 avian influenza virus (AIV) is spreading worldwide. Presence of H9N2 virus tends to increase the chances of infection with other pathogens which can lead to more serious economic losses. In a previous study, a regulated delayed lysis Salmonella vector was used to deliver a DNA vaccine named pYL233 encoding M1 protein, mosaic HA protein and chicken GM-CSF adjuvant. To further increase its efficiency, chitosan as a natural adjuvant was applied in this study. The purified plasmid pYL233 was coated with chitosan to form a DNA containing nanoparticles (named CS233) by ionic gel method and immunized by intranasal boost immunization in birds primed by oral administration with Salmonella strain. The CS233 DNA nanoparticle has a particle size of about 150 nm, with an encapsulation efficiency of 93.2 ± 0.12 % which protected the DNA plasmid from DNase I digestion and could be stable for a period of time at 37°. After intranasal boost immunization, the CS233 immunized chickens elicited higher antibody response, elevated CD4+ T cells and CD8+ T cells activation and increased T-lymphocyte proliferation, as well as increased productions of IL-4 and IFN-γ. After challenge, chickens immunized with CS233 resulted in the lowest levels of pulmonary virus titer and viral shedding as compared to the other challenge groups. The results showed that the combination of intranasal immunization with chitosan-coated DNA vaccine and oral immunization with regulatory delayed lytic Salmonella strain could enhance the immune response and able to provide protection against H9N2 challenge.


Assuntos
Administração Intranasal , Anticorpos Antivirais , Galinhas , Quitosana , Imunidade Celular , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Plasmídeos , Vacinas de DNA , Eliminação de Partículas Virais , Animais , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/genética , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Influenza Aviária/prevenção & controle , Influenza Aviária/imunologia , Galinhas/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Anticorpos Antivirais/sangue , Plasmídeos/genética , Nanopartículas , Imunização Secundária , Linfócitos T CD8-Positivos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Interferon gama , Interleucina-4 , Adjuvantes de Vacinas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Linfócitos T CD4-Positivos/imunologia , Salmonella/imunologia , Salmonella/genética
16.
Arch Biochem Biophys ; 757: 110041, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38750923

RESUMO

The influenza virus neuraminidase (NA) protein is responsible for actively cleaving the sialic acid (SA) bound to the viral hemagglutinin. In the present study, we identified a combination of five novel amino acid substitutions in the NA, conferring increased substrate binding and altered surface characteristics to a low pathogenic avian influenza (LPAI) H9N2 virus strain. The H9N2 strain reported from India, A/Environmental/India/1726265/2017 (H9N2-1726265) showed the combination of amino acid substitutions T149I, R249W, G346A, W403R and G435R, which were in the vicinity of the enzyme active site cavity. The strain A/chicken/India/99321/2009 (H9N2-99321) did not show these substitutions and was used for comparison. Virus elution was studied using turkey red blood cells (tRBCs). NA enzyme kinetics assays were carried out using the MUNANA substrate, which is an SA analogue. Homology modelling and molecular docking were performed to determine alterations in the surface characteristics and substrate binding. H9N2-1726265 showed enhanced elution from tRBCs. Enzyme kinetics revealed a lower KM of H9N2-1726265 (111.5 µM) as compared to H9N2-99321 (135.2 µM), indicating higher substrate binding affinity of H9N2-1726265, due to which the NA enzyme cleaved the SA more efficiently, leading to faster elution. Molecular docking revealed a greater number of binding interactions of H9N2-1726265 to SA as compared to H9N2-99321 corroborating the greater substrate binding affinity. Changes in the surface charge, hydrophobicity, and contour, were observed in H9N2-1726265 NA due to the five substitutions. Thus, the novel combination of five amino acids near the sialic acid binding site of NA, resulted in altered surface characteristics, higher substrate binding affinity, and virus elution.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Simulação de Acoplamento Molecular , Mutação , Neuraminidase , Neuraminidase/genética , Neuraminidase/química , Neuraminidase/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/enzimologia , Vírus da Influenza A Subtipo H9N2/química , Animais , Substituição de Aminoácidos , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Influenza Aviária/virologia , Perus , Cinética , Domínio Catalítico
17.
Vet Res ; 55(1): 136, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39390593

RESUMO

Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Animais , Camundongos , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Feminino , Camundongos Endogâmicos BALB C , Antibacterianos/farmacologia
18.
Arch Virol ; 169(9): 192, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225747

RESUMO

Nanoparticles have gained attention as potential antiviral agents, but the effects of graphene oxide nanoparticles (GONPs) on influenza virus remain unclear. In this study, we evaluated the antiviral activity of GONPs against influenza virus strain A/Hunan-Lengshuitan/11197/2013(H9N2). Our results show that GONPs with a diameter of 4 nm exerted an antiviral effect, whereas those with a diameter of 400 nm had no effect. Treatment with 4-nm GONPs reduced viral titers by more than 99% and inhibited viral nucleoprotein expression in a dose-dependent manner. We also confirmed that 4-nm GONPs inhibited the infectivity of H9N2 in MDCK cells. A transmission electron microscopic analysis revealed morphological abnormalities in the GONP-treated virus, including the destruction of the envelope glycoprotein spikes and an irregular shape, suggesting that GONPs cause the destruction of the viral coat proteins. Our results highlight the potential utility of GONPs in the prevention and treatment of viral infections, especially those of emerging and re-emerging viruses.


Assuntos
Antivirais , Grafite , Vírus da Influenza A Subtipo H9N2 , Nanopartículas , Grafite/farmacologia , Grafite/química , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/genética , Animais , Cães , Antivirais/farmacologia , Células Madin Darby de Rim Canino , Nanopartículas/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Replicação Viral/efeitos dos fármacos
19.
Arch Virol ; 169(5): 99, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625394

RESUMO

H9N2 avian influenza viruses (AIVs) affect both poultry and humans on a global level, and they are especially prevalent in Egypt. In this study, we sequenced the entire genome of AIV H9N2 isolated from chickens in Egypt in 2021, using next-generation sequencing (NGS) technology. Phylogenetic analysis of the resulting sequences showed that the studied strain was generally monophyletic and grouped within the G1 sublineage of the Eurasian lineage. Four segments (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acidic [PA], and non-structural [NS]) were related to Egyptian genotype II, while the nucleoprotein (NP), neuraminidase (NA), matrix (M), and haemagglutinin (HA) segments were related to Egyptian genotype I. Molecular analysis revealed that HA protein contained amino acid residues (191H and 234L) that suggested a predilection for attaching to human-like receptors. The antigenic sites of HA had two nonsynonymous mutations: V194I at antigenic site A and M40K at antigenic site B. Furthermore, the R403W and S372A mutations, which have been observed in H3N2 and H2N2 strains that caused human pandemics, were found in the NA protein of the detected strain. The internal proteins contained virulence markers: 504V in the PB2 protein, 622G, 436Y, 207K, and 677T in the PB1 protein, 127V, 550L, and 672L in PA protein, and 64F and 69P in the M protein. These results show that the detected strain had undergone intrasubtype reassortment. Furthermore, it contains changes in the viral proteins that make it more likely to be virulent, raising a question about the tendency of AIV H9N2 to become highly pathogenic in the future for both poultry and humans.


Assuntos
Antígenos de Grupos Sanguíneos , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Aves Domésticas , Vírus da Influenza A Subtipo H9N2/genética , Egito/epidemiologia , Galinhas , Fazendas , Vírus da Influenza A Subtipo H3N2 , Influenza Aviária/epidemiologia , Filogenia
20.
Avian Pathol ; 53(5): 390-399, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38563198

RESUMO

Avian influenza (AI), caused by H9N2 subtype avian influenza virus (AIV), poses a serious threat to poultry farming and public health due to its transmissibility and pathogenicity. The PB2 protein is a major component of the viral RNA polymerase complex. It is of great importance to identify the antigenic determinants of the PB2 protein to explore the function of the PB2 protein. In this study, the PB2 sequence of H9N2 subtype AIV, from 1090 to 1689 bp, was cloned and expressed. The recombinant PB2 protein with cutting gel was used to immunize BALB/c mice. After cell fusion, the hybridoma cell lines secreting monoclonal antibodies (mAbs) targeting the PB2 protein were screened by indirect ELISA and western blotting, and the antigenic epitopes of mAbs were identified by constructing truncated overlapping fragments in the PB2 protein of H9N2 subtype AIV. The results showed that three hybridoma cell lines (4B7, 4D10, and 5H1) that stably secreted mAbs specific to the PB2 protein were screened; the heavy chain of 4B7 was IgG2α, those of 4D10 and 5H1 were IgG1, and all three mAbs had kappa light chain. Also, the minimum B-cell epitope recognized was 475LRGVRVSK482 and 528TITYSSPMMW537. Homology analysis showed that these two epitopes were conserved among the different subtypes of AIV strains and located on the surface of the PB2 protein. The above findings provide an experimental foundation for further investigation of the function of the PB2 protein and developing monoclonal antibody-based diagnostic kits.


Assuntos
Anticorpos Monoclonais , Epitopos de Linfócito B , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Camundongos Endogâmicos BALB C , Proteínas Virais , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/genética , Animais , Anticorpos Monoclonais/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Camundongos , Influenza Aviária/virologia , Influenza Aviária/imunologia , Epitopos de Linfócito B/imunologia , Hibridomas , RNA Polimerase Dependente de RNA/genética , Anticorpos Antivirais/imunologia , Galinhas/virologia , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA