Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 24(1): 197-212, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25158689

RESUMEN

Long-term exposure to environmental oxidative stressors, like the herbicide paraquat (PQ), has been linked to the development of Parkinson's disease (PD), the most frequent neurodegenerative movement disorder. Paraquat is thus frequently used in the fruit fly Drosophila melanogaster and other animal models to study PD and the degeneration of dopaminergic neurons (DNs) that characterizes this disease. Here, we show that a D1-like dopamine (DA) receptor, DAMB, actively contributes to the fast central nervous system (CNS) failure induced by PQ in the fly. First, we found that a long-term increase in neuronal DA synthesis reduced DAMB expression and protected against PQ neurotoxicity. Secondly, a striking age-related decrease in PQ resistance in young adult flies correlated with an augmentation of DAMB expression. This aging-associated increase in oxidative stress vulnerability was not observed in a DAMB-deficient mutant. Thirdly, targeted inactivation of this receptor in glutamatergic neurons (GNs) markedly enhanced the survival of Drosophila exposed to either PQ or neurotoxic levels of DA, whereas, conversely, DAMB overexpression in these cells made the flies more vulnerable to both compounds. Fourthly, a mutation in the Drosophila ryanodine receptor (RyR), which inhibits activity-induced increase in cytosolic Ca(2+), also strongly enhanced PQ resistance. Finally, we found that DAMB overexpression in specific neuronal populations arrested development of the fly and that in vivo stimulation of either DNs or GNs increased PQ susceptibility. This suggests a model for DA receptor-mediated potentiation of PQ-induced neurotoxicity. Further studies of DAMB signaling in Drosophila could have implications for better understanding DA-related neurodegenerative disorders in humans.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Síndromes de Neurotoxicidad/metabolismo , Paraquat/toxicidad , Receptores de Dopamina D1/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Dopamina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Exposición a Riesgos Ambientales , Femenino , Humanos , Enfermedad de Parkinson , Receptores Dopaminérgicos , Canal Liberador de Calcio Receptor de Rianodina/genética
2.
Proc Natl Acad Sci U S A ; 108(2): 834-9, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187381

RESUMEN

The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.


Asunto(s)
Sistema Nervioso Central/fisiología , Dopamina/deficiencia , Drosophila/fisiología , Animales , Conducta Animal , Encéfalo/metabolismo , Dopamina/fisiología , Mutación del Sistema de Lectura , Homocigoto , Levodopa/química , Memoria , Movimiento , Neurotransmisores/metabolismo , Olfato , Factores de Tiempo , Tirosina 3-Monooxigenasa/genética
3.
J Neurosci ; 24(48): 10993-8, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15574749

RESUMEN

Parkinson's disease (PD) is a movement disorder characterized by the selective degeneration of nigrostriatal dopaminergic neurons. Both familial and sporadic cases present tremor, rigidity, slowness of movement, and postural instability. Although major insights into the genes responsible for some rare hereditary cases have arisen, the etiology of sporadic cases remains unknown. Epidemiological studies have suggested an association with environmental toxins, mainly mitochondrial complex I inhibitors such as the widely used pesticide rotenone. In recent years, Drosophila melanogaster has been used as a model of several neurodegenerative diseases, including a genetic model of PD. Here, we studied the neurodegenerative and behavioral effects of a sublethal chronic exposure to rotenone in Drosophila. After several days, the treated flies presented characteristic locomotor impairments that increased with the dose of rotenone. Immunocytochemistry analysis demonstrated a dramatic and selective loss of dopaminergic neurons in all of the brain clusters. The addition of l-dopa (3,4-dihydroxy-L-phenylalanine) into the feeding medium rescued the behavioral deficits but not neuronal death, as is the case in human PD patients. In contrast, the antioxidant melatonin (N-acetyl-5-methoxytryptamine) alleviated both symptomatic impairment and neuronal loss, supporting the idea that this agent may be beneficial in the treatment of PD. Therefore, chronic exposure to pesticides recapitulates key aspects of PD in Drosophila and provides a new in vivo model for studying the mechanisms of dopaminergic neurodegeneration.


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Insecticidas/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Rotenona/toxicidad , Animales , Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Recuento de Células , Dopamina/análisis , Agonistas de Dopamina/uso terapéutico , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Levodopa/uso terapéutico , Locomoción/efectos de los fármacos , Melatonina/uso terapéutico , Degeneración Nerviosa/inducido químicamente , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Fenotipo
4.
Cell Rep ; 5(4): 952-60, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24239353

RESUMEN

Expression of the human Parkinson-disease-associated protein α-synuclein in all Drosophila neurons induces progressive locomotor deficits. Here, we identify a group of 15 dopaminergic neurons per hemisphere in the anterior medial region of the brain whose disruption correlates with climbing impairments in this model. These neurons selectively innervate the horizontal ß and ß' lobes of the mushroom bodies, and their connections to the Kenyon cells are markedly reduced when they express α-synuclein. Using selective mushroom body drivers, we show that blocking or overstimulating neuronal activity in the ß' lobe, but not the ß or γ lobes, significantly inhibits negative geotaxis behavior. This suggests that modulation of the mushroom body ß' lobes by this dopaminergic pathway is specifically required for an efficient control of startle-induced locomotion in flies.


Asunto(s)
Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster/metabolismo , Locomoción/fisiología , Enfermedad de Parkinson/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Humanos , Canales Iónicos , Locomoción/genética , Cuerpos Pedunculados/inervación , Estrés Oxidativo , Enfermedad de Parkinson/fisiopatología , Reflejo de Sobresalto/genética , Reflejo de Sobresalto/fisiología , Transducción de Señal , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/metabolismo , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/genética
5.
Curr Biol ; 20(3): 209-14, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20096587

RESUMEN

Light has profound behavioral effects on almost all animals, and nocturnal animals show sensitivity to extremely low light levels [1-4]. Crepuscular, i.e., dawn/dusk-active animals such as Drosophila melanogaster are thought to show far less sensitivity to light [5-8]. Here we report that Drosophila respond to extremely low levels of monochromatic blue light. Light levels three to four orders of magnitude lower than previously believed impact circadian entrainment and the light-induced stimulation of locomotion known as positive behavioral masking. We use GAL4;UAS-mediated rescue of tyrosine hydroxylase (DTH) mutant (ple) flies to study the roles of dopamine in these processes. We present evidence for two roles of dopamine in circadian behaviors. First, rescue with either a wild-type DTH or a DTH mutant lacking neural expression leads to weak circadian rhythmicity, indicating a role for strictly regulated DTH and dopamine in robust circadian rhythmicity. Second, the DTH rescue strain deficient in neural dopamine selectively shows a defect in circadian entrainment to low light, whereas another response to light, positive masking, has normal light sensitivity. These findings imply separable pathways from light input to the behavioral outputs of masking versus circadian entrainment, with only the latter dependent on dopamine.


Asunto(s)
Ritmo Circadiano/fisiología , Dopamina/fisiología , Drosophila melanogaster/fisiología , Animales , Animales Modificados Genéticamente , Sistema Nervioso Central/fisiología , Ritmo Circadiano/efectos de la radiación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de la radiación , Actividad Motora/fisiología , Actividad Motora/efectos de la radiación , Estimulación Luminosa , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
6.
J Neurobiol ; 54(4): 618-27, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12555273

RESUMEN

Dopamine (DA) is the only catecholaminergic neurotransmitter in the fruit fly Drosophila melanogaster. Dopaminergic neurons have been identified in the larval and adult central nervous system (CNS) in Drosophila and other insects, but no specific genetic tool was available to study their development, function, and degeneration in vivo. In Drosophila as in vertebrates, the rate-limiting step in DA biosynthesis is catalyzed by the enzyme tyrosine hydroxylase (TH). The Drosophila TH gene (DTH) is specifically expressed in all dopaminergic cells and the corresponding mutant, pale (ple), is embryonic lethal. We have performed ple rescue experiments with modified DTH transgenes. Our results indicate that partially redundant regulatory elements located in DTH introns are required for proper expression of this gene in the CNS. Based on this study, we generated a GAL4 driver transgene, TH-GAL4, containing regulatory sequences from the DTH 5' flanking and downstream coding regions. TH-GAL4 specifically expresses in dopaminergic cells in embryos, larval CNS, and adult brain when introduced into the Drosophila genome. As a first application of this driver, we observed that in vivo inhibition of DA release induces a striking hyperexcitability behavior in adult flies. We propose that TH-GAL4 will be useful for studies of the role of DA in behavior and disease models in Drosophila.


Asunto(s)
Dopamina/metabolismo , Regulación Enzimológica de la Expresión Génica , Genes Reguladores/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Animales , Animales Modificados Genéticamente , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiología , Proteínas de Unión al ADN , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Genes Reguladores/genética , Inmunohistoquímica , Hibridación in Situ , Intrones , Larva/genética , Larva/crecimiento & desarrollo , Metaloendopeptidasas/genética , Mutación , Reflejo de Sobresalto/genética , Reflejo de Sobresalto/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Toxina Tetánica/genética , Factores de Transcripción/genética , Tirosina 3-Monooxigenasa/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda