Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 547
Filtrar
1.
Cell ; 185(19): 3551-3567.e39, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36055250

RESUMEN

Interactions between cells are indispensable for signaling and creating structure. The ability to direct precise cell-cell interactions would be powerful for engineering tissues, understanding signaling pathways, and directing immune cell targeting. In humans, intercellular interactions are mediated by cell adhesion molecules (CAMs). However, endogenous CAMs are natively expressed by many cells and tend to have cross-reactivity, making them unsuitable for programming specific interactions. Here, we showcase "helixCAM," a platform for engineering synthetic CAMs by presenting coiled-coil peptides on the cell surface. helixCAMs were able to create specific cell-cell interactions and direct patterned aggregate formation in bacteria and human cells. Based on coiled-coil interaction principles, we built a set of rationally designed helixCAM libraries, which led to the discovery of additional high-performance helixCAM pairs. We applied this helixCAM toolkit for various multicellular engineering applications, such as spherical layering, adherent cell targeting, and surface patterning.


Asunto(s)
Bacterias , Péptidos , Humanos , Péptidos/química
2.
Nat Immunol ; 25(1): 102-116, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38012418

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies have successfully treated hematological malignancies. Macrophages have also gained attention as an immunotherapy owing to their immunomodulatory capacity and ability to infiltrate solid tumors and phagocytize tumor cells. The first-generation CD3ζ-based CAR-macrophages could phagocytose tumor cells in an antigen-dependent manner. Here we engineered induced pluripotent stem cell-derived macrophages (iMACs) with toll-like receptor 4 intracellular toll/IL-1R (TIR) domain-containing CARs resulting in a markedly enhanced antitumor effect over first-generation CAR-macrophages. Moreover, the design of a tandem CD3ζ-TIR dual signaling CAR endows iMACs with both target engulfment capacity and antigen-dependent M1 polarization and M2 resistance in a nuclear factor kappa B (NF-κB)-dependent manner, as well as the capacity to modulate the tumor microenvironment. We also outline a mechanism of tumor cell elimination by CAR-induced efferocytosis against tumor cell apoptotic bodies. Taken together, we provide a second-generation CAR-iMAC with an ability for orthogonal phagocytosis and polarization and superior antitumor functions in treating solid tumors relative to first-generation CAR-macrophages.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores de Antígenos de Linfocitos T , Linfocitos T , Línea Celular Tumoral , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Macrófagos/patología , Microambiente Tumoral
3.
Cell ; 180(4): 688-702.e13, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32084340

RESUMEN

Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas/métodos , Aprendizaje Automático , Tiadiazoles/farmacología , Acinetobacter baumannii/efectos de los fármacos , Animales , Antibacterianos/química , Quimioinformática/métodos , Clostridioides difficile/efectos de los fármacos , Bases de Datos de Compuestos Químicos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Tiadiazoles/química
4.
Cell ; 173(3): 649-664.e20, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677511

RESUMEN

Resistance to chemotherapy plays a significant role in cancer mortality. To identify genetic units affecting sensitivity to cytarabine, the mainstay of treatment for acute myeloid leukemia (AML), we developed a comprehensive and integrated genome-wide platform based on a dual protein-coding and non-coding integrated CRISPRa screening (DICaS). Putative resistance genes were initially identified using pharmacogenetic data from 760 human pan-cancer cell lines. Subsequently, genome scale functional characterization of both coding and long non-coding RNA (lncRNA) genes by CRISPR activation was performed. For lncRNA functional assessment, we developed a CRISPR activation of lncRNA (CaLR) strategy, targeting 14,701 lncRNA genes. Computational and functional analysis identified novel cell-cycle, survival/apoptosis, and cancer signaling genes. Furthermore, transcriptional activation of the GAS6-AS2 lncRNA, identified in our analysis, leads to hyperactivation of the GAS6/TAM pathway, a resistance mechanism in multiple cancers including AML. Thus, DICaS represents a novel and powerful approach to identify integrated coding and non-coding pathways of therapeutic relevance.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a Antineoplásicos , Genoma Humano , ARN Largo no Codificante/genética , Animales , Citarabina/farmacología , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Masculino , Ratones , Farmacogenética , Proteínas/genética , ARN/análisis , ARN Mensajero/genética , Transducción de Señal
7.
Nature ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862027

RESUMEN

The recent acceleration of commercial, private, and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit (LEO), concomitant with the highest-ever number of crewed missions entering space and preparations for exploration-class (>1 year) missions. Such rapid advancement into space from many new companies, countries, and space-related entities has enabled a"Second Space Age." This new era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews. The applications of these biomedical technologies and algorithms are diverse, encompassing multi-omic, single-cell, and spatial biology tools to investigate human and microbial responses to spaceflight. Additionally, they extend to the development of new imaging techniques, real-time cognitive assessments, physiological monitoring, and personalized risk profiles tailored for astronauts. Furthermore, these technologies enable advancements in pharmacogenomics (PGx), as well as the identification of novel spaceflight biomarkers and the development of corresponding countermeasures. In this review, we highlight some of the recent biomedical research from the National Aeronautics and Space Administration (NASA), Japan Aerospace Exploration Agency (JAXA), European Space Agency (ESA), and other space agencies, and also detail the commercial spaceflight sector's (e.g. SpaceX, Blue Origin, Axiom, Sierra Space) entrance into aerospace medicine and space biology, the first aerospace medicine biobank, and the myriad upcoming missions that will utilize these tools to ensure a permanent human presence beyond LEO, venturing out to other planets and moons.

8.
Nature ; 615(7953): 720-727, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922599

RESUMEN

Engineering the genetic code of an organism has been proposed to provide a firewall from natural ecosystems by preventing viral infections and gene transfer1-6. However, numerous viruses and mobile genetic elements encode parts of the translational apparatus7-9, potentially rendering a genetic-code-based firewall ineffective. Here we show that such mobile transfer RNAs (tRNAs) enable gene transfer and allow viral replication in Escherichia coli despite the genome-wide removal of 3 of the 64 codons and the previously essential cognate tRNA and release factor genes. We then establish a genetic firewall by discovering viral tRNAs that provide exceptionally efficient codon reassignment allowing us to develop cells bearing an amino acid-swapped genetic code that reassigns two of the six serine codons to leucine during translation. This amino acid-swapped genetic code renders cells resistant to viral infections by mistranslating viral proteomes and prevents the escape of synthetic genetic information by engineered reliance on serine codons to produce leucine-requiring proteins. As these cells may have a selective advantage over wild organisms due to virus resistance, we also repurpose a third codon to biocontain this virus-resistant host through dependence on an amino acid not found in nature10. Our results may provide the basis for a general strategy to make any organism safely resistant to all natural viruses and prevent genetic information flow into and out of genetically modified organisms.


Asunto(s)
Aminoácidos , Escherichia coli , Transferencia de Gen Horizontal , Código Genético , Interacciones Microbiota-Huesped , Biosíntesis de Proteínas , Virosis , Aminoácidos/genética , Aminoácidos/metabolismo , Codón/genética , Ecosistema , Escherichia coli/genética , Escherichia coli/virología , Código Genético/genética , Leucina/genética , Leucina/metabolismo , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Serina/genética , Virosis/genética , Virosis/prevención & control , Interacciones Microbiota-Huesped/genética , Organismos Modificados Genéticamente/genética , Genoma Bacteriano/genética , Transferencia de Gen Horizontal/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Nature ; 608(7921): 217-225, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896746

RESUMEN

Biological processes depend on the differential expression of genes over time, but methods to make physical recordings of these processes are limited. Here we report a molecular system for making time-ordered recordings of transcriptional events into living genomes. We do this through engineered RNA barcodes, based on prokaryotic retrons1, that are reverse transcribed into DNA and integrated into the genome using the CRISPR-Cas system2. The unidirectional integration of barcodes by CRISPR integrases enables reconstruction of transcriptional event timing based on a physical record through simple, logical rules rather than relying on pretrained classifiers or post hoc inferential methods. For disambiguation in the field, we will refer to this system as a Retro-Cascorder.


Asunto(s)
Sistemas CRISPR-Cas , ADN , Edición Génica , Expresión Génica , Almacenamiento y Recuperación de la Información , ARN , Transcripción Reversa , Sistemas CRISPR-Cas/genética , ADN/biosíntesis , ADN/genética , Edición Génica/métodos , Genoma/genética , Almacenamiento y Recuperación de la Información/métodos , Integrasas/metabolismo , Células Procariotas/metabolismo , ARN/genética , Factores de Tiempo
10.
Nat Rev Mol Cell Biol ; 15(4): 289-94, 2014 04.
Artículo en Inglés | MEDLINE | ID: mdl-24622617

RESUMEN

Synthetic biology, despite still being in its infancy, is increasingly providing valuable information for applications in the clinic, the biotechnology industry and in basic molecular research. Both its unique potential and the challenges it presents have brought together the expertise of an eclectic group of scientists, from cell biologists to engineers. In this Viewpoint article, five experts discuss their views on the future of synthetic biology, on its main achievements in basic and applied science, and on the bioethical issues that are associated with the design of new biological systems.


Asunto(s)
Biotecnología , Ingeniería Genética , Biología Sintética/normas , Biología de Sistemas , Guías como Asunto , Humanos , Biología Sintética/ética , Biología Sintética/legislación & jurisprudencia
11.
Nature ; 588(7836): 124-129, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268865

RESUMEN

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Asunto(s)
Envejecimiento/genética , Reprogramación Celular/genética , Metilación de ADN , Epigénesis Genética , Ojo , Regeneración Nerviosa/genética , Visión Ocular/genética , Visión Ocular/fisiología , Envejecimiento/fisiología , Animales , Axones/fisiología , Línea Celular Tumoral , Supervivencia Celular , Proteínas de Unión al ADN/genética , Dependovirus/genética , Dioxigenasas , Modelos Animales de Enfermedad , Ojo/citología , Ojo/inervación , Ojo/patología , Femenino , Vectores Genéticos/genética , Glaucoma/genética , Glaucoma/patología , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Factor 3 de Transcripción de Unión a Octámeros/genética , Traumatismos del Nervio Óptico/genética , Proteínas Proto-Oncogénicas/genética , Células Ganglionares de la Retina/citología , Factores de Transcripción SOXB1/genética , Transcriptoma/genética
12.
Mol Cell ; 71(1): 42-55.e8, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29979968

RESUMEN

The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome editing and an essential component of adaptive immune systems in bacteria. After generating a double-stranded break (DSB), Cas9 remains stably bound to DNA. Here, we show persistent Cas9 binding blocks access to the DSB by repair enzymes, reducing genome editing efficiency. Cas9 can be dislodged by translocating RNA polymerases, but only if the polymerase approaches from one direction toward the Cas9-DSB complex. By exploiting these RNA-polymerase/Cas9 interactions, Cas9 can be conditionally converted into a multi-turnover nuclease, mediating increased mutagenesis frequencies in mammalian cells and enhancing bacterial immunity to bacteriophages. These consequences of a stable Cas9-DSB complex provide insights into the evolution of protospacer adjacent motif (PAM) sequences and a simple method of improving selection of highly active sgRNAs for genome editing.


Asunto(s)
Proteína 9 Asociada a CRISPR , Roturas del ADN de Doble Cadena , Reparación del ADN , Edición Génica , Células Madre Embrionarias de Ratones/metabolismo , Animales , Bacterias/genética , Bacterias/metabolismo , Bacterias/virología , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular , Ratones
13.
Nucleic Acids Res ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966983

RESUMEN

Antibodies have long served as vital tools in biological and clinical laboratories for the specific detection of proteins. Conventional methods employ fluorophore or horseradish peroxidase-conjugated antibodies to detect signals. More recently, DNA-conjugated antibodies have emerged as a promising technology, capitalizing on the programmability and amplification capabilities of DNA to enable highly multiplexed and ultrasensitive protein detection. However, the nonspecific binding of DNA-conjugated antibodies has impeded the widespread adoption of this approach. Here, we present a novel DNA-conjugated antibody staining protocol that addresses these challenges and demonstrates superior performance in suppressing nonspecific signals compared to previously published protocols. We further extend the utility of DNA-conjugated antibodies for signal-amplified in situ protein imaging through the hybridization chain reaction (HCR) and design a novel HCR DNA pair to expand the HCR hairpin pool from the previously published 5 pairs to 13, allowing for flexible hairpin selection and higher multiplexing. Finally, we demonstrate highly multiplexed in situ protein imaging using these techniques in both cultured cells and tissue sections.

14.
Mol Syst Biol ; 20(7): 767-798, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38755290

RESUMEN

Static gene expression programs have been extensively characterized in stem cells and mature human cells. However, the dynamics of RNA isoform changes upon cell-state-transitions during cell differentiation, the determinants and functional consequences have largely remained unclear. Here, we established an improved model for human neurogenesis in vitro that is amenable for systems-wide analyses of gene expression. Our multi-omics analysis reveals that the pronounced alterations in cell morphology correlate strongly with widespread changes in RNA isoform expression. Our approach identifies thousands of new RNA isoforms that are expressed at distinct differentiation stages. RNA isoforms mainly arise from exon skipping and the alternative usage of transcription start and polyadenylation sites during human neurogenesis. The transcript isoform changes can remodel the identity and functions of protein isoforms. Finally, our study identifies a set of RNA binding proteins as a potential determinant of differentiation stage-specific global isoform changes. This work supports the view of regulated isoform changes that underlie state-transitions during neurogenesis.


Asunto(s)
Diferenciación Celular , Neurogénesis , Neuronas , Isoformas de ARN , Humanos , Neurogénesis/genética , Diferenciación Celular/genética , Isoformas de ARN/genética , Isoformas de ARN/metabolismo , Neuronas/metabolismo , Neuronas/citología , Empalme Alternativo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Exones/genética
15.
Chem Rev ; 123(5): 2349-2419, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36512650

RESUMEN

Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.


Asunto(s)
Ciencia de los Materiales , Biología Sintética
16.
Nature ; 568(7752): E11, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30948799

RESUMEN

In this Review, the year of publication of reference 54 should be 2005, not 2015. In Box 2, "1982: GenBank ( https://www.ncbi.nlm.nih.gov/genbank/statistics/ )" should read "1982: Genbank/ENA/DDBJ" and "2007: NCBI Short Read Archive" should read "2007: NCBI and ENA Short Read Archives"; this is because the launches of these American, European and Japanese databases were coordinated. These errors have not been corrected.

17.
Nature ; 574(7778): 359-364, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31619788

RESUMEN

The mechanisms that extend lifespan in humans are poorly understood. Here we show that extended longevity in humans is associated with a distinct transcriptome signature in the cerebral cortex that is characterized by downregulation of genes related to neural excitation and synaptic function. In Caenorhabditis elegans, neural excitation increases with age and inhibition of excitation globally, or in glutamatergic or cholinergic neurons, increases longevity. Furthermore, longevity is dynamically regulated by the excitatory-inhibitory balance of neural circuits. The transcription factor REST is upregulated in humans with extended longevity and represses excitation-related genes. Notably, REST-deficient mice exhibit increased cortical activity and neuronal excitability during ageing. Similarly, loss-of-function mutations in the C. elegans REST orthologue genes spr-3 and spr-4 elevate neural excitation and reduce the lifespan of long-lived daf-2 mutants. In wild-type worms, overexpression of spr-4 suppresses excitation and extends lifespan. REST, SPR-3, SPR-4 and reduced excitation activate the longevity-associated transcription factors FOXO1 and DAF-16 in mammals and worms, respectively. These findings reveal a conserved mechanism of ageing that is mediated by neural circuit activity and regulated by REST.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Longevidad , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Envejecimiento , Animales , Encéfalo/citología , Encéfalo/metabolismo , Caenorhabditis elegans , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo
18.
Nucleic Acids Res ; 51(18): 10094-10106, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37615546

RESUMEN

Genome engineering projects often utilize bacterial artificial chromosomes (BACs) to carry multi-kilobase DNA segments at low copy number. However, all stages of whole-genome engineering have the potential to impose mutations on the synthetic genome that can reduce or eliminate the fitness of the final strain. Here, we describe improvements to a multiplex automated genome engineering (MAGE) protocol to improve recombineering frequency and multiplexability. This protocol was applied to recoding an Escherichia coli strain to replace seven codons with synonymous alternatives genome wide. Ten 44 402-47 179 bp de novo synthesized DNA segments contained in a BAC from the recoded strain were unable to complement deletion of the corresponding 33-61 wild-type genes using a single antibiotic resistance marker. Next-generation sequencing (NGS) was used to identify 1-7 non-recoding mutations in essential genes per segment, and MAGE in turn proved a useful strategy to repair these mutations on the recoded segment contained in the BAC when both the recoded and wild-type copies of the mutated genes had to exist by necessity during the repair process. Finally, two web-based tools were used to predict the impact of a subset of non-recoding missense mutations on strain fitness using protein structure and function calls.

19.
Proc Natl Acad Sci U S A ; 119(20): e2121499119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35537048

RESUMEN

As the global elderly population grows, it is socioeconomically and medically critical to provide diverse and effective means of mitigating the impact of aging on human health. Previous studies showed that the adeno-associated virus (AAV) vector induced overexpression of certain proteins, which can suppress or reverse the effects of aging in animal models. In our study, we sought to determine whether the high-capacity cytomegalovirus vector (CMV) can be an effective and safe gene delivery method for two such protective factors: telomerase reverse transcriptase (TERT) and follistatin (FST). We found that the mouse cytomegalovirus (MCMV) carrying exogenous TERT or FST (MCMVTERT or MCMVFST) extended median lifespan by 41.4% and 32.5%, respectively. We report CMV being used successfully as both an intranasal and injectable gene therapy system to extend longevity. Specifically, this treatment significantly improved glucose tolerance, physical performance, as well as preventing body mass loss and alopecia. Further, telomere shortening associated with aging was ameliorated by TERT and mitochondrial structure deterioration was halted in both treatments. Intranasal and injectable preparations performed equally well in safely and efficiently delivering gene therapy to multiple organs, with long-lasting benefits and without carcinogenicity or unwanted side effects. Translating this research to humans could have significant benefits associated with quality of life and an increased health span.


Asunto(s)
Infecciones por Citomegalovirus , Terapia Genética , Esperanza de Vida , Telomerasa , Administración por Inhalación , Animales , Folistatina/genética , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/genética , Inyecciones Intraperitoneales , Ratones , Modelos Animales , Neoplasias , Telomerasa/genética , Telomerasa/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074874

RESUMEN

For nearly 50 years, the vision of using single molecules in circuits has been seen as providing the ultimate miniaturization of electronic chips. An advanced example of such a molecular electronics chip is presented here, with the important distinction that the molecular circuit elements play the role of general-purpose single-molecule sensors. The device consists of a semiconductor chip with a scalable array architecture. Each array element contains a synthetic molecular wire assembled to span nanoelectrodes in a current monitoring circuit. A central conjugation site is used to attach a single probe molecule that defines the target of the sensor. The chip digitizes the resulting picoamp-scale current-versus-time readout from each sensor element of the array at a rate of 1,000 frames per second. This provides detailed electrical signatures of the single-molecule interactions between the probe and targets present in a solution-phase test sample. This platform is used to measure the interaction kinetics of single molecules, without the use of labels, in a massively parallel fashion. To demonstrate broad applicability, examples are shown for probe molecule binding, including DNA oligos, aptamers, antibodies, and antigens, and the activity of enzymes relevant to diagnostics and sequencing, including a CRISPR/Cas enzyme binding a target DNA, and a DNA polymerase enzyme incorporating nucleotides as it copies a DNA template. All of these applications are accomplished with high sensitivity and resolution, on a manufacturable, scalable, all-electronic semiconductor chip device, thereby bringing the power of modern chips to these diverse areas of biosensing.


Asunto(s)
Técnicas Biosensibles/instrumentación , Electrónica/instrumentación , Pruebas de Enzimas/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , ADN , Diseño de Equipo/instrumentación , Cinética , Dispositivos Laboratorio en un Chip , Miniaturización/instrumentación , Nanotecnología/instrumentación , Semiconductores
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda