Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Small ; 20(33): e2312132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38453671

RESUMEN

As a representative in the post-lithium-ion batteries (LIBs) landscape, lithium metal batteries (LMBs) exhibit high-energy densities but suffer from low coulombic efficiencies and short cycling lifetimes due to dendrite formation and complex side reactions. Separator modification holds the most promise in overcoming these challenges because it utilizes the original elements of LMBs. In this review, separators designed to address critical issues in LMBs that are fatal to their destiny according to the target electrodes are focused on. On the lithium anode side, functional separators reduce dendrite propagation with a conductive lithiophilic layer and a uniform Li-ion channel or form a stable solid electrolyte interphase layer through the continuous release of active agents. The classification of functional separators solving the degradation stemming from the cathodes, which has often been overlooked, is summarized. Structural deterioration and the resulting leakage from cathode materials are suppressed by acidic impurity scavenging, transition metal ion capture, and polysulfide shuttle effect inhibition from functional separators. Furthermore, flame-retardant separators for preventing LMB safety issues and multifunctional separators are discussed. Further expansion of functional separators can be effectively utilized in other types of batteries, indicating that intensive and extensive research on functional separators is expected to continue in LIBs.

2.
J Environ Manage ; 342: 118345, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37311347

RESUMEN

During the adsorptive removal of hazardous metal contaminants, dissolution-precipitation of sparingly soluble adsorbents may result in the formation of toxic colloidal suspensions, triggering secondary pollution. Therefore, we studied the prevention of colloid-facilitated contamination in a model adsorption system of dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O) and Cd2+ as an adsorbent and adsorbate. Upon adding pure DCPD powder into a 500 mg L-1 Cd2+ solution of pH â‰Œ 7.0, aggregates of spheroidal Cd-bearing primary particles, within 0.040-0.95 µm size range, were generated via dissolution-precipitation. The accumulated volume of these submicron particles (10.8%) was greater than that of the submicron particles from the exposure of DCPD to deionized water (4.48%). While the Cd-carrying submicron particles, which are responsible for colloidal recontamination, appeared to form via homogeneous nucleation, their formation was suppressed using polyacrylonitrile fibers (PANFs) as supporting substrates. Thus, heterogeneous nucleation on PANFs formed hexagonal columnar microparticles of a new phase, pentacadmium dihydrogen tetrakis (phosphate) tetrahydrate (Cd5H2(PO4)4·4H2O). Together with dissolution-precipitation on the native DCPD, nucleation and growth on the PANFs accelerated the depletion of the dissolved species, reducing the degree of supersaturation along the DCPD-water interface. Although the PANFs decreased the Cd adsorption capacity to 56.7% of that of DCPD, they prevented the formation of small aggregates of Cd-bearing particles. Other sparingly soluble adsorbents can be compounded with PANF to prevent the generation of toxic colloids.


Asunto(s)
Cadmio , Fosfatos de Calcio , Solubilidad , Agua
3.
J Environ Manage ; 283: 111990, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513451

RESUMEN

Although the radionuclide 60Co is widely used, its presence in various effluents demands its removal to preclude environmental pollution and detrimental effects on human health. This study investigated the batch adsorption performance of a potential cobalt adsorbent, dicalcium phosphate dihydrate (DCPD), in immobilizing Co2+ from water. The influences of solution pH, contact time, initial concentration, and competing cations were examined and discussed. Stable cobalt uptake was observed at pH 4-8. The sorption kinetics showed a multi-stage uptake profile, implying that several mechanisms are involved in the adsorption process. Microscopy and structural analysis revealed that DCPD decomposes to its anhydrous form during adsorption, which explains the multistep curve over the entire adsorption period. However, the non-apatitic transformation is not exclusive to cobalt uptake. Intraparticle diffusion also contributed to the overall removal kinetics of Co2+ from water. Considering the Sips isotherm model, the maximum Co2+ adsorption capacity of DCPD was 441 mg g-1. Cobalt uptake selectivity dropped in the presence of Ca2+ ions, from 1.21 × 104 to 207 mL g-1, indicating DCPD would be more applicable in treating soft 60Co-contaminated waters. Structural analysis, elemental mapping, and qualitative analysis of solid residues confirmed that ion exchange is involved in the removal of cobalt from aqueous solutions.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Fosfatos de Calcio , Cobalto , Humanos , Concentración de Iones de Hidrógeno , Cinética , Agua
4.
J Environ Manage ; 270: 110837, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32507743

RESUMEN

The Fukushima Daiichi nuclear disaster and the decommissioning of over a hundred nuclear reactors worldwide led to the increase in the demand for efficient water treatment technologies to remove radionuclides, such as 90Sr. Brushite or dicalcium phosphate dihydrate (DCPD) is a potential adsorbent to remove strontium from water. In this study, composite poly(acrylonitrile) (PAN) nanofiber (NF) adsorbents with DCPD (PAN/DCPD) were prepared, characterized, and investigated for strontium adsorption in water. Material characterization revealed mechanically suitable, hydrophilic, and macroporous composite NF adsorbents with average fiber diameters of <500 nm. As-prepared DCPD powder exhibited a superior strontium uptake capacity of 81.7 mg g-1 at pH â‰… 10 of aqueous Sr2+ solution over its biogenic and synthetic predecessor, hydroxyapatite. Increased DCPD loading resulted in higher adsorption. Maximum Sr2+ uptake of PAN/DCPD NF with 70 wt% DCPD loading (PAN/70DCPD NF) was 146 mg g-1 considering the Sips isotherm model. Kinetic studies revealed that Sr2+ removal by PAN/DCPD NF was a chemisorption process which involved ion exchange and surface complexation. PAN/70DCPD NF as a dead-end membrane filter exhibited superior removal efficiency over pure PAN NF. The overall results of this study revealed the potential application of PAN/DCPD NF adsorbent for 90Sr removal from water.


Asunto(s)
Nanofibras , Purificación del Agua , Resinas Acrílicas , Adsorción , Fosfatos de Calcio , Cinética , Estroncio , Agua
5.
Small ; 15(12): e1804980, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30773814

RESUMEN

Next-generation lithium-ion batteries (LIBs) that satisfy the requirements for an electric vehicle energy source should demonstrate high reliability and safety for long-term high-energy-density operation. This inevitably calls for a novel approach to advance major components such as the separator. Herein, a separator is designed and fabricated via application of multilayer functional coating on both sides of a polyethylene separator. The multilayer-coated separator (MCS) has a porous structure that does not interfere with lithium ion diffusion and exhibits superior heat resistance, high electrolyte uptake, and persistent adhesion with the electrode. More importantly, it enables high capacity retention and reduced impedance build up during cycling when used in a coin or pouch cell. These imply its promising application in energy sources requiring long-term stability. Fabrication of the MCS without the use of organic solvents is not only environmentally beneficial but also effective at cost reduction. This approach paves the way for the separator, which has long been considered an inactive major component of LIBs, to become an active contributor to the energy density toward achieving longer cycle stability.

6.
J Environ Manage ; 231: 788-794, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30419434

RESUMEN

Owing to their high-risk factor, many attempts have been made to remove radionuclides from water. Sr2+ ions are the target of removal by synthesized hydroxyapatite in this research. A facile method for synthesizing high-surface-area hydroxyapatite by in-situ precipitation using excess diammonium phosphate solution and without any additive was developed. The highest surface area achieved using this method was 177.00 m2/g, and the synthesized hydroxyapatite was also mesoporous. The effects of different pH, temperatures, and ion concentrations during synthesis on the properties of the hydroxyapatite were assessed, and it was found that a low temperature and high pH were optimal for synthesizing high-surface-area hydroxyapatite. The maximum strontium removal capacity of 28.51 mg/g was achieved when the pH-7.5 solution was used. This performance is competitive in comparison with previously developed synthesized materials. Synthesized hydroxyapatite could effectively remove radioactive strontium from an aqueous solution for nuclear waste management.


Asunto(s)
Durapatita , Estroncio , Iones , Temperatura , Agua
7.
Sensors (Basel) ; 16(9)2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27618056

RESUMEN

Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called "virtual sensor"), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth's magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms.


Asunto(s)
Campos Magnéticos , Movimiento (Física) , Peatones , Algoritmos , Calibración , Ambiente , Bosques , Humanos
8.
Sensors (Basel) ; 16(5)2016 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-27223293

RESUMEN

This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

9.
Sci Rep ; 14(1): 18445, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117776

RESUMEN

This research investigated spatial inequalities in transportation accessibility to social infrastructures (SIs) in South Korea, using a multi-dimensional methodological approach, including descriptive/bivariate analysis, explanatory factor analysis (EFA), K-Mean cluster analysis, and multinomial logit model (MNL). Our study confirmed pronounced spatial disparities in transportation accessibility to SIs, highlighting significantly lower access in rural and remote regions compared to urban centers and densely populated areas, consistent with existing literature. Building on prior findings, several additional findings were identified. First, we uncovered significant positive correlations among accessibility to different types of SIs in four critical categories: green and recreation spaces, health and aged care facilities, educational institutions, and justice and emergency services, revealing prevalent spatial inequality patterns. Second, we identified three distinct accessibility clusters (High, Middle, and Low) across the critical SI categories. Specifically, residents within the High cluster benefited from the closest average network distances to all SIs, while those in the Low cluster faced significant accessibility burdens (e.g., 22.9 km for welfare facilities, 20.1 km for hospitals, and 19.2 km for elderly care facilities). Third, MNL identified factors such as population density and housing prices as pivotal in spatial stratification of accessibility. Specifically, areas with lower SI accessibility tended to have a higher proportion of elderly residents. Also, decreased accessibility correlated with diminished traffic volumes across all transportation modes, particularly public transportation. This research contributes to enhancing our understanding of spatial inequalities in transportation accessibility to SIs and offers insights crucial for transportation and urban planning.


Asunto(s)
Factores Socioeconómicos , Transportes , República de Corea , Humanos , Análisis por Conglomerados , Población Rural , Análisis Espacial
10.
Sci Rep ; 14(1): 8981, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637570

RESUMEN

We delve into the temporal dynamics of public transportation (PT) ridership in Seoul, South Korea, navigating the periods before, during, and after the COVID-19 pandemic through a spatial difference-in-difference model (SDID). Rooted in urban resilience theory, the study employs micro-level public transportation card data spanning January 2019 to December 2023. Major findings indicate a substantial ridership decline during the severe COVID impact phase, followed by a period in the stable and post-COVID phases. Specifically, compared to the pre-COVID phase, PT ridership experienced a 32.1% decrease in Severe, followed by a reduced magnitude of 21.8% in Stable and 13.5% in post-COVID phase. Interestingly, the observed decrease implies a certain level of adaptability, preventing a complete collapse. Also, contrasting with findings in previous literature, our study reveals a less severe impact, with reductions ranging from 27.0 to 34.9%. Moreover, while the ridership in the post-COVID phase exhibits recovery, the ratio (Post/Pre) staying below 1.0 suggests that the system has not fully returned to its pre-pandemic state. This study contributes to the urban resilience discourse, illustrating how PT system adjusts to COVID, offering insights for transportation planning.


Asunto(s)
COVID-19 , Resiliencia Psicológica , Humanos , Seúl/epidemiología , COVID-19/epidemiología , Pandemias , República de Corea/epidemiología
11.
J Hazard Mater ; 475: 134864, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38876025

RESUMEN

Conventional environmental health research is primarily focused on isolated chemical exposures, neglecting the complex interactions between multiple pollutants that may synergistically or antagonistically influence toxicity, thereby posing unexpected health risks. In this study, we address this knowledge gap by introducing an explainable machine learning (ML) approach with Feature Localized Intercept Transformed-Shapley Additive Explanations (FLIT-SHAP) designed to extract the dose-response relationships of specific pollutants in mixtures. In contrast to traditional SHAP, FLIT-SHAP can localize the global intercept to elucidate mixture effects, which is crucial for understanding the oxidative potential (OP) of ambient particulate matter (PM). Assessing multi-pollutant OP using FLIT-SHAP revealed both synergistic (55-63 %) and antagonistic (25-42 %) effects in laboratory-controlled OP data, but an antagonistic (33-66 %; lower OP) effect in ambient PM. Notably, the FLIT-SHAP approach demonstrated higher prediction accuracy (R2 = 0.99) compared to the additive model (R2 = 0.89) when evaluated against real-world PM samples. Quinones, such as phenanthrenequinone, play a more significant role in PM2.5 than previously recognized. Through this study, we highlighted the potential of FLIT-SHAP to enhance toxicity predictions and aid decision-making in the field of environmental health.

12.
ACS Appl Mater Interfaces ; 16(31): 40964-40972, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39069678

RESUMEN

The demand for safer batteries is growing rapidly due to fire incidents in electronic devices that use Li-ion batteries. Zn-ion batteries are among the most promising candidates to replace Li-ion batteries because they use a water-based electrolyte and are not explosive. However, Zn-ion batteries suffer from persistent corrosion and dendritic crystal formation during the charge-discharge process, which decrease their reversibility and hinder their commercial usage. Extensive research has been conducted to address these issues, but there are significant limitations due to high process and time costs. In this study, the modulation of the Zn-electrolyte interface to overcome these challenges is attempted using acetamide-derived thioacetamide (TAA), a surface modifier used in electroplating. TAA undergoes hydrolysis in an aqueous solution and produces weakly acidic byproducts and sulfide ions. These species are adsorbed onto the Zn metal surface, which induces uniform Zn2+ deposition, facilitates the formation of a stable interfacial layer, and inhibits side reactions due to the reduced water activity. Consequently, the symmetric cell with TAA achieves a low polarization of 50 mV and stable cycling for 700 h at 1 mA cm-2. Additionally, a Zn|V6O13 full cell exhibits electrochemical reversibility, maintaining a capacity retention of 64% over 300 cycles. Therefore, this study offers useful insights into the development of a simple manufacturing process to ensure the competitiveness of Zn-ion batteries for practical applications using functional electrolyte additives.

13.
Sci Total Environ ; 926: 172025, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38554954

RESUMEN

Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.

14.
Macromol Rapid Commun ; 34(5): 406-10, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23355346

RESUMEN

Fabrication of physically engineered colloids and their application to the biological fields is emerging importance because of their potential to provide an enhanced performance without altering the chemical properties of biomaterials used. A facile approach is reported to fabricate sub-10-µm-sized PLGA microparticle with small dimples covering the surface by droplet imprinting. Optical and magnetic resonance bioimaging agents are easily co-encapsulated inside the microparticles to obtain a bi-modal imaging agent. Cell internalization efficacy of dimpled particles in DC 2.4 cell is enhanced compared with conventional smooth round-shaped colloids. Our result indicates that morphology-controlled microparticles show promise as a cell labeling with improved cell interaction.


Asunto(s)
Materiales Biocompatibles/química , Medios de Contraste/química , Propiedades de Superficie
15.
J Nanosci Nanotechnol ; 13(8): 5891-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23882856

RESUMEN

Poly(3,4-ethylenedioxythiophene) (PEDOT) has good properties as a conductive polymer such as high conductivity, optical transmittance, and chemical stability, while offering relatively weak physicochemical properties. The main purpose of this paper is to improve physicochemical properties such as solvent resistance and pencil hardness of PEDOT. Carboxyl groups in the poly(MMA-co-MAA) polymer chains can effectively crosslink each other in the presence of aziridine, resulting in physicochemically robust PEDOT/poly(MMA-co-MAA) hybrid conductive films. The electrical conductivity, optical properties, and physicochemical properties of the hybrid conductive film were compared by varying the solid content and poly(MMA-co-MAA) portion in the coating precursor solution. From the results, the transparency and surface resistance of the hybrid film show a tendency to decrease with increasing solid content in the coating precursor. Moreover, solvent resistance and hardness were dramatically enhanced by hybridization of PEDOT and crosslinked poly(MMA-co-MAA) due to curing reactions between carboxyl groups. The chemical composition of 30 wt-% of poly(MMA-co-MAA) (MMA:MAA mole ratio 9:1) and 3 wt-% - 5 wt-% of aziridine yields the best physicochemical properties of poly(MMA-co-MAA)/PEDOT hybrid thin films.

16.
J Hazard Mater ; 453: 131385, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043858

RESUMEN

The presence of cesium ions (Cs+) in radioactive wastewater has attracted considerable attention owing to their extreme toxic effects. Thus, there is an urgent need to develop adsorbents for Cs+ with high adsorption capacities (q). While phosphate-based adsorbents have advantages for their disposal, previous adsorbents have shown limited q because of their limited capacity for ion exchange, despite showing high theoretical q values. In this study, two dittmarite-type magnesium phosphates, KMgPO4·H2O (KMP) and NH4MgPO4·H2O (NMP), were synthesized because of their ability to contain readily exchangeable cations in their interlayers. KMP and NMP demonstrated remarkable adsorption capacities for Cs+ (qeKMP = 630 mg g-1 and qeNMP = 711 mg g-1), which were the highest among all reported adsorbents and are ∼84 % of their theoretical values. Their distribution coefficients in waters with high divalent ion concentrations were low, which limits their use for the adsorption of Cs+ from such environments. After adsorption, KMP and NMP were structurally transformed into struvite-type CsMgPO4·6H2O (CsMP), which has two different stacking structures, either cubic or hexagonal, depending on the pH of the solution. The high q values of KMP and NMP enable them to reduce the volume of radioactive waste for disposal.

17.
J Hazard Mater ; 455: 131648, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37207481

RESUMEN

Acidic wastewater containing radioactive 137Cs is difficult to treat by selective adsorption. Abundant H+ under acidic conditions damages the structure of adsorbents and competes with Cs+ for adsorption sites. Herein, we designed a novel layered calcium thiostannate (KCaSnS) that contains Ca2+ as a dopant. The dopant Ca2+ ion is metastable and larger than the ions attempted before. The pristine KCaSnS demonstrated a high Cs+ adsorption capacity of 620 mg/g at 8250 mg/L Cs+ solution and pH 2, which is 68% higher than that at pH 5.5 (370 mg/g), a trend opposite to all previous studies. The neutral condition allowed the release of Ca2+ present only in the interlayer (∼20%); whereas the high acidity facilitated the leaching of Ca2+ from the backbone structure (∼80%). The complete structural Ca2+ leaching was made possible only by a synergistic interaction of highly concentrated H+ and Cs+. Doping a large enough ion, such as Ca2+, to accommodate Cs+ into the Sn-S matrix upon its liberation opens a new way of designing high-performance adsorbents.

18.
ACS Appl Mater Interfaces ; 15(27): 32814-32823, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368509

RESUMEN

This study demonstrates a novel approach to creating a thin-film electronic device that offers selective or complete disposability only in on-demand conditions while maintaining stable operation reliability during everyday use. The approach involves a transient paper substrate, combined with phase change encapsulation and highly bendable planarization materials, achieved through a simple solution process. The substrate used in this study offers a smooth surface morphology that enables the creation of stable multilayers for thin-film electronic devices. It also exhibits superior waterproof properties, which allows the proof-of-concept organic light-emitting device to function even when submerged in water. Additionally, the substrate provides controlled surface roughness under repeated bending, demonstrating reliable folding stability for 1000 cycles at 10 mm of curvature. Furthermore, a specific component of the electronic device can be selectively made to malfunction through predetermined voltage input, and the entire device can be fully disposed of via Joule-heating-induced combustion.

19.
Opt Express ; 20(6): 6835-43, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22418566

RESUMEN

Herein we describe a photo-alignment layer of improved azimuthal anchoring energy comparable to conventional rubbing method. In order to address the inherent low anchoring stability of photo-alignment layer, we applied embossing technique to conventional photosensitive polymer film, based on the cinnamoyl photoreactive groups, to introduce physical micro-groove effect for additional anchoring energy. From this, 2.5 × 10⁻4 J/m² of azimuthal anchoring energy was achieved, which is considered as synergistic effect from both photoinduced chemical interaction and physical microgroove alignment. In this study, we conducted systematic study on change in anchoring energy as a function of both aspect ratio of embossed pattern and UV exposure dose. We also demonstrated fabrication of sophisticated multi-domain structure of LC cells and discussed theoretical interpretation through LC simulation.


Asunto(s)
Cristalización/métodos , Cristales Líquidos/química , Cristales Líquidos/efectos de la radiación , Materiales Manufacturados , Modelos Químicos , Anisotropía , Simulación por Computador , Luz , Ensayo de Materiales
20.
Ann Occup Hyg ; 56(2): 233-41, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22104317

RESUMEN

Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 µg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Carcinógenos Ambientales/análisis , Cromo/análisis , Gases/análisis , Soldadura/métodos , Aerosoles/análisis , Humanos , Metales , Exposición Profesional/prevención & control , Tamaño de la Partícula , Equipos de Seguridad , Dióxido de Silicio , Acero Inoxidable
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda