Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Biochem Mol Toxicol ; 35(3): e22676, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33315275

RESUMEN

The liver is the main organ responsible for drug and xenobiotic metabolism and detoxification in the body. There are many antiepileptic drugs and nanoparticles that have been reported to cause serious untoward biological responses and hepatotoxicity. The aim of this study is to investigate the potential toxic effect of aspartic acid-coated magnesium oxide nanoparticles (Mg nano) and valproate (valp) using an in vitro three-dimensional (3D) human liver organoid model and an in vivo pentylenetetrazole (PTZ)-induced convulsion model in rats. Here, 3D human liver organoids were treated with valp or valp + Mg nano for 24 h and then incubated with PTZ for an extra 24 h. As the in vivo model, rats were treated with valp, Mg nano, or valp + Mg nano for 4 weeks and then they were treated with PTZ for 24 h. Toxicity in the liver organoids was demonstrated by reduced cell viability, decreased ATP, and increased reactive oxygen species. In the rat convulsion model, results revealed elevated serum alanine aminotransferase and aspartate aminotransferase levels. Both the in vitro and in vivo data demonstrated the potential toxic effects of valp + Mg nano on the liver tissues.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Óxido de Magnesio/toxicidad , Nanopartículas/toxicidad , Organoides/metabolismo , Ácido Valproico/efectos adversos , Hepatocitos/patología , Humanos , Hígado/patología , Organoides/patología , Ácido Valproico/farmacología
2.
FASEB J ; 33(11): 12435-12446, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419161

RESUMEN

Fibrosis is an underlying cause of cirrhosis and hepatic failure resulting in end stage liver disease with limited pharmacological options. The beneficial effects of relaxin peptide treatment were demonstrated in clinically relevant animal models of liver fibrosis. However, the use of relaxin is problematic because of a short half-life. The aim of this study was to test the therapeutic effects of recently identified small molecule agonists of the human relaxin receptor, relaxin family peptide receptor 1 (RXFP1). The lead compound of this series, ML290, was selected based on its effects on the expression of fibrosis-related genes in primary human stellate cells. RNA sequencing analysis of TGF-ß1-activated LX-2 cells showed that ML290 treatment primarily affected extracellular matrix remodeling and cytokine signaling, with expression profiles indicating an antifibrotic effect of ML290. ML290 treatment in human liver organoids with LPS-induced fibrotic phenotype resulted in a significant reduction of type I collagen. The pharmacokinetics of ML290 in mice demonstrated its high stability in vivo, as evidenced by the sustained concentrations of compound in the liver. In mice expressing human RXFP1 gene treated with carbon tetrachloride, ML290 significantly reduced collagen content, α-smooth muscle actin expression, and cell proliferation around portal ducts. In conclusion, ML290 demonstrated antifibrotic effects in liver fibrosis.-Kaftanovskaya, E. M., Ng, H. H., Soula, M., Rivas, B., Myhr, C., Ho, B. A., Cervantes, B. A., Shupe, T. D., Devarasetty, M., Hu, X., Xu, X., Patnaik, S., Wilson, K. J., Barnaeva, E., Ferrer, M., Southall, N. T., Marugan, J. J., Bishop, C. E., Agoulnik, I. U., Agoulnik, A. I. Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis.


Asunto(s)
Intoxicación por Tetracloruro de Carbono/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores de Péptidos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Intoxicación por Tetracloruro de Carbono/genética , Línea Celular Transformada , Proliferación Celular/genética , Citocinas/genética , Citocinas/metabolismo , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Ratones , Ratones Transgénicos , Organoides/metabolismo , Organoides/patología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Transducción de Señal/genética
3.
Proc Natl Acad Sci U S A ; 114(12): E2293-E2302, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28265064

RESUMEN

Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters.


Asunto(s)
Automatización/métodos , Técnicas Biosensibles/métodos , Evaluación Preclínica de Medicamentos/métodos , Organoides/fisiología , Automatización/instrumentación , Técnicas Biosensibles/instrumentación , Evaluación Preclínica de Medicamentos/instrumentación , Corazón/fisiología , Humanos , Hígado/química , Hígado/fisiología , Microfluídica , Modelos Biológicos , Miocardio , Organoides/química , Organoides/efectos de los fármacos
4.
Biol Reprod ; 96(3): 720-732, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339648

RESUMEN

Existing methods for evaluating the potential gonadotoxicity of environmental agents and pharmaceutical compounds rely heavily on animal studies. The current gold standard in vivo functional assays in animals are limited in their human predictive capacity. In addition, existing human two-dimensional in vitro models of testicular toxicity do not accurately reflect the in vivo situation. A more reliable testicular in vitro model system is needed to better assess the gonadotoxic potential of drugs prior to progression into clinical trials. The overall goal of this study was to develop a three-dimensional (3D) in vitro human testis organoid culture system for use as both a predictive first tier drug-screening tool and as a model of human testicular function. Multicellular human testicular organoids composed of Spermatogonial Stem Cells, Sertoli, Leydig and peritubular cells were created and evaluated over time for morphology, viability, androgen production and ability to support germ cell differentiation. Enzyme-linked immunosorbent assay measurements confirmed that the organoids produced testosterone continuously with and without hCG stimulation. Upregulation of postmeiotic genes including PRM1 and Acrosin, detected by quantitative-PCR, digital PCR and Immunofluorescence, indicated the transition of a small percentage of diploid to haploid germ cells. As a novel screening tool for reproductive toxicity, 3D organoids were exposed to four chemotherapeutic drugs, and they responded in a dose-dependent manner and maintained IC50 values significantly higher than 2D cultures. This 3D human testis organoid system has the potential to be used as a novel testicular toxicity-screening tool and in vitro model for human spermatogenesis.


Asunto(s)
Alternativas al Uso de Animales , Técnicas de Cultivo , Organoides , Espermatogénesis , Testículo , Andrógenos/metabolismo , Biomarcadores/metabolismo , Criopreservación , Humanos , Masculino , Pruebas de Toxicidad
5.
Gut ; 63(2): 300-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23525603

RESUMEN

OBJECTIVE: Necrotising enterocolitis (NEC) remains one of the primary causes of morbidity and mortality in neonates and alternative strategies are needed. Stem cells have become a therapeutic option for other intestinal diseases, which share some features with NEC. We tested the hypothesis that amniotic fluid stem (AFS) cells exerted a beneficial effect in a neonatal rat model of NEC. DESIGN: Rats intraperitoneally injected with AFS cells and their controls (bone marrow mesenchymal stem cells, myoblast) were analysed for survival, behaviour, bowel imaging (MRI scan), histology, bowel absorption and motility, immunofluorescence for AFS cell detection, degree of gut inflammation (myeloperoxidase and malondialdehyde), and enterocyte apoptosis and proliferation. RESULTS: AFS cells integrated in the bowel wall and improved rat survival and clinical conditions, decreased NEC incidence and macroscopic gut damage, improved intestinal function, decreased bowel inflammation, increased enterocyte proliferation and reduced apoptosis. The beneficial effect was achieved via modulation of stromal cells expressing cyclooxygenase 2 in the lamina propria, as shown by survival studies using selective and non-selective cyclooxygenase 2 inhibitors. Interestingly, AFS cells differentially expressed genes of the Wnt/ß-catenin pathway, which regulate intestinal epithelial stem cell function and cell migration and growth factors known to maintain gut epithelial integrity and reduce mucosal injury. CONCLUSIONS: We demonstrated here for the first time that AFS cells injected in an established model of NEC improve survival, clinical status, gut structure and function. Understanding the mechanism of this effect may help us to develop new cellular or pharmacological therapies for infants with NEC.


Asunto(s)
Líquido Amniótico/citología , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Enterocolitis Necrotizante/terapia , Enterocitos/metabolismo , Mucosa Intestinal/enzimología , Regeneración/fisiología , Trasplante de Células Madre , Células Madre/fisiología , Animales , Apoptosis , Enterocolitis Necrotizante/enzimología , Técnica del Anticuerpo Fluorescente , Imagen por Resonancia Magnética , Ratas , Tasa de Supervivencia
6.
Mamm Genome ; 25(3-4): 141-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24275887

RESUMEN

Fertilization is the process that leads to the formation of a diploid zygote from two haploid gametes. This is achieved through a complex series of cell-to-cell interactions between a sperm and an egg. The final event of fertilization is the fusion of the gametes' membranes, which allows the delivery of the sperm genetic material into the egg cytoplasm. In vivo studies in the laboratory mouse have led to the discovery of membrane proteins that are essential for the fusion process in both the sperm and egg. Specifically, the sperm protein Izumo1 was shown to be necessary for normal fertility. Izumo1-deficient spermatozoa fail to fuse with the egg plasma membrane. Izumo1 is a member of the Immunoglobulin Superfamily of proteins, which are known to be involved in cell adhesion. Here, we describe BART97b, a new mouse line with a recessive mutation that displays a fertilization block associated with a failure of sperm fusion. BART97b mutants carry a deletion that inactivates Spaca6, a previously uncharacterized gene expressed in testis. Similar to Izumo1, Spaca6 encodes an immunoglobulin-like protein. We propose that the Spaca6 gene product may, together with Izumo1, mediate sperm fusion by binding an as yet unidentified egg membrane receptor.


Asunto(s)
Elementos Transponibles de ADN/genética , Fertilización/genética , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Ratones Mutantes/genética , Ratones Transgénicos/genética , Interacciones Espermatozoide-Óvulo/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Femenino , Fertilización/fisiología , Eliminación de Gen , Silenciador del Gen , Masculino , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Plasma Seminal/genética , Análisis de Secuencia de ADN , Interacciones Espermatozoide-Óvulo/fisiología
7.
Nat Genet ; 37(8): 803-5, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16025116

RESUMEN

The mouse mutation fragilitas ossium (fro) leads to a syndrome of severe osteogenesis and dentinogenesis imperfecta with no detectable collagen defect. Positional cloning of the locus identified a deletion in the gene encoding neutral sphingomyelin phosphodiesterase 3 (Smpd3) that led to complete loss of enzymatic activity. Our knowledge of SMPD3 function is consistent with the pathology observed in mutant mice and provides new insight into human pathologies.


Asunto(s)
Dentinogénesis Imperfecta/genética , Eliminación de Gen , Osteogénesis Imperfecta/genética , Animales , Dentinogénesis Imperfecta/enzimología , Ratones , Ratones Mutantes , Mutación , Osteogénesis Imperfecta/enzimología , Esfingomielina Fosfodiesterasa
8.
Tissue Eng Part A ; 30(13-14): 333-341, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38126301

RESUMEN

Tissues on a chip are sophisticated three-dimensional (3D) in vitro microphysiological systems designed to replicate human tissue conditions within dynamic physicochemical environments. However, the current fabrication methods for tissue spheroids on a chip require multiple parts and manual processing steps, including the deposition of spheroids onto prefabricated "chips." These challenges also lead to limitations regarding scalability and reproducibility. To overcome these challenges, we employed 3D printing techniques to automate the fabrication process of tissue spheroids on a chip. This allowed the simultaneous high-throughput printing of human liver spheroids and their surrounding polymeric flow chamber "chips" containing inner channels in a single step. The fabricated liver tissue spheroids on a liver-on-a-chip (LOC) were subsequently subjected to dynamic culturing by a peristaltic pump, enabling assessment of cell viability and metabolic activities. The 3D printed liver spheroids within the printed chips demonstrated high cell viability (>80%), increased spheroid size, and consistent adenosine triphosphate (ATP) activity and albumin production for up to 14 days. Furthermore, we conducted a study on the effects of acetaminophen (APAP), a nonsteroidal anti-inflammatory drug, on the LOC. Comparative analysis revealed a substantial decline in cell viability (<40%), diminished ATP activity, and reduced spheroid size after 7 days of culture within the APAP-treated LOC group, compared to the nontreated groups. These results underscore the potential of 3D bioprinted tissue chips as an advanced in vitro model that holds promise for accurately studying in vivo biological processes, including the assessment of tissue response to administered drugs, in a high-throughput manner.


Asunto(s)
Bioimpresión , Dispositivos Laboratorio en un Chip , Hígado , Impresión Tridimensional , Esferoides Celulares , Humanos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/citología , Hígado/efectos de los fármacos , Hígado/citología , Bioimpresión/métodos , Acetaminofén/farmacología , Evaluación Preclínica de Medicamentos , Supervivencia Celular/efectos de los fármacos
9.
ALTEX ; 41(3): 402-424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38898799

RESUMEN

The webinar series and workshop titled "Trust Your Gut: Establishing Confidence in Gastrointestinal Models ­ An Overview of the State of the Science and Contexts of Use" was co-organized by NICEATM, NIEHS, FDA, EPA, CPSC, DoD, and the Johns Hopkins Center for Alternatives to Animal Testing (CAAT) and hosted at the National Institutes of Health in Bethesda, MD, USA on October 11-12, 2023. New approach methods (NAMs) for assessing issues of gastrointestinal tract (GIT)- related toxicity offer promise in addressing some of the limitations associated with animal-based assessments. GIT NAMs vary in complexity, from two-dimensional monolayer cell line-based systems to sophisticated 3-dimensional organoid systems derived from human primary cells. Despite advances in GIT NAMs, challenges remain in fully replicating the complex interactions and pro­cesses occurring within the human GIT. Presentations and discussions addressed regulatory needs, challenges, and innovations in incorporating NAMs into risk assessment frameworks; explored the state of the science in using NAMs for evaluating systemic toxicity, understanding absorption and pharmacokinetics, evaluating GIT toxicity, and assessing potential allergenicity; and discussed strengths, limitations, and data gaps of GIT NAMs as well as steps needed to establish confidence in these models for use in the regulatory setting.


Non-animal methods to assess whether chemicals may be toxic to the human digestive tract promise to complement or improve on animal-based methods. These approaches, which are based on human or animal cells and/or computer models, are faced with their own technical challenges and need to be shown to predict adverse effects in humans. Regulators are tasked with evaluating submitted data to best protect human health and the environment. A webinar series and workshop brought together scientists from academia, industry, military, and regulatory authorities from dif­ferent countries to discuss how non-animal methods can be integrated into the risk assessment of drugs, food additives, dietary supplements, pesticides, and industrial chemicals for gastrointestinal toxicity.


Asunto(s)
Alternativas a las Pruebas en Animales , Tracto Gastrointestinal , Humanos , Alternativas a las Pruebas en Animales/métodos , Animales , Modelos Biológicos , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos
10.
Neurourol Urodyn ; 32(8): 1130-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23371862

RESUMEN

AIMS: To describe the morphological and functional consequences for bladder development and function when nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) is lacking or reduced. METHODS: The Bloated Bladder (Blad) mouse, lacking Nmnat2, and heterozygotes were utilized for this investigation. Morphology and development of the bladder were studied using immunohistochemistry against urothelial, smooth muscle, and nerve markers. Functional effects were assessed by organ bath experiments and cystometry. RESULTS: Homozygote mutants were malformed and died at birth, whereas heterozygotes survived and morphologically did not differ from wild-type controls. Morphological bladder changes appeared in the Blad mutants as early as embryonic day 15.5 (E15.5) with an extremely distended bladder at E18.5. Staining revealed that all the bladder layers were present and expressed mature markers in all three genotypes. No nerves could be demonstrated by immunohistochemistry in the Blad mutant bladder at E18.5. Organ bath analysis showed that bladders from Blad mutant showed signs of denervation supersensitivity in response to carbachol, and no response to electrical stimulation of nerves at E18.5. Adult heterozygotes, which have a reduced expression of Nmnat2 at E18.5, showed decreased responses to carbachol and electrical stimulation compared to wild-type controls. The latter also retained their ability to empty their bladders, but showed increased micturition pressures compared to controls. CONCLUSIONS: Complete loss of Nmnat2 leads to a mature but distended bladder in utero and is not compatible with survival. Moderate loss of Nmnat2 has no effect on bladder development, survival, and has only modest effects on bladder function later in life.


Asunto(s)
Nicotinamida-Nucleótido Adenililtransferasa/genética , Vejiga Urinaria/crecimiento & desarrollo , Vejiga Urinaria/metabolismo , Animales , Estimulación Eléctrica , Ratones , Ratones Noqueados , Músculo Liso/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Vejiga Urinaria/inervación
11.
Nat Genet ; 35(2): 165-70, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12973351

RESUMEN

Fanconi anemia is a recessively inherited disease characterized by congenital defects, bone marrow failure and cancer susceptibility. Cells from individuals with Fanconi anemia are highly sensitive to DNA-crosslinking drugs, such as mitomycin C (MMC). Fanconi anemia proteins function in a DNA damage response pathway involving breast cancer susceptibility gene products, BRCA1 and BRCA2 (refs. 1,2). A key step in this pathway is monoubiquitination of FANCD2, resulting in the redistribution of FANCD2 to nuclear foci containing BRCA1 (ref. 3). The underlying mechanism is unclear because the five Fanconi anemia proteins known to be required for this ubiquitination have no recognizable ubiquitin ligase motifs. Here we report a new component of a Fanconi anemia protein complex, called PHF9, which possesses E3 ubiquitin ligase activity in vitro and is essential for FANCD2 monoubiquitination in vivo. Because PHF9 is defective in a cell line derived from an individual with Fanconi anemia, we conclude that PHF9 (also called FANCL) represents a novel Fanconi anemia complementation group (FA-L). Our data suggest that PHF9 has a crucial role in the Fanconi anemia pathway as the likely catalytic subunit required for monoubiquitination of FANCD2.


Asunto(s)
Anemia de Fanconi/genética , Ligasas/genética , Proteínas Nucleares/genética , Eliminación de Secuencia , Secuencia de Aminoácidos , Proteína BRCA1/genética , Proteína BRCA2/genética , Secuencia de Bases , Aberraciones Cromosómicas , Anemia de Fanconi/enzimología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Proteína del Grupo de Complementación L de la Anemia de Fanconi , Humanos , Ligasas/deficiencia , Datos de Secuencia Molecular , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Ubiquitina/metabolismo
12.
Inflamm Regen ; 43(1): 47, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798761

RESUMEN

BACKGROUND: Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) have shown therapeutic effects on liver fibrosis. This study aimed to evaluate the effects of extracellular vesicles from placenta-derived MSCs (Pd-MSCs-EVs) on liver fibrosis at 3D/2D levels and explore the potential mechanisms. METHODS: The multicellular liver organoids, consisting of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells, and liver sinusoidal endothelial cells, were observed for growth status, morphological changes, and metabolism. Human transformation growth factor- beta 1 (TGF-ß1) was used to induce fibrosis at optimal concentration. The anti-fibrosis effects of Pd-MSCs-EVs were evaluated in liver organoids and HSCs models. Anti-fibrotic content of Pd-MSCs-EVs was identified by multiple experimental validations. RESULTS: TGF-ß1 induced fibrosis in liver organoids, while Pd-MSCs-EVs significantly alleviated fibrotic phenotypes. Following serial verifications, miR-378c was identified as a potential key anti-fibrosis content. In contrast, miR-378c depletion decreased the anti-fibrotic effects of Pd-MSCs-EVs. Additionally, Pd-MSCs-EVs administration repressed TGF-ß1-mediated HSCs activation at 2D or 3D levels. Mechanistically, exosomal miR-378c inactivated HSCs by inhibiting epithelial-mesenchymal transition (EMT) through stabilizing E-cadherin via targeting its E3 ubiquitin ligase S-Phase Kinase Associated Protein 2 (SKP2). CONCLUSION: Pd-MSCs-EVs ameliorated TGF-ß1-induced fibrosis by deactivating HSCs in a miR-378c/SKP2-dependent manner, which may be an efficient therapeutic candidate for liver fibrosis.

13.
Pharmacol Res Perspect ; 10(3): e00951, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35445802

RESUMEN

Compounds that induce 5-aminolevulinic acid [ALA] synthase-1 and/or cytochromes P-450 may induce acute porphyric attacks in patients with the acute hepatic porphyrias [AHPs]. Currently, there is no simple, robust model used to assess and predict the porphyrogenicity of drugs and chemicals. Our aim was to develop a fluorescence-based in vitro assay for this purpose. We studied four different hepatic cell culture models: HepG2 cells, LMH cells, 3D HepG2 organoids, and 3D organoids of primary liver cells from people without known disease [normal human controls]. We took advantage of the fluorescent properties of protoporphyrin IX [PP], the last intermediate of the heme biosynthesis pathway, performing fluorescence spectrometry to measure the intensity of fluorescence emitted by these cells treated with selected compounds of importance to patients with AHPs. Among the four cell culture models, the LMH cells produced the highest fluorescence readings, suggesting that these cells retain more robust heme biosynthesis enzymes or that the other cell models may have lost their inducibility of ALA synthase-1 [ALAS-1]. Allyl isopropyl acetamide [AIA], a known potent porphyrogen and inducer of ALAS-1, was used as a positive control to help predict porphyrogenicity for tested compounds. Among the tested compounds (acetaminophen, acetylsalicylic acid, ß-estradiol, hydroxychloroquine sulfate, alpha-methyldopa, D (-) norgestrel, phenobarbital, phenytoin, sulfamethoxazole, sulfisoxazole, sodium valproate, and valsartan), concentrations greater than 0.314 mM for norgestrel, phenobarbital, phenytoin, and sodium valproate produced fluorescence readings higher than the reading produced by the positive AIA control. Porphyrin accumulation was also measured by HPLC to confirm the validity of the assay. We conclude that LMH cell cultures in multi-well plates are an inexpensive, robust, and simple system to predict the porphyrogenicity of existing or novel compounds that may exacerbate the AHPs.


Asunto(s)
Fenitoína , Ácido Valproico , Técnicas de Cultivo de Célula , Hemo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Norgestrel/metabolismo , Fenobarbital/metabolismo , Fenobarbital/farmacología , Fenitoína/metabolismo , Porfobilinógeno Sintasa/deficiencia , Porfirias Hepáticas , Ácido Valproico/metabolismo
14.
Front Immunol ; 13: 954984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591257

RESUMEN

Introduction: Placenta-derived mesenchymal cells (PLCs) endogenously produce FVIII, which makes them ideally suited for cell-based fVIII gene delivery. We have previously reported that human PLCs can be efficiently modified with a lentiviral vector encoding a bioengineered, expression/secretion-optimized fVIII transgene (ET3) and durably produce clinically relevant levels of functionally active FVIII. The objective of the present study was to investigate whether CRISPR/Cas9 can be used to achieve location-specific insertion of a fVIII transgene into a genomic safe harbor, thereby eliminating the potential risks arising from the semi-random genomic integration inherent to lentiviral vectors. We hypothesized this approach would improve the safety of the PLC-based gene delivery platform and might also enhance the therapeutic effect by eliminating chromatin-related transgene silencing. Methods: We used CRISPR/Cas9 to attempt to insert the bioengineered fVIII transgene "lcoET3" into the AAVS1 site of PLCs (CRISPR-lcoET3) and determined their subsequent levels of FVIII production, comparing results with this approach to those achieved using lentivector transduction (LV-lcoET3) and plasmid transfection (Plasmid-lcoET3). In addition, since liver-derived sinusoidal endothelial cells (LSECs) are the native site of FVIII production in the body, we also performed parallel studies in human (h)LSECs). Results: PLCs and hLSECs can both be transduced (LV-lcoET3) with very high efficiency and produce high levels of biologically active FVIII. Surprisingly, both cell types were largely refractory to CRISPR/Cas9-mediated knockin of the lcoET3 fVIII transgene in the AAVS1 genome locus. However, successful insertion of an RFP reporter into this locus using an identical procedure suggests the failure to achieve knockin of the lcoET3 expression cassette at this site is likely a function of its large size. Importantly, using plasmids, alone or to introduce the CRISPR/Cas9 "machinery", resulted in dramatic upregulation of TLR 3, TLR 7, and BiP in PLCs, compromising their unique immune-inertness. Discussion: Although we did not achieve our primary objective, our results validate the utility of both PLCs and hLSECs as cell-based delivery vehicles for a fVIII transgene, and they highlight the hurdles that remain to be overcome before primary human cells can be gene-edited with sufficient efficiency for use in cell-based gene therapy to treat HA.


Asunto(s)
Hemofilia A , Células Madre Mesenquimatosas , Femenino , Humanos , Embarazo , Hemofilia A/terapia , Factor VIII , Células Endoteliales/metabolismo , Placenta/metabolismo , Células Madre Mesenquimatosas/metabolismo
15.
Biomaterials ; 269: 120668, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33461059

RESUMEN

Generating microliver tissues to recapitulate hepatic function is of increasing importance in tissue engineering and drug screening. But the limited availability of primary hepatocytes and the marked loss of phenotype hinders their application. Human induced hepatocytes (hiHeps) generated by direct reprogramming can address the shortage of primary hepatocytes to make personalized drug prediction possible. Here, we simplify preparation of reprogramming reagents by expressing six transcriptional factors (HNF4A, FOXA2, FOXA3, ATF5, PROX1, and HNF1) from two lentiviral vectors, each expressing three factors. Transducing human fetal and adult fibroblasts with low vector dosage generated human induced hepatocyte-like cells (hiHeps) displaying characteristics of mature hepatocytes and capable of drug metabolism. To mimic the physiologic liver microenvironment and improve hepatocyte function, we prepared 3D scaffold-free microliver spheroids using hiHeps and human liver nonparenchymal cells through self-assembly without exogenous scaffolds. We then introduced the microliver spheroids into a two-organ microfluidic system to examine interactions between hepatocytes and tumor cells. The hiHeps-derived spheroids metabolized the prodrug capecitabine into the active metabolite 5-fluorouracil and induced toxicity in downstream tumor spheroids. Our results demonstrate that hiHeps can be used to make microliver spheroids and combined with a microfluidic system for drug evaluation. Our work could make it possible to use patient-specific hepatocyte-like cells to predict drug efficacy and side effects in various organs from the same patient.


Asunto(s)
Hepatocitos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Adulto , Reprogramación Celular , Fibroblastos , Humanos , Esferoides Celulares , Ingeniería de Tejidos , Factores de Transcripción
16.
J Urol ; 183(2): 780-5, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20022053

RESUMEN

PURPOSE: Nitric oxide mediates urethral smooth muscle relaxation and may also be involved in detrusor activity control. Mice with mutation in the Immp2l gene have high superoxide ion levels and a consequent decrease in the bioavailable amount of nitric oxide. We studied bladder function in this mouse model. MATERIAL AND METHODS: Young male mutants at ages 4 to 6 months, old female mutants at age 18 months and healthy WT age matched controls were used. The detrusor contractile response to carbachol and electrical field stimulation was tested in isolated detrusor strips in organ baths. In vivo bladder function was evaluated by cystometry in conscious animals. RESULTS: Young male mutants had significantly lower micturition and higher post-void residual volume than WT controls. They had pronounced voiding difficulty and strained when initiating micturition. Detrusor contractile responses to carbachol and electrical field stimulation were similar in mutant and WT mice. Old female mutant mice had lower bladder capacity and micturition volume, and higher micturition frequency and bladder-to-body weight ratio than WT controls. In the in vitro study detrusor strips from mutants showed a lower maximum response to carbachol. CONCLUSIONS: Mice with mutation in the Immp2l gene have bladder dysfunction, mainly characterized by emptying abnormalities in young males and increased detrusor activity in old females. Detrusor function was preserved in young males and impaired in old females. These animals are a natural model of oxidative stress with low bioavailable nitric oxide. Thus, they are interesting tools in which to evaluate the role of these conditions on bladder dysfunction.


Asunto(s)
Óxido Nítrico/fisiología , Enfermedades de la Vejiga Urinaria/etiología , Animales , Endopeptidasas/genética , Femenino , Masculino , Ratones , Ratones Mutantes , Mutación , Enfermedades de la Vejiga Urinaria/genética
17.
Mol Biol Rep ; 37(4): 2117-24, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19669668

RESUMEN

It has been shown that human and murine fibroblasts can be reprogrammed by ectopic expression of transcription factors using viral vectors. For the purpose of human therapeutic applications, the integration of viral transgenes into the genome is unlikely to be accepted. We therefore produced recombinant transcription factor proteins in E. coli (OCT4, SOX2, c-MYC and KLF4) carrying the cell penetrating TAT domain from HIV1. The purified proteins were able to enter into mammalian cells when added to tissue culture medium but appeared not to translocate to the nucleus. Further investigation indicated that most of the protein was tied up in the endosomes and was unavailable for reprogramming. Once this problem has been solved it seems likely that protein reprogramming will be the method of choice for clinical applications.


Asunto(s)
Reprogramación Celular/genética , Fibroblastos/metabolismo , VIH-1/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Western Blotting , Línea Celular , Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Desnaturalización Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Colorantes de Rosanilina , Factores de Transcripción SOXB1/metabolismo , Coloración y Etiquetado , Factores de Tiempo , Transducción Genética
18.
Acta Biomater ; 106: 124-135, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32068138

RESUMEN

Current drug development techniques are expensive and inefficient, partially due to the use of preclinical models that do not accurately recapitulate in vivo drug efficacy and cytotoxicity. To address this challenge, we report on an integrated, in vitro multi-organoid system that enables parallel assessment of drug efficiency and toxicity on multiple 3D tissue organoids. Built in a low-cost, adhesive film-based microfluidic device, these miniaturized structures require less than 200 µL fluid volume and are amenable to both matrix-based 3D cell culture and spheroid aggregate integration, each supported with an in situ photocrosslinkable hyaluronic acid hydrogel. Here, we demonstrate this technology first with a three-organoid device consisting of liver, cardiac, and lung constructs. We show that these multiple tissue types can be kept in common circulation with high viability for 21 days and validate the platform by investigating liver metabolism of the prodrug capecitabine into 5-fluorouracil (5-FU) and observing downstream toxicity in lung and cardiac organoids. Then we expand the integrated system to accommodate six humanized constructs, including liver, cardiac, lung, endothelium, brain, and testes organoids. Following a 14-day incubation in common media, we demonstrate multi-tissue interactions by metabolizing the alkylating prodrug ifosfamide in the liver organoid to produce chloroacetaldehyde and induce downstream neurotoxicity. Our results establish an expandable, multi-organoid body-on-a-chip system that can be fabricated easily and used for the accurate characterization of drug interactions in vitro. STATEMENT OF SIGNIFICANCE: The use of 3-dimensional (3D) in vitro models in drug development has advanced over the past decade. However, with several exceptions, the majority of research studies using 3D in vitro models, such as organoids, employ single tissue types, in isolated environments with no "communication" between different tissues. This is a significant limiting factor because in the human body there is significant signaling between different cells, tissues, and organs. Here we employ a low-cost, adhesive film-based microfluidic device approach, paired with a versatile extracellular matrix-derived hyaluronic acid hydrogel to support integrated systems of 3 and 6 3D organoid and cell constructs. Moreover, we demonstrate an integrated response to drugs, in which downstream toxicity is dependent on the presence of liver organoids.


Asunto(s)
Capecitabina/metabolismo , Ifosfamida/metabolismo , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Organoides/metabolismo , Profármacos/metabolismo , Capecitabina/toxicidad , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Hialurónico/química , Hidrogeles/química , Ifosfamida/toxicidad , Organoides/efectos de los fármacos , Profármacos/toxicidad
19.
Biofabrication ; 12(2): 025017, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32101533

RESUMEN

Current practices in drug development have led to therapeutic compounds being approved for widespread use in humans, only to be later withdrawn due to unanticipated toxicity. These occurrences are largely the result of erroneous data generated by in vivo and in vitro preclinical models that do not accurately recapitulate human physiology. Herein, a human primary cell- and stem cell-derived 3D organoid technology is employed to screen a panel of drugs that were recalled from market by the FDA. The platform is comprised of multiple tissue organoid types that remain viable for at least 28 days, in vitro. For many of these compounds, the 3D organoid system was able to demonstrate toxicity. Furthermore, organoids exposed to non-toxic compounds remained viable at clinically relevant doses. Additional experiments were performed on integrated multi-organoid systems containing liver, cardiac, lung, vascular, testis, colon, and brain. These integrated systems proved to maintain viability and expressed functional biomarkers, long-term. Examples are provided that demonstrate how multi-organoid 'body-on-a-chip' systems may be used to model the interdependent metabolism and downstream effects of drugs across multiple tissues in a single platform. Such 3D in vitro systems represent a more physiologically relevant model for drug screening and will likely reduce the cost and failure rate associated with the approval of new drugs.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Organoides/fisiología , Preparaciones Farmacéuticas/metabolismo , Astemizol/farmacología , Capecitabina/farmacología , Técnicas de Cultivo de Célula/instrumentación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Dispositivos Laboratorio en un Chip , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Miocardio/citología , Miocardio/metabolismo , Organoides/citología , Organoides/efectos de los fármacos , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
20.
Curr Stem Cell Res Ther ; 14(5): 442-452, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854976

RESUMEN

Therapeutic effects of Mesenchymal Stem/Stromal Cells (MSCs) transplantation have been observed in various disease models. However, it is thought that MSCs-mediated effects largely depend on the paracrine manner of secreting cytokines, growth factors, and Extracellular Vesicles (EVs). Similarly, MSCs-derived EVs also showed therapeutic benefits in various liver diseases through alleviating fibrosis, improving regeneration of hepatocytes, and regulating immune activity. This review provides an overview of the MSCs, their EVs, and their therapeutic potential in treating various liver diseases including liver fibrosis, acute and chronic liver injury, and Hepatocellular Carcinoma (HCC). More specifically, the mechanisms by which MSC-EVs induce therapeutic benefits in liver diseases will be covered. In addition, comparisons between MSCs and their EVs were also evaluated as regenerative medicine against liver diseases. While the mechanisms of action and clinical efficacy must continue to be evaluated and verified, MSCs-derived EVs currently show tremendous potential and promise as a regenerative medicine treatment for liver disease in the future.


Asunto(s)
Vesículas Extracelulares , Hepatopatías/terapia , Trasplante de Células Madre Mesenquimatosas , Animales , Modelos Animales de Enfermedad , Humanos , Cirrosis Hepática/terapia , Neoplasias Hepáticas/terapia , Células Madre Mesenquimatosas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda