Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 299(3): 102949, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708921

RESUMEN

Human uridine 5'-monophosphate synthase (HsUMPS) is a bifunctional enzyme that catalyzes the final two steps in de novo pyrimidine biosynthesis. The individual orotate phosphoribosyl transferase and orotidine monophosphate domains have been well characterized, but little is known about the overall structure of the protein and how the organization of domains impacts function. Using a combination of chromatography, electron microscopy, and complementary biophysical methods, we report herein that HsUMPS can be observed in two structurally distinct states, an enzymatically active dimeric form and a nonactive multimeric form. These two states readily interconvert to reach an equilibrium that is sensitive to perturbations of the active site and the presence of substrate. We determined that the smaller molecular weight form of HsUMPS is an S-shaped dimer that can self-assemble into relatively well-ordered globular condensates. Our analysis suggests that the transition between dimer and multimer is driven primarily by oligomerization of the orotate phosphoribosyl transferase domain. While the cellular distribution of HsUMPS is unaffected, quantification by mass spectrometry revealed that de novo pyrimidine biosynthesis is dysregulated when this protein is unable to assemble into inactive condensates. Taken together, our data suggest that HsUMPS self-assembles into biomolecular condensates as a means to store metabolic potential for the regulation of metabolic rates.


Asunto(s)
Condensados Biomoleculares , Orotato Fosforribosiltransferasa , Orotidina-5'-Fosfato Descarboxilasa , Uridina Monofosfato , Humanos , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Pirimidinas/biosíntesis , Uridina , Uridina Monofosfato/metabolismo
2.
J Pept Sci ; 23(5): 367-373, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28326661

RESUMEN

Anti-apoptotic Bcl-2 proteins are implicated in pathogenic cell survival and have attracted considerable interest as therapeutic targets. We recently developed a class of synthetic peptide based on scyllatoxin (ScTx) designed to mimic the helical BH3 interaction domain of the pro-apoptotic Bcl-2 protein Bax. In this communication, the contribution of single disulfides in the folding and function of ScTx-Bax peptides was investigated. We synthesized five ScTx-Bax variants, each presenting a different combination of native disulfide linkage and evaluated their ability to directly bind Bcl-2 in vitro. It was determined that the position of the disulfide linkage had significant implications on the structure and function of ScTx-Bax peptides. This study underscores the importance of structural dynamics in BH3:Bcl-2 interactions and further validates ScTx-based ligands as potential modulators of anti-apoptotic Bcl-2 function. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/farmacología , Disulfuros/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Materiales Biomiméticos/química , Diseño de Fármacos , Humanos , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/química , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Proteína X Asociada a bcl-2/química
3.
Cells ; 10(10)2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34685583

RESUMEN

Nucleotides are essential to cell growth and survival, providing cells with building blocks for DNA and RNA, energy carriers, and cofactors. Mitochondria have a critical role in the production of intracellular ATP and participate in the generation of intermediates necessary for biosynthesis of macromolecules such as purines and pyrimidines. In this review, we highlight the role of purine and mitochondrial metabolism in cancer and how their intersection influences cancer progression, especially in ovarian cancer. Additionally, we address the importance of metabolic rewiring in cancer and how the evolving landscape of purine synthesis and mitochondria inhibitors can be potentially exploited for cancer treatment.


Asunto(s)
Mitocondrias/metabolismo , Neoplasias/metabolismo , Purinas/metabolismo , ADN/metabolismo , Humanos , Pirimidinas/metabolismo , ARN/metabolismo
4.
Protein J ; 37(5): 428-443, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30128635

RESUMEN

The B cell lymphoma 2 (BCL2) proteins are a family of evolutionarily related proteins that act as positive or negative regulators of the intrinsic apoptosis pathway. Overexpression of anti-apoptotic BCL2 proteins in cells is associated with apoptotic resistance, which can result in cancerous phenotypes and pathogenic cell survival. Consequently, anti-apoptotic BCL2 proteins have attracted considerable interest as therapeutic targets. We recently reported the development of a novel class of synthetic protein based on scyllatoxin (ScTx) designed to mimic the helical BH3 interaction domain of the pro-apoptotic BCL2 protein Bax. These studies showed that the number and position of native disulfide linkages contained within the ScTx-Bax structure significantly influences the ability for these constructs to target anti-apoptotic BCL2 proteins in vitro. The goal of the present study is to investigate the contribution of two disulfide linkages in the folding and biological activity of ScTx-Bax proteins. Here, we report the full chemical synthesis of three ScTx-Bax sequence variants, each presenting two native disulfide linkages at different positions within the folded structure. It was observed that two disulfide linkages were sufficient to fold ScTx-Bax proteins into native-like architectures reminiscent of wild-type ScTx. Furthermore, we show that select (bis)disulfide ScTx-Bax variants can target Bcl-2 (proper) in vitro and that the position of the disulfide bonds significantly influences binding affinity. Despite exhibiting only modest binding to Bcl-2, the successful synthesis of ScTx-Bax proteins containing two disulfide linkages represents a viable route to ScTx-based BH3 domain mimetics that preserve native-like conformations. Finally, structural models of ScTx-Bax proteins in complex with Bcl-2 indicate that these helical mimetics bind in similar configurations as wild-type Bax BH3 domains. Taken together, these results suggest that ScTx-Bax proteins may serve as potent lead compounds that expand the repertoire of "druggable" protein-protein interactions.


Asunto(s)
Disulfuros/química , Proteínas Recombinantes de Fusión , Venenos de Escorpión , Proteína X Asociada a bcl-2 , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Venenos de Escorpión/biosíntesis , Venenos de Escorpión/química , Venenos de Escorpión/genética , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/genética
5.
ACS Nano ; 11(2): 1214-1221, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28121129

RESUMEN

While slow release of chemicals has been widely applied for drug delivery, little work has been done on using this general nanotechnology-based principle for delivering nutrients to crops. In developing countries, the cost of fertilizers can be significant and is often the limiting factor for food supply. Thus, it is important to develop technologies that minimize the cost of fertilizers through efficient and targeted delivery. Urea is a rich source of nitrogen and therefore a commonly used fertilizer. We focus our work on the synthesis of environmentally benign nanoparticles carrying urea as the crop nutrient that can be released in a programmed manner for use as a nanofertilizer. In this study, the high solubility of urea molecules has been reduced by incorporating it into a matrix of hydroxyapatite nanoparticles. Hydroxyapatite nanoparticles have been selected due to their excellent biocompatibility while acting as a rich phosphorus source. In addition, the high surface area offered by nanoparticles allows binding of a large amount of urea molecules. The method reported here is simple and scalable, allowing the synthesis of a urea-modified hydroxyapatite nanohybrid as fertilizer having a ratio of urea to hydroxyapatite of 6:1 by weight. Specifically, a nanohybrid suspension was synthesized by in situ coating of hydroxyapatite with urea at the nanoscale. In addition to the stabilization imparted due to the high surface area to volume ratio of the nanoparticles, supplementary stabilization leading to high loading of urea was provided by flash drying the suspension to obtain a solid nanohybrid. This nanohybrid with a nitrogen weight of 40% provides a platform for its slow release. Its potential application in agriculture to maintain yield and reduce the amount of urea used is demonstrated.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda