Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 598(7880): 348-352, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34552244

RESUMEN

The determination of molecular features that mediate clinically aggressive phenotypes in prostate cancer remains a major biological and clinical challenge1,2. Recent advances in interpretability of machine learning models as applied to biomedical problems may enable discovery and prediction in clinical cancer genomics3-5. Here we developed P-NET-a biologically informed deep learning model-to stratify patients with prostate cancer by treatment-resistance state and evaluate molecular drivers of treatment resistance for therapeutic targeting through complete model interpretability. We demonstrate that P-NET can predict cancer state using molecular data with a performance that is superior to other modelling approaches. Moreover, the biological interpretability within P-NET revealed established and novel molecularly altered candidates, such as MDM4 and FGFR1, which were implicated in predicting advanced disease and validated in vitro. Broadly, biologically informed fully interpretable neural networks enable preclinical discovery and clinical prediction in prostate cancer and may have general applicability across cancer types.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas de Ciclo Celular/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Masculino , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptores Androgénicos/genética , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/genética
2.
J Cutan Pathol ; 51(9): 658-661, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38769706

RESUMEN

Cytophagic histiocytic panniculitis (CHP) is associated with a number of systemic conditions and is characterized by the presence of benign phagocytic histiocytes ("bean bag cells"), including phagocytosed erythrocytes, leukocytes, and platelets. We describe a case of a 72-year-old female who presented with a papular eruption that clinically mimicked pityriasis lichenoides et varioliformis acuta (PLEVA). Given that her skin biopsy had multiple features concerning PLEVA, this diagnosis was classified as a superficial pityriasis lichenoides-like variant of CHP. The histopathologic presence of cytophagic histiocytosis prompted workup for a systemic malignancy, leading to a diagnosis of underlying acute monocytic leukemia of myeloid lineage.


Asunto(s)
Paniculitis , Humanos , Femenino , Anciano , Paniculitis/patología , Paniculitis/diagnóstico , Histiocitos/patología , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/diagnóstico , Leucemia Monocítica Aguda/patología , Leucemia Monocítica Aguda/diagnóstico , Diagnóstico Diferencial , Diferenciación Celular , Monocitos/patología
3.
Front Mol Biosci ; 10: 1148389, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37602328

RESUMEN

p53 is a transcription factor that regulates the expression of genes involved in tumor suppression. p53 mutations mediate tumorigenesis and occur in approximately 50% of human cancers. p53 regulates hundreds of target genes that induce various cell fates including apoptosis, cell cycle arrest, and DNA damage repair. p53 also plays an important role in anti-tumor immunity by regulating TRAIL, DR5, TLRs, Fas, PKR, ULBP1/2, and CCL2; T-cell inhibitory ligand PD-L1; pro-inflammatory cytokines; immune cell activation state; and antigen presentation. Genetic alteration of p53 can contribute to immune evasion by influencing immune cell recruitment to the tumor, cytokine secretion in the TME, and inflammatory signaling pathways. In some contexts, p53 mutations increase neoantigen load which improves response to immune checkpoint inhibition. Therapeutic restoration of mutated p53 can restore anti-cancer immune cell infiltration and ameliorate pro-tumor signaling to induce tumor regression. Indeed, there is clinical evidence to suggest that restoring p53 can induce an anti-cancer immune response in immunologically cold tumors. Clinical trials investigating the combination of p53-restoring compounds or p53-based vaccines with immunotherapy have demonstrated anti-tumor immune activation and tumor regression with heterogeneity across cancer type. In this Review, we discuss the impact of wild-type and mutant p53 on the anti-tumor immune response, outline clinical progress as far as activating p53 to induce an immune response across a variety of cancer types, and highlight open questions limiting effective clinical translation.

4.
Cancer Res ; 83(4): 613-625, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36548402

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy can lead to dramatic clinical responses in B-cell malignancies. However, early clinical trials with CAR T-cell therapy in non-B-cell malignancies have been disappointing to date, suggesting that tumor-intrinsic features contribute to resistance. To investigate tumor-intrinsic modes of resistance, we performed genome scale CRISPR-Cas9 screens in mesothelin (MSLN)-expressing pancreatic cancer cells. Co-culture with MSLN-targeting CAR T cells identified both antigen-dependent and antigen-independent modes of resistance. In particular, loss of the majority of the genes involved in the pathway responsible for GPI-anchor biosynthesis and attachment abrogated the ability of CAR T cells to target pancreatic cancer cells, suggesting that disruption of this pathway may permit MSLN CAR T-cell evasion in the clinic. Antigen-independent mediators of CAR T-cell response included members of the death receptor pathway as well as genes that regulate tumor transcriptional responses, including TFAP4 and INTS12. TFAP4-mediated CAR T resistance depended on the NFκB transcription factor p65, indicating that tumor resistance to CAR T-cell therapy likely involves alterations in tumor-intrinsic states. Overall, this study uncovers multiple antigen-dependent and -independent mechanisms of CAR T-cell evasion by pancreatic cancer, paving the way for overcoming resistance in this disease that is notoriously refractory to immunotherapy. SIGNIFICANCE: The identification and validation of key determinants of CAR T-cell response in pancreatic cancer provide insights into the landscape of tumor cell intrinsic resistance mechanisms and into approaches to improve therapeutic efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Humanos , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Neoplasias Pancreáticas
5.
Clin Cancer Res ; 29(14): 2702-2713, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37126020

RESUMEN

PURPOSE: In patients with metastatic prostate cancer (mPC), ATM and BRCA2 mutations dictate differences in PARPi inhibitor response and other therapies. We interrogated the molecular features of ATM- and BRCA2-mutated mPC to explain the divergent clinical outcomes and inform future treatment decisions. EXPERIMENTAL DESIGN: We examined a novel set of 1,187 mPCs after excluding microsatellite-instable (MSI) tumors. We stratified these based on ATM (n = 88) or BRCA2 (n = 98) mutations. As control groups, mPCs with mutations in 12 other homologous recombination repair (HRR) genes were considered non-BRCA2/ATM HRR-deficient (HRDother, n = 193), whereas lack of any HRR mutations were considered HRR-proficient (HRP; n = 808). Gene expression analyses were performed using Limma. Real-world overall survival was determined from insurance claims data. RESULTS: In noncastrate mPCs, only BRCA2-mutated mPCs exhibited worse clinical outcomes to AR-targeted therapies. In castrate mPCs, both ATM and BRCA2 mutations exhibited worse clinical outcomes to AR-targeted therapies. ATM-mutated mPCs had reduced TP53 mutations and harbored coamplification of 11q13 genes, including CCND1 and genes in the FGF family. BRCA2-mutated tumors showed elevated genomic loss-of-heterozygosity scores and were often tumor mutational burden high. BRCA2-mutated mPCs had upregulation of cell-cycle genes and were enriched in cell-cycle signaling programs. This was distinct from ATM-mutated tumors. CONCLUSIONS: Tumoral ATM and BRCA2 mutations are associated with differential clinical outcomes when patients are stratified by treatments, including hormonal or taxane therapies. ATM- and BRCA2-mutated tumors exhibited differences in co-occurring molecular features. These unique molecular features may inform therapeutic decisions and development of novel therapies.


Asunto(s)
Genes BRCA2 , Neoplasias de la Próstata , Masculino , Humanos , Mutación , Proteína BRCA2/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Biomarcadores de Tumor/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética
6.
Am J Cancer Res ; 12(5): 2102-2117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693093

RESUMEN

Metastatic melanoma has a five-year survival of ~10%, with a paucity of biomarkers predicting metastasis to specific anatomic sites or targeted therapies for metastases. We analyzed 1015 primary and 358 metastatic melanomas and found metastatic disease is enriched for MDM2 and MDM4 amplifications compared to primary disease, and amplifications are associated with lower overall survival. MDM2/4 amplifications are associated with a higher rate of metastasis to the brain and liver. Two negative regulators of p53, USP7 and PPM1D, are also altered in metastatic melanoma compared to primary disease. These findings suggest that patients with metastatic melanoma have a dysregulated TP53 pathway compared to primary disease. We propose that patients with metastatic melanoma and wild-type TP53 may be more likely to benefit from MDM2, MDM4, USP7, and PPM1D inhibitors. Patients with MDM2/4 amplification display deep deletions in CDKN2A, alterations also associated with a higher rate of metastasis to the brain. Patients with a CDKN2A deletion have a higher rate of alterations in TTN, MUC16, LRP1B, and NF1, alterations previously associated with favorable response to immune-checkpoint inhibitors in melanoma. We propose CDKN2A alteration as a potential biomarker to predict response to immunotherapy in melanoma. We found that GBM displays the highest rate of MDM4 amplifications (9.63%) and CDKN2A deletions (54.39%) across all cancer types. In 592 GBM samples we found that 8.45% display MDM2 amplification. We suggest that patients with melanoma or GBM and amplifications in MDM2/4 and CDKN2A alterations may benefit from combinations of targeted inhibitors of MDM2/4 and CDK4/6, as well as immunotherapy.

7.
Elife ; 112022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550030

RESUMEN

Metastatic castration-resistant prostate cancers (mCRPCs) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ARTs). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins, we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found that CREB5 was associated with Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in CREB5/FOXA1-mediated ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
8.
Am J Cancer Res ; 11(11): 5452-5471, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34873472

RESUMEN

Bladder carcinoma has a 6% 5-year survival-rate for metastatic disease, with poorly understood links between genetic and environmental drivers of disease development, progression, and treatment response. Rhode Island has among the highest annual age-adjusted incidence rate of bladder cancer at 26.0/100,000, compared to 20.0 in the US, with a paucity of known driver genes for targeted therapies or predictive biomarkers. Bladder carcinomas have the highest frequency of alterations in CDKN1A/p21WAF1 (10%) across all cancer types analyzed in The Cancer Genome Atlas (TCGA) PanCancer Atlas Studies, displaying a predominance of truncating mutations (86%). We found that lung carcinomas lack CDKN1A truncating mutations, despite the shared role of tobacco as a risk factor for bladder cancer. Bladder carcinomas also have the highest frequency of RB1 alterations in TCGA (25%). We find that chromophobe renal cell carcinomas with CDKN1A and RB1 mutations are 100% truncating. Analysis of 1,868 bladder tumors demonstrated that truncating CDKN1A mutations co-occur with truncating RB1 mutations, suggesting an environmental exposure signature. Moreover, we found that HRNR and FLG mutations are enriched in tumors with CDKN1A alteration, suggesting potential novel roles in promoting bladder tumorigenesis. Association of HRNR with AKT activation offers possible therapeutic avenues, and FLG may provide insight into carcinogen exposure within the bladder. We suggest that because APOBEC mutations largely shape the bladder cancer mutational landscape, these events likely contribute to dysfunctional DNA repair genes, leading to frameshifts and the predominance of truncations in CDKN1A, RB1, ARID1A, or other drivers. We propose that patients with co-occurrence of CDKN1A and RB1 truncations may display enhanced responsiveness to targeted therapies combining cisplatin with ATR, ATM, CHK1, and CHK2 inhibitors, expanding therapeutic options for patients in need of improved precision treatments.

9.
Cell Rep ; 36(4): 109443, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34320363

RESUMEN

Metastasis is a complex and poorly understood process. In pancreatic cancer, loss of the transforming growth factor (TGF)-ß/BMP effector SMAD4 is correlated with changes in altered histopathological transitions, metastatic disease, and poor prognosis. In this study, we use isogenic cancer cell lines to identify SMAD4 regulated genes that contribute to the development of metastatic colonization. We perform an in vivo screen identifying FOSL1 as both a SMAD4 target and sufficient to drive colonization to the lung. The targeting of these genes early in treatment may provide a therapeutic benefit.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-fos/genética , Proteína Smad4/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Elementos de Facilitación Genéticos/genética , Humanos , Ratones , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-fos/metabolismo , Neoplasias Pancreáticas
10.
Nat Commun ; 12(1): 1979, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785741

RESUMEN

Lineage plasticity, the ability of a cell to alter its identity, is an increasingly common mechanism of adaptive resistance to targeted therapy in cancer. An archetypal example is the development of neuroendocrine prostate cancer (NEPC) after treatment of prostate adenocarcinoma (PRAD) with inhibitors of androgen signaling. NEPC is an aggressive variant of prostate cancer that aberrantly expresses genes characteristic of neuroendocrine (NE) tissues and no longer depends on androgens. Here, we investigate the epigenomic basis of this resistance mechanism by profiling histone modifications in NEPC and PRAD patient-derived xenografts (PDXs) using chromatin immunoprecipitation and sequencing (ChIP-seq). We identify a vast network of cis-regulatory elements (N~15,000) that are recurrently activated in NEPC. The FOXA1 transcription factor (TF), which pioneers androgen receptor (AR) chromatin binding in the prostate epithelium, is reprogrammed to NE-specific regulatory elements in NEPC. Despite loss of dependence upon AR, NEPC maintains FOXA1 expression and requires FOXA1 for proliferation and expression of NE lineage-defining genes. Ectopic expression of the NE lineage TFs ASCL1 and NKX2-1 in PRAD cells reprograms FOXA1 to bind to NE regulatory elements and induces enhancer activity as evidenced by histone modifications at these sites. Our data establish the importance of FOXA1 in NEPC and provide a principled approach to identifying cancer dependencies through epigenomic profiling.


Asunto(s)
Adenocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Tumores Neuroendocrinos/genética , Neoplasias de la Próstata/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Epigenómica/métodos , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Masculino , Mutación , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/terapia , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Interferencia de ARN , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
11.
Clin Cancer Res ; 26(18): 4995-5006, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631955

RESUMEN

PURPOSE: Rhabdoid tumors are devastating pediatric cancers in need of improved therapies. We sought to identify small molecules that exhibit in vitro and in vivo efficacy against preclinical models of rhabdoid tumor. EXPERIMENTAL DESIGN: We screened eight rhabdoid tumor cell lines with 481 small molecules and compared their sensitivity with that of 879 other cancer cell lines. Genome-scale CRISPR-Cas9 inactivation screens in rhabdoid tumors were analyzed to confirm target vulnerabilities. Gene expression and CRISPR-Cas9 data were queried across cell lines and primary rhabdoid tumors to discover biomarkers of small-molecule sensitivity. Molecular correlates were validated by manipulating gene expression. Subcutaneous rhabdoid tumor xenografts were treated with the most effective drug to confirm in vitro results. RESULTS: Small-molecule screening identified the protein-translation inhibitor homoharringtonine (HHT), an FDA-approved treatment for chronic myelogenous leukemia (CML), as the sole drug to which all rhabdoid tumor cell lines were selectively sensitive. Validation studies confirmed the sensitivity of rhabdoid tumor to HHT was comparable with that of CML cell lines. Low expression of the antiapoptotic gene BCL2L1, which encodes Bcl-XL, was the strongest predictor of HHT sensitivity, and HHT treatment consistently depleted Mcl-1, the synthetic-lethal antiapoptotic partner of Bcl-XL. Rhabdoid tumor cell lines and primary-tumor samples expressed low BCL2L1, and overexpression of BCL2L1 induced resistance to HHT in rhabdoid tumor cells. Furthermore, HHT treatment inhibited rhabdoid tumor cell line and patient-derived xenograft growth in vivo. CONCLUSIONS: Rhabdoid tumor cell lines and xenografts are highly sensitive to HHT, at least partially due to their low expression of BCL2L1. HHT may have therapeutic potential against rhabdoid tumors.


Asunto(s)
Homoharringtonina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Tumor Rabdoide/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Homoharringtonina/uso terapéutico , Humanos , Ratones , Tumor Rabdoide/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X/genética
12.
Cancer Res ; 79(9): 2404-2414, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30755442

RESUMEN

Malignant rhabdoid tumors (MRT) are highly aggressive pediatric cancers that respond poorly to current therapies. In this study, we screened several MRT cell lines with large-scale RNAi, CRISPR-Cas9, and small-molecule libraries to identify potential drug targets specific for these cancers. We discovered MDM2 and MDM4, the canonical negative regulators of p53, as significant vulnerabilities. Using two compounds currently in clinical development, idasanutlin (MDM2-specific) and ATSP-7041 (MDM2/4-dual), we show that MRT cells were more sensitive than other p53 wild-type cancer cell lines to inhibition of MDM2 alone as well as dual inhibition of MDM2/4. These compounds caused significant upregulation of the p53 pathway in MRT cells, and sensitivity was ablated by CRISPR-Cas9-mediated inactivation of TP53. We show that loss of SMARCB1, a subunit of the SWI/SNF (BAF) complex mutated in nearly all MRTs, sensitized cells to MDM2 and MDM2/4 inhibition by enhancing p53-mediated apoptosis. Both MDM2 and MDM2/4 inhibition slowed MRT xenograft growth in vivo, with a 5-day idasanutlin pulse causing marked regression of all xenografts, including durable complete responses in 50% of mice. Together, these studies identify a genetic connection between mutations in the SWI/SNF chromatin-remodeling complex and the tumor suppressor gene TP53 and provide preclinical evidence to support the targeting of MDM2 and MDM4 in this often-fatal pediatric cancer. SIGNIFICANCE: This study identifies two targets, MDM2 and MDM4, as vulnerabilities in a deadly pediatric cancer and provides preclinical evidence that compounds inhibiting these proteins have therapeutic potential.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Tumor Rabdoide/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Apoptosis , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Plant Signal Behav ; 11(10): e1211222, 2016 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-27429420

RESUMEN

The transcriptional regulator NPR1 mediates salicylic acid (SA)-induced plant immunity. NPR1 is also required for tolerance to high concentrations of SA. NPR1-interacting protein, NIMIN1, represses immune response by interacting with and negating NPR1. We tested the salicylic acid tolerance of transgenic plants overexpressing NIMIN1 and found that these plants displayed SA intolerance, similar to the npr1 mutant, due to sequestration of NPR1 by NIMIN1. Plants overexpressing mutated NIMIN1 that cannot interact with NPR1 showed no SA tolerance defect. Gene expression analysis showed that NPR1 is required for SA-stress induced as well as pathogen-induced NIMIN1 expression. These results indicate that over-accumulation of a negative regulator renders plants hypersensitive to SA by limiting NPR1 function. Furthermore, NPR1 activates negative regulators such as NIMIN1 for feedback inhibition of SA signaling to maintain immune homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Ácido Salicílico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda