Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 149(3): 565-77, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541428

RESUMEN

Human LMNA gene mutations result in laminopathies that include Emery-Dreifuss muscular dystrophy (AD-EDMD) and Hutchinson-Gilford progeria, the premature aging syndrome (HGPS). The Lmna null (Lmna(-/-)) and progeroid LmnaΔ9 mutant mice are models for AD-EDMD and HGPS, respectively. Both animals develop severe tissue pathologies with abbreviated life spans. Like HGPS cells, Lmna(-/-) and LmnaΔ9 fibroblasts have typically misshapen nuclei. Unexpectedly, Lmna(-/-) or LmnaΔ9 mice that are also deficient for the inner nuclear membrane protein Sun1 show markedly reduced tissue pathologies and enhanced longevity. Concordantly, reduction of SUN1 overaccumulation in LMNA mutant fibroblasts and in cells derived from HGPS patients corrected nuclear defects and cellular senescence. Collectively, these findings implicate Sun1 protein accumulation as a common pathogenic event in Lmna(-/-), LmnaΔ9, and HGPS disorders.


Asunto(s)
Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patología , Proteínas Nucleares/metabolismo , Progeria/metabolismo , Animales , Línea Celular , Senescencia Celular , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Progeria/patología
2.
Bioorg Med Chem ; 95: 117502, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37866089

RESUMEN

A structure-activity relationship (SAR) study of stimulator of interferon gene (STING) inhibition was performed using a series of indol-3-yl-N-phenylcarbamic amides and indol-2-yl-N-phenylcarbamic amides. Among these analogs, compounds 10, 13, 15, 19, and 21 inhibited the phosphorylation of STING and interferon regulatory factor 3 (IRF3) to a greater extent than the reference compound, H-151. All five analogs showed stronger STING inhibition than H-151 on the 2',3'-cyclic GMP-AMP-induced expression of interferon regulatory factors (IRFs) in a STINGR232 knock-in THP-1 reporter cell line. The half-maximal inhibitory concentration of the most potent compound, 21, was 11.5 nM. The molecular docking analysis of compound 21 and STING combined with the SAR study suggested that the meta- and para-positions of the benzene ring of the phenylcarbamic amide moiety could be structurally modified by introducing halides or alkyl substituents.


Asunto(s)
Amidas , Nucleotidiltransferasas , Amidas/farmacología , Simulación del Acoplamiento Molecular , Fosforilación , Relación Estructura-Actividad , Nucleotidiltransferasas/metabolismo
3.
EMBO Rep ; 21(10): e49680, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32815283

RESUMEN

The primary cilium is a sensory organelle that receives specific signals from the extracellular environment important for vertebrate development and tissue homeostasis. Lamins, the major components of the nuclear lamina, are required to maintain the nuclear structure and are involved in most nuclear activities. In this study, we show that deficiency in lamin A/C causes defective ciliogenesis, accompanied by increased cytoplasmic accumulation of actin monomers and increased formation of actin filaments. Disruption of actin filaments by cytochalasin D rescues the defective ciliogenesis in lamin A/C-depleted cells. Moreover, lamin A/C-deficient cells display lower levels of nesprin 2 and defects in recruiting Arp2, myosin Va, and tau tubulin kinase 2 to the basal body during ciliogenesis. Collectively, our results uncover a functional link between nuclear lamina integrity and ciliogenesis and implicate the malfunction of primary cilia in the pathogenesis of laminopathy.


Asunto(s)
Lamina Tipo A , Lámina Nuclear , Actinas , Núcleo Celular , Cilios , Lamina Tipo A/genética , Laminas/genética
4.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260577

RESUMEN

Aging is an evolutionally conserved process that limits life activity. Cellular aging is the result of accumulated genetic damage, epigenetic damage and molecular exhaustion, as well as altered inter-cellular communication; these lead to impaired organ function and increased vulnerability to death. Skeletal muscle constitutes ~40% of the human body's mass. In addition to maintaining skeletal structure and allowing locomotion, which enables essential daily activities to be completed, skeletal muscle also plays major roles in thermogenesis, metabolism and the functioning of the endocrine system. Unlike many other organs that have a defined size once adulthood is reached, skeletal muscle is able to alter its structural and functional properties in response to changes in environmental conditions. Muscle mass usually remains stable during early life; however, it begins to decline at a rate of ~1% year in men and ~0.5% in women after the age of 50 years. On the other hand, different exercise training regimens are able to restore muscle homeostasis at the molecular, cellular and organismal levels, thereby improving systemic health. Here we give an overview of the molecular factors that contribute to lifespan and healthspan, and discuss the effects of the longevity gene Cisd2 and middle-to-old age exercise on muscle metabolism and changes in the muscle transcriptome in mice during very old age.


Asunto(s)
Ejercicio Físico , Longevidad/genética , Proteínas de la Membrana/metabolismo , Músculo Esquelético/fisiología , Animales , Femenino , Humanos , Masculino , Modelos Biológicos , Caracteres Sexuales
6.
Mol Cell Neurosci ; 79: 1-11, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27865767

RESUMEN

Regeneration of injured peripheral nerves is a slow, complicated process that could be improved by implantation of neural stem cells (NSCs) or nerve conduit. Implantation of NSCs along with conduits promotes the regeneration of damaged nerve, likely because (i) conduit supports and guides axonal growth from one nerve stump to the other, while preventing fibrous tissue ingrowth and retaining neurotrophic factors; and (ii) implanted NSCs differentiate into Schwann cells and maintain a growth factor enriched microenvironment, which promotes nerve regeneration. In this study, we identified IL12p80 (homodimer of IL12p40) in the cell extracts of implanted nerve conduit combined with NSCs by using protein antibody array and Western blotting. Levels of IL12p80 in these conduits are 1.6-fold higher than those in conduits without NSCs. In the sciatic nerve injury mouse model, implantation of NSCs combined with nerve conduit and IL12p80 improves motor recovery and increases the diameter up to 4.5-fold, at the medial site of the regenerated nerve. In vitro study further revealed that IL12p80 stimulates the Schwann cell differentiation of mouse NSCs through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). These results suggest that IL12p80 can trigger Schwann cell differentiation of mouse NSCs through Stat3 phosphorylation and enhance the functional recovery and the diameter of regenerated nerves in a mouse sciatic nerve injury model.


Asunto(s)
Interleucina-12/metabolismo , Regeneración Nerviosa , Células-Madre Neurales/trasplante , Neurogénesis , Traumatismos de los Nervios Periféricos/terapia , Células de Schwann/citología , Nervio Ciático/fisiología , Animales , Células Cultivadas , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Factor de Transcripción STAT3/metabolismo , Trasplante de Células Madre
7.
J Cell Sci ; 127(Pt 8): 1792-804, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24522183

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a human progeroid disease caused by a point mutation on the LMNA gene. We reported previously that the accumulation of the nuclear envelope protein SUN1 contributes to HGPS nuclear aberrancies. However, the mechanism by which interactions between mutant lamin A (also known as progerin or LAΔ50) and SUN1 produce HGPS cellular phenotypes requires further elucidation. Using light and electron microscopy, this study demonstrated that SUN1 contributes to progerin-elicited structural changes in the nuclear envelope and the endoplasmic reticulum (ER) network. We further identified two domains through which full-length lamin A associates with SUN1, and determined that the farnesylated cysteine within the CaaX motif of lamin A has a stronger affinity for SUN1 than does the lamin A region containing amino acids 607 to 656. Farnesylation of progerin enhanced its interaction with SUN1 and reduced SUN1 mobility, thereby promoting the aberrant recruitment of progerin to the ER membrane during postmitotic assembly of the nuclear envelope, resulting in the accumulation of SUN1 over consecutive cellular divisions. These results indicate that the dysregulated interaction of SUN1 and progerin in the ER during nuclear envelope reformation determines the progression of HGPS.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progeria/patología , Retículo Endoplásmico/patología , Fibroblastos/metabolismo , Células HeLa , Humanos , Lamina Tipo A/genética , Mitosis , Membrana Nuclear/patología , Mutación Puntual , Prenilación , Progeria/genética , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Piel/patología
8.
Proc Natl Acad Sci U S A ; 110(19): E1779-87, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610398

RESUMEN

The overexpression of Aurora kinases in multiple tumors makes these kinases appealing targets for the development of anticancer therapies. This study identified two small molecules with a furanopyrimidine core, IBPR001 and IBPR002, that target Aurora kinases and induce a DFG conformation change at the ATP site of Aurora A. Our results demonstrate the high potency of the IBPR compounds in reducing tumorigenesis in a colorectal cancer xenograft model in athymic nude mice. Human hepatoma up-regulated protein (HURP) is a substrate of Aurora kinase A, which plays a crucial role in the stabilization of kinetochore fibers. This study used the IBPR compounds as well as MLN8237, a proven Aurora A inhibitor, as chemical probes to investigate the molecular role of HURP in mitotic spindle formation. These compounds effectively eliminated HURP phosphorylation, thereby revealing the coexistence and continuous cycling of HURP between unphosphorylated and phosphorylated forms that are associated, respectively, with microtubules emanating from centrosomes and kinetochores. Furthermore, these compounds demonstrate a spatial hierarchical preference for HURP in the attachment of microtubules extending from the mother to the daughter centrosome. The finding of inequality in the centrosomal microtubules revealed by these small molecules provides a versatile tool for the discovery of new cell-division molecules for the development of antitumor drugs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/ultraestructura , Inhibidores Enzimáticos/farmacología , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Aurora Quinasa A , Aurora Quinasas , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Cristalografía por Rayos X , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Desnudos , Mitosis , Trasplante de Neoplasias , Fosforilación , Estructura Terciaria de Proteína
9.
Mol Cancer Ther ; 23(6): 766-779, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38592383

RESUMEN

Aurora kinase inhibitors, such as alisertib, can destabilize MYC-family oncoproteins and have demonstrated compelling antitumor efficacy. In this study, we report 6K465, a novel pyrimidine-based Aurora A inhibitor, that reduces levels of c-MYC and N-MYC oncoproteins more potently than alisertib. In an analysis of the antiproliferative effect of 6K465, the sensitivities of small cell lung cancer (SCLC) and breast cancer cell lines to 6K465 were strongly associated with the protein levels of c-MYC and/or N-MYC. We also report DBPR728, an acyl-based prodrug of 6K465 bearing fewer hydrogen-bond donors, that exhibited 10-fold improved oral bioavailability. DBPR728 induced durable tumor regression of c-MYC- and/or N-MYC-overexpressing xenografts including SCLC, triple-negative breast cancer, hepatocellular carcinoma, and medulloblastoma using a 5-on-2-off or once-a-week dosing regimen on a 21-day cycle. A single oral dose of DBPR728 at 300 mg/kg induced c-MYC reduction and cell apoptosis in the tumor xenografts for more than 7 days. The inhibitory effect of DBPR728 at a reduced dosing frequency was attributed to its uniquely high tumor/plasma ratio (3.6-fold within 7 days) and the long tumor half-life of active moiety 6K465. Furthermore, DBPR728 was found to synergize with the mTOR inhibitor everolimus to suppress c-MYC- or N-MYC-driven SCLC. Collectively, these results suggest DBPR728 has the potential to treat cancers overexpressing c-MYC and/or N-MYC.


Asunto(s)
Aurora Quinasa A , Everolimus , Proteínas Proto-Oncogénicas c-myc , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Aurora Quinasa A/antagonistas & inhibidores , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Everolimus/farmacología , Everolimus/farmacocinética , Everolimus/administración & dosificación , Línea Celular Tumoral , Femenino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/farmacocinética , Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pirimidinas/farmacología , Pirimidinas/farmacocinética , Pirimidinas/administración & dosificación , Pirimidinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
10.
Commun Chem ; 6(1): 153, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463995

RESUMEN

Natural products are important sources of therapeutic agents and useful drug discovery tools. The fused macrocycles and multiple stereocenters of briarane-type diterpenoids pose a major challenge to total synthesis and efforts to characterize their biological activities. Harnessing a scalable source of excavatolide B (excB) from cultured soft coral Briareum stechei, we generated analogs by late-stage diversification and performed structure-activity analysis, which was critical for the development of functional excB probes. We further used these probes in a chemoproteomic strategy to identify Stimulator of Interferon Genes (STING) as a direct target of excB in mammalian cells. We showed that the epoxylactone warhead of excB is required to covalently engage STING at its membrane-proximal Cys91, inhibiting STING palmitoylation and signaling. This study reveals a possible mechanism-of-action of excB, and expands the repertoire of covalent STING inhibitors.

11.
Cell Biosci ; 12(1): 122, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918763

RESUMEN

BACKGROUND: Constitutive activation of PI3K signaling has been well recognized in a subset of small cell lung cancer (SCLC), the cancer type which has the most aggressive clinical course amongst pulmonary tumors. Whereas cancers that acquire a mutation/copy gain in PIK3CA or loss of PTEN have been implicated in enhanced sensitivity to inhibitors targeting the PI3K/AKT/mTOR pathway, the complexities of the pathway and corresponding feedback loops hamper clear predictions as to the response of tumors presenting these genomic features. METHODS: The correlation between the expression profile of proteins involved in the PI3K/AKT/mTOR signaling and cell viability in response to treatment with small molecule inhibitors targeting isoform-specific PI3Ks, AKT, and mTOR was assessed in 13 SCLC cancer cell lines. Athymic nude mice were used to determine the effect of PI3K/mTOR dual inhibition on the growth of xenograft SCLC tumors in vivo. The activation of caspase signaling and proteolytic cleavages of mTOR companion proteins were assessed using recombinant caspases assays and Western blot analyses. RESULTS: Our results indicate that the sensitivity of these SCLC cell lines to GSK2126458, a dual PI3K/mTOR inhibitor, is positively correlated with the expression levels of phosphorylated AKT (p-AKT) at Thr308 and Ser473. Inhibition of pan-class I PI3Ks or PI3K/mTOR dual inhibition was shown to induce proteolytic cleavage of RICTOR and RPTOR, which were respectively dependent on Caspase-6 and Caspase-3. A combination of a clinically approved PI3Kα-selective inhibitor and an mTORC1 inhibitor was shown to have synergistic effects in inducing the death of SCLC cells with high p-AKT. We observed no clear correlation between PTEN levels and the survival of SCLCs in response to PI3K/mTOR dual inhibition; however, PTEN depletion was shown to increase the susceptibility of low p-AKT SCLC cells to dual PI3K/mTOR inhibitor-induced cell death as well as the proteolytic cleavage of RICTOR. CONCLUSIONS: These results suggest the level of p-AKT can be a companion diagnostic biomarker for the treatment of SCLC involving the combinational use of clinically approved isoform-specific PI3K and mTOR inhibitors.

12.
Epigenetics Chromatin ; 15(1): 1, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983624

RESUMEN

The cause of nuclear shape abnormalities which are often seen in pre-neoplastic and malignant tissues is not clear. In this study we report that deformation of the nucleus can be induced by TGFß1 stimulation in several cell lines including Huh7. In our results, the upregulated histone H3.3 expression downstream of SMAD signaling contributed to TGFß1-induced nuclear deformation, a process of which requires incorporation of the nuclear envelope (NE) proteins lamin B1 and SUN1. During this process, the NE constitutively ruptured and reformed. Contrast to lamin B1 which was relatively stationary around the nucleus, the upregulated lamin A was highly mobile, clustering at the nuclear periphery and reintegrating into the nucleoplasm. The chromatin regions that lost NE coverage formed a supra-nucleosomal structure characterized by elevated histone H3K27me3 and histone H1, the formation of which depended on the presence of lamin A. These results provide evidence that shape of the nucleus can be modulated through TGFß1-induced compositional changes in the chromatin and nuclear lamina.


Asunto(s)
Histonas , Membrana Nuclear , Línea Celular Tumoral , Núcleo Celular , Humanos , Lámina Nuclear , Isoformas de Proteínas
13.
Vaccine ; 39(24): 3259-3269, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33972124

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is an important viral pathogen responsible for severe infection of the lower respiratory tract in children under the age of 5 years. No vaccines against RSV are currently in clinical use. Vaccine-associated enhanced respiratory disease (ERD) caused by excess Th2 type responses was observed in a clinical trial of formalin-inactivated RSV (FI-RSV) in antigen-naïve infants. Thus, inducing a balanced immune response is a crucial issue in the development of an RSV vaccine. METHODS: In this study, we constructed, expressed, and purified a recombinant RSV vaccine candidate (i.e., HRØ24) containing the two heptad repeat regions and the antigenic sites Ø, II, and IV of the RSV F protein. The RSV vaccine candidate was intranasally administrated to BALB/c and C57BL/6 mice in combination with virus-like particles (VLPs) derived from the core protein of the hepatitis B virus (HBc). Mucosal immunity to HRØ24 was then assessed. RESULTS: Intranasal administration of HBc VLPs in combination with HRØ24 induced serum IgGs against HRØ24 as well as lung HRØ24-specific sIgAs in both C57BL/6 and BALB/c mouse models. The secretion of IFN-γ from splenocyte re-stimulation and an elevated ratio of serum IgG2a to IgG1 indicated that the immune response induced by the HBc VLPs/HRØ24 mixture was Th1-biased. Weight loss of <5% and no to low eosinophil infiltration was observed in histological analysis of the lung following a challenge with the RSV A2 strain. These results suggest that the HBc VLPs/HRØ24 combination conferred substantial partial protection against RSV-induced illness in mice. CONCLUSIONS: Long-term immunity to RSV-induced illness was achieved via intranasal vaccination using a mixture of HBc VLPs and HRØ24 in mouse models.


Asunto(s)
Hepatitis B , Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Anticuerpos Antivirales , Humanos , Inmunidad Mucosa , Pulmón , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones por Virus Sincitial Respiratorio/prevención & control , Proteínas Virales de Fusión
14.
Sci Rep ; 11(1): 5358, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686165

RESUMEN

The morphology of the Golgi complex is influenced by the cellular context, which strictly correlates with nuclear functions; however, the mechanism underlying this association remains elusive. The inner nuclear membrane SUN proteins, SUN1 and SUN2, have diverse functions together with the outer nuclear membrane nesprin proteins, which comprise the LINC complex. We found that depletion of SUN1 leads to Golgi complex dispersion with maintenance of ministacks and retained function for vesicle transport through the Golgi complex. In addition, SUN2 associates with microtubule plus-end-directed motor KIF20A, possibly via nesprin-2. KIF20A plays a role in the Golgi dispersion in conjunction with the SUN2-nesprin-2 LINC complex in SUN1-depleted cells, suggesting that SUN1 suppresses the function of the SUN2-nesprin-2 LINC complex under a steady-state condition. Further, SUN1-knockout mice, which show impaired cerebellar development and cerebellar ataxia, presented altered Golgi morphology in Purkinje cells. These findings revealed a regulation of the Golgi organization by the LINC complex.


Asunto(s)
Aparato de Golgi/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Animales , Aparato de Golgi/genética , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Cinesinas/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas de Unión a Telómeros/genética
15.
J Med Chem ; 64(11): 7312-7330, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34009981

RESUMEN

The A-type Aurora kinase is upregulated in many human cancers, and it stabilizes MYC-family oncoproteins, which have long been considered an undruggable target. Here, we describe the design and synthesis of a series of pyrimidine-based derivatives able to inhibit Aurora A kinase activity and reduce levels of cMYC and MYCN. Through structure-based drug design of a small molecule that induces the DFG-out conformation of Aurora A kinase, lead compound 13 was identified, which potently (IC50 < 200 nM) inhibited the proliferation of high-MYC expressing small-cell lung cancer (SCLC) cell lines. Pharmacokinetic optimization of 13 by prodrug strategies resulted in orally bioavailable 25, which demonstrated an 8-fold higher oral AUC (F = 62.3%). Pharmacodynamic studies of 25 showed it to effectively reduce cMYC protein levels, leading to >80% tumor regression of NCI-H446 SCLC xenograft tumors in mice. These results support the potential of 25 for the treatment of MYC-amplified cancers including SCLC.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas c-myc/metabolismo , Pirimidinas/química , Animales , Aurora Quinasa A/metabolismo , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/metabolismo , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos ICR , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Aging Cell ; 19(2): e13090, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31833196

RESUMEN

Mutations in lamin A (LMNA) are responsible for a variety of human dystrophic and metabolic diseases. Here, we created a mouse model in which progerin, the lamin A mutant protein that causes Hutchinson-Gilford progeria syndrome (HGPS), can be inducibly overexpressed. Muscle-specific overexpression of progerin was sufficient to induce muscular dystrophy and alter whole-body energy expenditure, leading to premature death. Intriguingly, sarcolipin (Sln), an endoplasmic reticulum (ER)-associated protein involved in heat production, is upregulated in progerin-expressing and Lmna knockout (Lmna-/- ) skeletal muscle. The depletion of Sln accelerated the early death of Lmna-/- mice. An examination at the molecular level revealed that progerin recruits Sln and Calnexin to the nuclear periphery. Furthermore, progerin-expressing myoblasts presented enhanced store-operated Ca2+ entry, as well as increased co-localization of STIM1 and ORAI1. These findings suggest that progerin dysregulates calcium homeostasis through an interaction with a subset of ER-associated proteins, resulting in thermogenic and metabolic abnormalities.


Asunto(s)
Calcio/metabolismo , Lamina Tipo A/metabolismo , Distrofias Musculares/metabolismo , Progeria/metabolismo , Termogénesis/genética , Animales , Calnexina/metabolismo , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Estrés del Retículo Endoplásmico/genética , Lamina Tipo A/genética , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Distrofias Musculares/fisiopatología , Mutación , Mioblastos/metabolismo , Mioblastos/patología , Proteína ORAI1/metabolismo , Progeria/genética , Progeria/mortalidad , Progeria/fisiopatología , Proteolípidos/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Regulación hacia Arriba
17.
Int J Cancer ; 124(6): 1483-9, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19065665

RESUMEN

The spindle assembly checkpoint (SAC) guards against chromosomal missegregation during mitosis. To investigate the role of SAC in tumor development, mice heterozygously knocked out for the mitotic arrest deficient (Mad) genes Mad1 and/or Mad2 were mated with p53(+/) (-) mice. Increased tumor frequencies were reproducibly observed in Mad2(+/) (-)p53(+/) (-) (88.2%) and Mad1(+/) (-)Mad2(+/) (-)p53(+/) (-) (95.0%) mice compared with p53(+/) (-) (66.7%) mice. Moreover, 53% of Mad2(+/) (-)p53(+/) (-) mice developed lymphomas compared with 11% of p53(+/) (-) mice. By examining chromosome content, increased loss in diploidy was seen in cells from Mad2(+/) (-)p53(+/) (-) versus p53(+/) (-) mice, correlating loss of SAC function, in a p53(+/) (-) context, with increased aneuploidy and tumorigenesis. The findings here provide evidence for a cooperative role of Mad1/Mad2 and p53 genes in preventing tumor development.


Asunto(s)
Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Huso Acromático/patología , Proteína p53 Supresora de Tumor/deficiencia , Animales , Cruzamientos Genéticos , Femenino , Fase G1/genética , Frecuencia de los Genes , Genotipo , Tamaño de la Camada , Proteínas Mad2 , Ratones , Ratones Noqueados , Mutación Missense , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/genética , Fase S/genética , Proteína p53 Supresora de Tumor/genética
18.
J Biomed Sci ; 16: 96, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19849840

RESUMEN

The nuclear envelope (NE) consists of two membrane layers that segregate the nuclear from the cytoplasmic contents. Recent progress in our understanding of nuclear-lamina associated diseases has revealed intriguing connections between the envelope components and nuclear processes. Here, we review the functions of the nuclear envelope in chromosome organization, gene expression, DNA repair and cell cycle progression, and correlate deficiencies in envelope function with human pathologies.


Asunto(s)
Membrana Nuclear/metabolismo , Lámina Nuclear/metabolismo , Animales , Ciclo Celular , Cromosomas/metabolismo , Citoplasma/metabolismo , Reparación del ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Ratones , Modelos Biológicos , Proteínas de Complejo Poro Nuclear/metabolismo
19.
Cancer Res ; 67(1): 160-6, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17210695

RESUMEN

Mitotic arrest-deficient protein 1 (MAD1) is a component of the mitotic spindle assembly checkpoint. We have created a knockout mouse model to examine the physiologic consequence of reduced MAD1 function. Mad1(+/-) mice were successfully generated, but repeated paired mating of Mad1(+/-) with Mad1(+/-) mice failed to produce a single Mad1(-/-) animal, suggesting that the latter genotype is embryonic lethal. In aging studies conducted for >18 months, Mad1(+/-) mice compared with control wild-type (wt) littermates showed a 2-fold higher incidence of constitutive tumors. Moreover, 42% of Mad1(+/-) (P < 0.03), but 0% of wt, mice developed neoplasia after treatment with vincristine, a microtubule depolymerization agent. Mad1(+/-) mouse embryonic fibroblasts (MEF) were found to be more prone than wt cells to become aneuploid; Mad1(+/-), but not wt, MEFs produced fibrosarcomas when explanted into nude mice. Our results indicate an essential MAD1 function in mouse development and correlate Mad1 haploinsufficiency with increased constitutive tumors.


Asunto(s)
Neoplasias Experimentales/genética , Proteínas Nucleares/deficiencia , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Inestabilidad Genómica , Haploidia , Proteínas Mad2 , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Vincristina/farmacología
20.
Stem Cells Dev ; 28(16): 1116-1127, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31140357

RESUMEN

Interkinetic nuclear migration (INM) is a process by which nuclei oscillate between the basal and apical surfaces of epithelial cells in coordination with the cell cycle. The cytoskeletal machinery including microtubules and actin has been reported to drive apical INM; however, the role of nuclear proteins in this process has yet to be fully elucidated. Here, we investigated the function of a SUN-domain protein, Sun1, in zebrafish. We found that zebrafish sun1 is highly expressed in the ventricular zone of the brain. Knocking down sun1 with antisense morpholino oligonucleotides reduced the abundance of nestin- and gfap-expressing neural stem cells and progenitor cells. The live-cell imaging results showed that sun1 morphant cells migrated toward the basal side during the S phase but failed to migrate apically during the G2 phase. On the contrary, the passive stochastic movement during the G2 phase was unaffected. Furthermore, down regulation of sun1 was shown to reduce the expression of genes associated with the Notch pathway, whereas the expression of genes in the Wnt pathway was less perturbed. Findings from this research suggest that the Sun1-mediated nucleo-cytoskeletal interaction contributes to apical nuclear migration, and may thus affect exposure to Notch signal, thereby altering the composition of the progenitor pool in the embryonic neurogenesis of zebrafish.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/fisiología , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Pez Cebra/metabolismo , Actinas/metabolismo , Animales , Ciclo Celular/fisiología , División Celular/fisiología , Proliferación Celular/fisiología , Centrosoma/metabolismo , Citoesqueleto/metabolismo , Células-Madre Neurales , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda