Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Cell Sci ; 133(11)2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32327560

RESUMEN

Osh6 and Osh7 are lipid transfer proteins (LTPs) that move phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM). High PS levels at the PM are key for many cellular functions. Intriguingly, Osh6 and Osh7 localize to ER-PM contact sites, although they lack membrane-targeting motifs, in contrast to multidomain LTPs that both bridge membranes and convey lipids. We show that Osh6 localization to contact sites depends on its interaction with the cytosolic tail of the ER-PM tether Ist2, a homolog of TMEM16 proteins. We identify a motif in the Ist2 tail, conserved in yeasts, as the Osh6-binding region, and we map an Ist2-binding surface on Osh6. Mutations in the Ist2 tail phenocopy osh6Δ osh7Δ deletion: they decrease cellular PS levels and block PS transport to the PM. Our study unveils an unexpected partnership between a TMEM16-like protein and a soluble LTP, which together mediate lipid transport at contact sites.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Membrana Celular , Retículo Endoplásmico/genética , Fosfatidilserinas , Receptores de Esteroides , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Biol Cell ; 113(7): 311-328, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33666950

RESUMEN

BACKGROUND INFORMATION: Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g., Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein-protein interactions between the SARS-CoV-2 virus and host proteins. RESULTS: We present here a large library of SARS CoV-2 protein constructs fused with green and red fluorescent proteins and their initial characterisation in various human cell lines including lung epithelial cell models (A549, BEAS-2B), as well as in budding yeast. The localisation of a few SARS-CoV-2 proteins matches their proposed interactions with host proteins. These include the localisation of Nsp13 to the centrosome, Orf3a to late endosomes and Orf9b to mitochondria. CONCLUSIONS AND SIGNIFICANCE: This library should facilitate further cellular investigations, notably by imaging techniques.


Asunto(s)
COVID-19/virología , Biblioteca de Péptidos , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , Células A549 , Línea Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Microbiota-Huesped/fisiología , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , SARS-CoV-2/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Imagen de Lapso de Tiempo , Proteínas Virales/genética , Proteína Fluorescente Roja
3.
Trends Biochem Sci ; 42(7): 516-530, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28579073

RESUMEN

Transfer of lipid across the cytoplasm is an essential process for intracellular lipid traffic. Lipid transfer proteins (LTPs) are defined by highly controlled in vitro experiments. The functional relevance of these is supported by evidence for the same reactions inside cells. Major advances in the LTP field have come from structural bioinformatics identifying new LTPs, and from the development of countercurrent models for LTPs. However, the ultimate aim is to unite in vitro and in vivo data, and this is where much progress remains to be made. Even where in vitro and in vivo experiments align, rates of transfer tend not to match. Here we set out some of the advances that might test how LTPs work.


Asunto(s)
Proteínas Portadoras/metabolismo , Lípidos , Humanos , Modelos Moleculares
4.
Bioessays ; 39(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29052840

RESUMEN

Fission of cellular membranes is ubiquitous and essential for life. Complex protein machineries, such as the dynamin and ESCRT spirals, have evolved to mediate membrane fission during diverse cellular processes, for example, vesicle budding. A new study suggests that non-specialized membrane-bound proteins can induce membrane fission through mass action due to protein crowding. Because up to 2/3 of the mass of cellular membranes is contributed by proteins, membrane protein crowding is an important physiological parameter. Considering the complexity of membrane shape transitions during a fission reaction, spatial and temporal variability in protein distribution, and the abundance of intrinsically disordered regions in proteins on an invaginating membrane, protein crowding can have diverse consequences for fission in the cell. The question is, how and to what extent this mechanism combines with the action of dedicated fission machineries.


Asunto(s)
Membrana Celular/metabolismo , Dinaminas/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Vesículas Extracelulares/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Animales , Membrana Celular/ultraestructura , Dinaminas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Vesículas Extracelulares/ultraestructura , Expresión Génica , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Simulación de Dinámica Molecular , Termodinámica
5.
Trends Biochem Sci ; 38(11): 576-84, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24054463

RESUMEN

Many cellular processes require membrane deformation, which is driven by specialized protein machinery and can often be recapitulated using pure lipid bilayers. However, biological membranes contain a large amount of embedded proteins. Recent research suggests that membrane-bound proteins with asymmetric distribution of mass across the bilayer can influence membrane bending in a nonspecific manner due to molecular crowding. This mechanism is physical in nature and arises from collisions between such 'mushroom-shaped' proteins. It can either facilitate or impede the action of protein coats, for example COPII, during vesicle budding. We describe the physics of how molecular crowding can influence membrane bending and discuss the implications for other cellular processes, such as sorting of glycosylphosphatidylinositol-anchored proteins (GPI-APs) and production of intraluminal vesicles.


Asunto(s)
Membrana Celular/fisiología , Proteínas de la Membrana/fisiología , Membrana Dobles de Lípidos
6.
Biochim Biophys Acta ; 1858(6): 1152-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26969088

RESUMEN

Crowding of asymmetrically-distributed membrane proteins has been recently recognized as an important factor in remodeling of biological membranes, for example during transport vesicle formation. In this paper, we theoretically analyze the effect of protein crowding on membrane bending and examine its dependence on protein size, shape, transmembrane asymmetry and lateral confinement. We consider three scenarios of protein lateral organization, which are highly relevant for cellular membranes in general: freely diffusing membrane proteins without lateral confinement, the presence of a diffusion barrier and interactions with a vesicular coat. We show that protein crowding affects vesicle formation even if the proteins are distributed symmetrically across the membrane and that this effect depends significantly on lateral confinement. The largest crowding effect is predicted for the proteins that are confined to the forming vesicle by a diffusion barrier. We calculate the bending properties of a crowded membrane and find that its spontaneous curvature depends primarily on the degree of transmembrane asymmetry, and its effective bending modulus on the type of lateral confinement. Using the example of COPII vesicle formation from the endoplasmic reticulum, we analyze the energetic cost of vesicle formation. The results provide a novel insight into the effects of lateral and transmembrane organization of membrane proteins, and can guide data interpretation and future experimental approaches.


Asunto(s)
Proteínas de la Membrana/química , Membrana Celular/química , Modelos Biológicos
7.
Biochem Soc Trans ; 44(2): 486-92, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068959

RESUMEN

Lipids are precisely distributed in cell membranes, along with associated proteins defining organelle identity. Because the major cellular lipid factory is the endoplasmic reticulum (ER), a key issue is to understand how various lipids are subsequently delivered to other compartments by vesicular and non-vesicular transport pathways. Efforts are currently made to decipher how lipid transfer proteins (LTPs) work either across long distances or confined to membrane contact sites (MCSs) where two organelles are at close proximity. Recent findings reveal that proteins of the oxysterol-binding protein related-proteins (ORP)/oxysterol-binding homology (Osh) family are not all just sterol transporters/sensors: some can bind either phosphatidylinositol 4-phosphate (PtdIns(4)P) and sterol or PtdIns(4)P and phosphatidylserine (PS), exchange these lipids between membranes, and thereby use phosphoinositide metabolism to create cellular lipid gradients. Lipid exchange is likely a widespread mechanism also utilized by other LTPs to efficiently trade lipids between organelle membranes. Finally, the discovery of more proteins bearing a lipid-binding module (SMP or START-like domain) raises new questions on how lipids are conveyed in cells and how the activities of different LTPs are coordinated.


Asunto(s)
Metabolismo de los Lípidos , Orgánulos/metabolismo , Receptores de Esteroides/metabolismo , Transporte Biológico , Humanos , Masculino , Fosfatidilinositoles/metabolismo , Esteroles/metabolismo , Levaduras/metabolismo
8.
Yeast ; 37(1): 3, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31943346
9.
FEBS Lett ; 598(10): 1170-1198, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38140813

RESUMEN

Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.


Asunto(s)
Gotas Lipídicas , Perilipinas , Humanos , Gotas Lipídicas/metabolismo , Animales , Perilipinas/metabolismo , Perilipinas/genética , Metabolismo de los Lípidos , Lipólisis , Perilipina-1/metabolismo , Perilipina-1/genética
10.
Curr Opin Cell Biol ; 83: 102192, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37413778

RESUMEN

Phosphatidylserine (PS) is a negatively charged glycerophospholipid found mainly in the plasma membrane (PM) and in the late secretory/endocytic compartments, where it regulates cellular activity and can mediate apoptosis. Export of PS from the endoplasmic reticulum, its site of synthesis, to other compartments, and its transbilayer asymmetry must therefore be precisely regulated. We review recent findings on nonvesicular transport of PS by lipid transfer proteins (LTPs) at membrane contact sites, on PS flip-flop between membrane leaflets by flippases and scramblases, and on PS nanoclustering at the PM. We also discuss emerging data on cooperation between scramblases and LTPs, how perturbation of PS distribution can lead to disease, and the specific role of PS in viral infection.


Asunto(s)
Retículo Endoplásmico , Fosfatidilserinas , Fosfatidilserinas/metabolismo , Membrana Celular/metabolismo , Transporte Biológico/fisiología , Retículo Endoplásmico/metabolismo , Membranas Mitocondriales/metabolismo
11.
Front Cell Dev Biol ; 9: 737907, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540851

RESUMEN

Phosphatidylserine (PS) is a negatively charged phospholipid that displays a highly uneven distribution within cellular membranes, essential for establishment of cell polarity and other processes. In this review, we discuss how combined action of PS biosynthesis enzymes in the endoplasmic reticulum (ER), lipid transfer proteins (LTPs) acting within membrane contact sites (MCS) between the ER and other compartments, and lipid flippases and scramblases that mediate PS flip-flop between membrane leaflets controls the cellular distribution of PS. Enrichment of PS in specific compartments, in particular in the cytosolic leaflet of the plasma membrane (PM), requires input of energy, which can be supplied in the form of ATP or by phosphoinositides. Conversely, coupling between PS synthesis or degradation, PS flip-flop and PS transfer may enable PS transfer by passive flow. Such scenario is best documented by recent work on the formation of autophagosomes. The existence of lateral PS nanodomains, which is well-documented in the case of the PM and postulated for other compartments, can change the steepness or direction of PS gradients between compartments. Improvements in cellular imaging of lipids and membranes, lipidomic analysis of complex cellular samples, reconstitution of cellular lipid transport reactions and high-resolution structural data have greatly increased our understanding of cellular PS homeostasis. Our review also highlights how budding yeast has been instrumental for our understanding of the organization and transport of PS in cells.

12.
Elife ; 102021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33856341

RESUMEN

Numerous proteins target lipid droplets (LDs) through amphipathic helices (AHs). It is generally assumed that AHs insert bulky hydrophobic residues in packing defects at the LD surface. However, this model does not explain the targeting of perilipins, the most abundant and specific amphipathic proteins of LDs, which are weakly hydrophobic. A striking example is Plin4, whose gigantic and repetitive AH lacks bulky hydrophobic residues. Using a range of complementary approaches, we show that Plin4 forms a remarkably immobile and stable protein layer at the surface of cellular or in vitro generated oil droplets, and decreases LD size. Plin4 AH stability on LDs is exquisitely sensitive to the nature and distribution of its polar residues. These results suggest that Plin4 forms stable arrangements of adjacent AHs via polar/electrostatic interactions, reminiscent of the organization of apolipoproteins in lipoprotein particles, thus pointing to a general mechanism of AH stabilization via lateral interactions.


Asunto(s)
Gotas Lipídicas/metabolismo , Perilipina-4/química , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Estructura Secundaria de Proteína
13.
Genetics ; 182(3): 757-69, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19433630

RESUMEN

To gain new mechanistic insight into ER homeostasis and the biogenesis of secretory proteins, we screened a genomewide collection of yeast mutants for defective intracellular retention of the ER chaperone, Kar2p. We identified 87 Kar2p-secreting strains, including a number of known components in secretory protein modification and sorting. Further characterization of the 73 nonessential Kar2p retention mutants revealed roles for a number of novel gene products in protein glycosylation, GPI-anchor attachment, ER quality control, and retrieval of escaped ER residents. A subset of these mutants, required for ER retrieval, included the GET complex and two novel proteins that likely function similarly in membrane insertion of tail-anchored proteins. Finally, the variant histone, Htz1p, and its acetylation state seem to play an important role in maintaining ER retrieval pathways, suggesting a surprising link between chromatin remodeling and ER homeostasis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Genoma Fúngico , Homeostasis/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/fisiología , Acetilación , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Histonas/genética , Histonas/metabolismo , Immunoblotting , Inmunoprecipitación , Modelos Biológicos , Mutación , Pliegue de Proteína , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética
14.
Mol Biol Cell ; 18(5): 1803-15, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17344475

RESUMEN

The phosphoinositide-binding proteins Ent3p and Ent5p are required for protein transport from the trans-Golgi network (TGN) to the vacuole in Saccharomyces cerevisiae. Both proteins interact with the monomeric clathrin adaptor Gga2p, but Ent5p also interacts with the clathrin adaptor protein 1 (AP-1) complex, which facilitates retention of proteins such as Chs3p at the TGN. When both ENT3 and ENT5 are mutated, Chs3p is diverted from an intracellular reservoir to the cell surface. However, Ent3p and Ent5p are not required for the function of AP-1, but rather they seem to act in parallel with AP-1 to retain proteins such as Chs3p at the TGN. They have all the properties of clathrin adaptors, because they can both bind to clathrin and to cargo proteins. Like AP-1, Ent5p binds to Chs3p, whereas Ent3p facilitates the interaction between Gga2p and the endosomal syntaxin Pep12p. Thus, Ent3p has an additional function in Gga-dependent transport to the late endosome. Ent3p also facilitates the association between Gga2p and clathrin; however, Ent5p can partially substitute for this function. We conclude that the clathrin adaptors AP-1, Ent3p, Ent5p, and the Ggas cooperate in different ways to sort proteins between the TGN and the endosomes.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo 1 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Transporte Biológico Activo , Quitina Sintasa , Clatrina/metabolismo , Endosomas/metabolismo , Genes Fúngicos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Red trans-Golgi/metabolismo
15.
Methods Mol Biol ; 1949: 35-46, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30790247

RESUMEN

In order to understand how lipids are sorted between cellular compartments, kinetic assays are required to selectively follow the transport of lipid species in cells. We present here a microfluidics-based protocol to follow the transport of phosphatidylserine (PS) in yeast cells from the site of its synthesis, the endoplasmic reticulum (ER), to downstream compartments, primarily the plasma membrane under our conditions. This assay takes advantage of yeast cells lacking Cho1, the enzyme responsible for PS synthesis. Lyso-PS can be added exogenously and is taken up by the cells and converted to PS. Because acylation of lyso-PS to PS appears to occur at the ER, anterograde transport of PS from the ER can then be followed by fluorescent microscopy using the specific PS reporter C2Lact-GFP. We describe the construction of the required cho1Δ yeast strain and the preparation of lyso-PS. We present an example of the use of this assay to follow the activity of the yeast PS transport proteins Osh6 and Osh7.


Asunto(s)
Fosfatidilserinas/metabolismo , Levaduras/metabolismo , Transporte Biológico , Procesamiento de Imagen Asistido por Computador , Metabolismo de los Lípidos , Microfluídica/métodos , Microscopía Fluorescente , Saccharomyces cerevisiae/metabolismo
16.
Nat Commun ; 10(1): 3926, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477717

RESUMEN

A central assumption is that lipid transfer proteins (LTPs) bind transiently to organelle membranes to distribute lipids in the eukaryotic cell. Osh6p and Osh7p are yeast LTPs that transfer phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM) via PS/phosphatidylinositol-4-phosphate (PI4P) exchange cycles. It is unknown how, at each cycle, they escape from the electrostatic attraction of the PM, highly anionic, to return to the ER. Using cellular and in vitro approaches, we show that Osh6p reduces its avidity for anionic membranes once it captures PS or PI4P, due to a molecular lid closing its lipid-binding pocket. Thus, Osh6p maintains its transport activity between ER- and PM-like membranes. Further investigations reveal that the lid governs the membrane docking and activity of Osh6p because it is anionic. Our study unveils how an LTP self-limits its residency time on membranes, via an electrostatic switching mechanism, to transfer lipids efficiently.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Mutación , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Electricidad Estática
17.
Biomolecules ; 8(3)2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976879

RESUMEN

Amphipathic helices (AHs), a secondary feature found in many proteins, are defined by their structure and by the segregation of hydrophobic and polar residues between two faces of the helix. This segregation allows AHs to adsorb at polar⁻apolar interfaces such as the lipid surfaces of cellular organelles. Using various examples, we discuss here how variations within this general scheme impart membrane-interacting AHs with different interfacial properties. Among the key parameters are: (i) the size of hydrophobic residues and their density per helical turn; (ii) the nature, the charge, and the distribution of polar residues; and (iii) the length of the AH. Depending on how these parameters are tuned, AHs can deform lipid bilayers, sense membrane curvature, recognize specific lipids, coat lipid droplets, or protect membranes from stress. Via these diverse mechanisms, AHs play important roles in many cellular processes.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Pliegue de Proteína
18.
Nat Commun ; 9(1): 1332, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29626194

RESUMEN

How proteins are targeted to lipid droplets (LDs) and distinguish the LD surface from the surfaces of other organelles is poorly understood, but many contain predicted amphipathic helices (AHs) that are involved in targeting. We have focused on human perilipin 4 (Plin4), which contains an AH that is exceptional in terms of length and repetitiveness. Using model cellular systems, we show that AH length, hydrophobicity, and charge are important for AH targeting to LDs and that these properties can compensate for one another, albeit at a loss of targeting specificity. Using synthetic lipids, we show that purified Plin4 AH binds poorly to lipid bilayers but strongly interacts with pure triglycerides, acting as a coat and forming small oil droplets. Because Plin4 overexpression alleviates LD instability under conditions where their coverage by phospholipids is limiting, we propose that the Plin4 AH replaces the LD lipid monolayer, for example during LD growth.


Asunto(s)
Gotas Lipídicas/metabolismo , Perilipina-4/química , Perilipina-4/metabolismo , Animales , Línea Celular , Drosophila , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Gotas Lipídicas/química , Modelos Moleculares , Perilipina-4/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Desplegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Dev Cell ; 45(4): 465-480.e11, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29754803

RESUMEN

Membrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular trafficking, and polarity. Here, we explore which are the lipids that control membrane electrostatics using plants as a model. We show that phosphatidylinositol-4-phosphate (PI4P), phosphatidic acidic (PA), and phosphatidylserine (PS) are separately required to generate the electrostatic signature of the plant PM. In addition, we reveal the existence of an electrostatic territory that is organized as a gradient along the endocytic pathway and is controlled by PS/PI4P combination. Altogether, we propose that combinatorial lipid composition of the cytosolic leaflet of organelles not only defines the electrostatic territory but also distinguishes different functional compartments within this territory by specifying their varying surface charges.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Electricidad Estática , Arabidopsis/crecimiento & desarrollo , Orgánulos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal
20.
Dev Cell ; 32(6): 657-8, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25805129

RESUMEN

Upon nutrient deprivation, cells metabolize fatty acids (FAs) in mitochondria to supply energy, but how FAs, stored as triacylglycerols in lipid droplets, reach mitochondria has been mysterious. Rambold et al. (2015) now show that FA mobilization depends on triacylglycerol lipolysis, whereas autophagy feeds the lipid droplet pool for continued fueling of mitochondria.


Asunto(s)
Autofagia/fisiología , Ácidos Grasos/metabolismo , Lipólisis/fisiología , Dinámicas Mitocondriales/fisiología , Inanición/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda