Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Arch Virol ; 161(9): 2543-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27287433

RESUMEN

Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Nanopartículas , Virus de la Diarrea Epidémica Porcina/clasificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Animales , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Regulación Viral de la Expresión Génica , Mutación , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Sensibilidad y Especificidad , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Vacunas Virales
2.
Biol Pharm Bull ; 37(7): 1096-102, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24989001

RESUMEN

The free radical nitric oxide (NO), a main member of neuroinflammatory cytokine and a gaseous molecule produced by activated microglia, has many physiological functions, including neuroinflammation. In the present study, we evaluated the effects of serial 16-dehydropregnenolone-3-acetate derivatives on lipopolysaccharide (LPS)-induced NO production and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells. Among the six derivatives tested, the increases in NO production and iNOS expression observed in BV-2 microglial cells after LPS stimulation were significantly inhibited by treatment with 16α, 17α-epoxypregnenolone-20-oxime. Moreover, the inhibitory effect of 16α,17α-epoxypregnenolone-20-oxime on NO production was similar to that of S-methylisothiourea sulfate (SMT), an iNOS inhibitor. Further studies showed that 16α,17α-epoxypregnenolone-20-oxime inhibited c-Jun N-terminal kinase (JNK) phosphorylation but not inhibitor kappa B (IκB)-α degradation. Our data in LPS-stimulated microglia cells suggest that 16α,17α-epoxypregnenolone-20-oxime might be a candidate therapeutic for treatment of NO induced neuroinflammation and could be a novel iNOS inhibitor.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico/antagonistas & inhibidores , Oximas/farmacología , Pregnenolona/análogos & derivados , Animales , Western Blotting , Línea Celular , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Microglía/enzimología , Microglía/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Oximas/síntesis química , Oximas/química , Fagocitosis/efectos de los fármacos , Fosforilación , Pregnenolona/síntesis química , Pregnenolona/química , Pregnenolona/farmacología , Especies Reactivas de Oxígeno/metabolismo
3.
In Vivo ; 36(3): 1178-1187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478127

RESUMEN

BACKGROUND/AIM: Ethyl ß-carboline-3-carboxylate (ß-CCE) is one of the effective ingredients of Picrasma quassioides (P. quassioides). As a ß-carboline alkaloid, it can antagonize the pharmacological effects of benzodiazepines by regulating neurotransmitter secretion through receptors, thus affecting anxiety and physiology. However, its efficacy in cancer treatment is still unclear. MATERIALS AND METHODS: We explored the effect of b-CCE on SiHa cells using MTT assay, western blot, flow cytometry, LDH release, T-AOC, SOD, and MDA assays. RESULTS: We investigated the cytotoxicity of ß-CCE in SiHa cells and verified that ß-CCE could induce cell apoptosis in a time- and concentration-dependent manner. In this process, treatment with ß-CCE significantly increased the levels of cytoplasmic and mitochondrial reactive oxygen species (ROS), which disturb the oxidation homeostasis by regulating the total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) production. Notably, the addition of N-acetylcysteine (NAC) (ROS scavenger) effectively alleviated ß-CCE-induced apoptosis in SiHa cells. In addition, ß-CCE might activate the p38/MAPK signaling pathway, as the pre-treatment with SB203580 (p38 inhibitor) significantly reduced ß-CCE-induced apoptosis in SiHa cells. CONCLUSION: ß-CCE has an anti-tumor activity. It activates the p38/MAPK signaling pathway by increasing intracellular ROS levels, which subsequently induce SiHa cell apoptosis. Our results provide a novel therapeutic target for treatment of cervical cancer.


Asunto(s)
Neoplasias del Cuello Uterino , Apoptosis , Carbolinas/farmacología , Femenino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos
4.
J Cancer ; 13(11): 3258-3267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118528

RESUMEN

Peroxiredoxin 5 (PRDX5) is the member of Prxs family, widely reported to be involved in various types of cell death. We previously found that PRDX5 knockdown increases the susceptibility of cell death upon oxidative stress treatment. Ethyl ß-carboline-3-carboxylate (ß-CCE), an alkaloid extracted from Picrasma quassioides, has been reported to play a role in neuronal disease, but its anti-cancer potential on liver cancers remains unknown. Here, we studied the effect of PRDX5 on ethyl ß-carboline-3-carboxylate (ß-CCE)-induced apoptosis of hepatomas. High expression level of PRDX5 was deeply related with the postoperative survival of patients with liver cancer, indicating that PRDX5 may be a biomarker of live cancer processing. Moreover, PRDX5 over-expression in HepG2 cells significantly inhibited ß-CCE-induced cell apoptosis and cellular ROS levels as well as mitochondrial dysfunction. Signalling pathway analysis showed that ß-CCE could significantly up-regulate the ROS-dependent MAPK signalling, which were in turn boosts the mitochondria-dependent cell apoptosis. Moreover, PRDX5 over-expression could reverse the anti-cancer effects induced by ß-CCE in HepG2 cells. Our findings suggest that PRDX5 has a protective role on ß-CCE-induced liver cancer cell death and provides new insights for using its anti-cancer properties for liver cancer treatment.

5.
Pharm Biol ; 49(3): 269-75, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21323479

RESUMEN

CONTEXT: Earthworm Eisenia foetida (Lumbricus rubellus), a traditional Chinese medicine, is used for treating many diseases, and its coelomic fluid has extensive biological functions. OBJECTIVE: The hemolytic, antibacterial and antitumor activities of an earthworm protein purified from coelomic fluid were investigated in vitro. MATERIALS AND METHODS: We used ultrafiltration, gel chromatography, and ion exchange chromatography in sequence to isolate and purify an earthworm protein from coelomic fluid (ECFP), and ECFP was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Hemolytic assay and antibacterial tests were applied to determine the cytolytic activity of ECFP. The MTT method was carried out to evaluate the antitumor effect of ECFP on HeLa cells and LTEP-A2 cells. RESULTS: ECFP, with molecular weight determined to be approximately 38.6 kilodaltons (KDa), was shown to possess significant hemolytic activity to chicken red blood cells (CRBC) (minimal hemolytic concentration 0.39 µg/mL). Antibacterial effect of ECFP obviously tested against Escherichia coli (minimal bactericidal concentration, MBC 180 µg/ mL) and Staphylococcus aureus (MBC 90 µg/mL) were observed. Moreover, ECFP notably inhibited the proliferation of HeLa cells (IC50 77 µg/mL) and LTEP-A2 cells (IC50 126 µg/mL) both in a time- and dose-dependent manner. DISCUSSION AND CONCLUSION: ECFP could serve as a component of the innate defense system of earthworms against foreign organisms, and thus it has potential pharmaceutical application in the future.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Líquidos Corporales , Hemólisis/efectos de los fármacos , Oligoquetos , Proteínas , Animales , Antibacterianos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Células HeLa , Hemólisis/fisiología , Humanos , Medicina Tradicional China/métodos
6.
Virol J ; 7: 161, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20637107

RESUMEN

Porcine parvovirus (PPV) is the major causative agent in a syndrome of reproductive failure in swine. Much has been learned about the structure and function of PPV in recent years, but nothing is known about the epitopes of the structural protein VP1, which is an important antigen of PPV. In this study, the monoclonal antibody C4 against VP1 of PPV was prepared and was used to biopan a 12-mer phage peptide library three times. The selected phage clones were identified by ELISA and then sequencing. The amino acid sequences detected by phage display were analyzed, and a mimic immuno-dominant epitope was identified. The epitope of VP1 is located in the N-terminal and contains the role amino acid sequence R-K-R. Immunization of mice indicated that the phage-displayed peptide induces antibodies against PPV. This study shows that peptide mimotopes have potential as alternatives to the complex antigens currently used for diagnosis of PPV infection or for development of vaccines.


Asunto(s)
Infecciones por Parvoviridae/veterinaria , Parvovirus Porcino/inmunología , Enfermedades de los Porcinos/virología , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/sangre , Mapeo Epitopo , Femenino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Infecciones por Parvoviridae/inmunología , Infecciones por Parvoviridae/virología , Parvovirus Porcino/química , Parvovirus Porcino/genética , Biblioteca de Péptidos , Alineación de Secuencia , Porcinos , Enfermedades de los Porcinos/inmunología , Proteínas Estructurales Virales/genética
7.
Pharm Biol ; 48(3): 275-81, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20645813

RESUMEN

Matrine, one of the main active components extracted from dry roots of Sophora flavescens Ait (Leguminosae), has been reported to have anticancer effects on a number of cancer cell lines, but the anticancer mechanism of matrine remains elusive. This study shows that matrine also displays anticancer activity on human hepatocellular carcinoma (HepG2) cells. In this work, the optimal cultivation condition for HepG2 cells was determined using the combinatorial orthogonal test design [L18 (21 x 37)]. Exposure of HepG2 cells to matrine resulted in inhibition of proliferation in both a time- and dose-dependent manner, as measured by morphology observation, hematoxylin and eosin (H&E) staining, and MTT assay (p<0.05). Further immunohistochemical analyses revealed that the expression of alpha fetal protein (AFP), proliferating cell nuclear antigen (PCNA), C-myc and Bcl-2 was down-regulated significantly, but the expression of Bax was up-regulated higher than untreated cells. The results demonstrated that matrine inhibited HepG2 cells proliferation primarily via up-regulating or down-regulating expression of the tumor relevant proteins.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas de Neoplasias/metabolismo , Quinolizinas/farmacología , Alcaloides/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Técnicas de Cultivo de Célula , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas/metabolismo , Quinolizinas/uso terapéutico , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Matrinas
8.
Mol Med Rep ; 22(3): 1831-1838, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32705184

RESUMEN

Apoptosis of pancreatic ß­cells is involved in the pathogenesis of type I and II diabetes. Peroxiredoxin I (Prx I) serves an important role in regulating cellular apoptosis; however, the role of Prx I in pancreatic ß­cell apoptosis is not completely understood. In the present study, the role of peroxiredoxin 1 (Prx I) during streptozotocin (STZ)­induced apoptosis of pancreatic ß­cells was investigated. The expression level of Prx I was decreased by STZ treatment in a time­dependent manner, and apoptosis of Prx I knockdown MIN6 cells was increased by STZ stimulation, compared with untransduced MIN6 cells. Furthermore, an intraperitoneal injection of STZ increased pancreatic islet damage in Prx I knockout mice, compared with wild­type and Prx II knockout mice. AKT and glycogen synthase kinase (GSK)­3ß phosphorylation significantly decreased following Prx I knockdown in MIN6 cells. However, phosphorylated ß­catenin and p65 levels significantly increased after STZ stimulation, compared with untransduced cells. The results of the present study indicate that deletion of Prx I mediated STZ­induced pancreatic ß­cell death in vivo and in vitro by regulating the AKT/GSK­3ß/ß­catenin signaling pathway, as well as NF­κB signaling. These findings provide a theoretical basis for treatment of pancreatic damage.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Regulación hacia Abajo , Células Secretoras de Insulina/citología , Peroxirredoxinas/genética , Transducción de Señal/efectos de los fármacos , Estreptozocina/efectos adversos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
9.
In Vivo ; 34(1): 133-141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31882472

RESUMEN

BACKGROUND/AIM: Dermal mesenchymal stem cells (DMSCs) are pluripotent stem cells found in the skin which maintain the thickness of the dermal layer and participate in skin wound healing. MATERIALS AND METHODS: The MTT assay was performed to detect cell proliferation and cell-cycle progression and cell-surface markers were assessed by flow cytometry. The levels of proteins in related signaling pathways were detected by western blotting assay and the translocation of ß-catenin into the nucleus were detected by immunofluorescence. Red oil O staining was performed to examine the differentiational ability of DMSCs. RESULTS: Knockout of PRDX2 inhibited DMSC cell growth, and cell-cycle arrest at G0/G1 phase; p16, p21 and cyclin D1 expression levels in Prdx2 knockout DMSCs were significantly increased. Furthermore, AKT phosphorylation were significantly increased in Prdx2 knockout DMSCs, GSK3ß activity were inhibited, result in ß-Catenin accumulated in the nucleus. CONCLUSION: In conclusion, these results demonstrated that PRDX2 plays a pivotal role in regulating the proliferation of DMSCs, and this is closely related to the AKT/glycogen synthase kinase 3 beta/ß-catenin signaling pathway.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Fase G1/genética , Células Madre Mesenquimatosas/patología , Peroxirredoxinas/genética , Fase de Descanso del Ciclo Celular/genética , Transducción de Señal/genética , Animales , Apoptosis/genética , Línea Celular , Glucógeno Sintasa Quinasa 3 beta/genética , Ratones , Ratones Noqueados , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/genética , beta Catenina/genética
10.
In Vivo ; 34(4): 1823-1833, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606152

RESUMEN

BACKGROUND/AIM: Picrasma quassioides (P. quassioides) is used in traditional Asian medicine widely for the treatment of anemopyretic cold, eczema, nausea, loss of appetite, diabetes mellitus, hypertension etc. In this study we aimed to understand the effect of P. quassioides ethanol extract on SiHa cervical cancer cell apoptosis. MATERIALS AND METHODS: The P. quassioides extract-induced apoptosis was analyzed using the MTT assay, fluorescence microscopy, flow cytometry and western blotting. RESULTS: P. quassioides extract induced cellular apoptosis by increasing the accumulation of cellular and mitochondrial reactive oxygen species (ROS) levels and inhibiting ATP synthesis. Pretreatment with N-Acetylcysteine (NAC), a classic antioxidant, decreased the intracellular ROS production and inhibited apoptosis. In addition, the P38 MAPK signaling pathway is a key in the apoptosis of SiHa cells induced by the P. quassioides extract. CONCLUSION: The P. quassioides extract exerts its anti-cancer properties on SiHa cells through ROS-mitochondria axis and P38 MAPK signaling. Our data provide a new insight for P. quassioides as a therapeutic strategy for cervical cancer treatment.


Asunto(s)
Picrasma , Neoplasias del Cuello Uterino , Apoptosis , Femenino , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Picrasma/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
11.
Anticancer Res ; 40(7): 3819-3830, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32620621

RESUMEN

BACKGROUND: Picrasma quassioides (PQ) is a traditional Asian herbal medicine with anti-tumor properties that can inhibit the viability of HepG2 liver cancer cells. H-Ras is often mutated in liver cancer, however, the effect of PQ treatment on H-Ras mutated liver cancer is unclear. This study aimed to investigate the role of PQ on ROS accumulation and mitochondrial dysfunction in H-ras mutated HepG2 (HepG2G12V) cells. MATERIALS AND METHODS: PQ ethanol extract-induced HepG2G12V apoptosis was analyzed by the MTT assay, fluorescence microscopy, flow cytometry and western blotting. RESULTS: PQ treatment affected cell migration and colony formation in HepG2G12V cells. Cleaved-caspase-3, cleaved-caspase-9 and BCL2 associated agonist of cell death (BAD) expression levels were increased, while the levels of B-cell lymphoma-extra large (Bcl-xL) were decreased with PQ treatment. PQ treatment led to a reduction of H-Ras expression levels in liver cancer cells, thus reducing their abnormal proliferation. Furthermore, it led to increased expression levels of Peroxiredoxin VI, which regulates the redox signal in cells. CONCLUSION: Taken together these results provide a new functional significance for the role of PQ in treating HepG2G12V liver cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Mitocondrias Hepáticas/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Genes ras , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Picrasma/química , Proteínas Proto-Oncogénicas p21(ras)/biosíntesis
12.
Antioxidants (Basel) ; 9(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861323

RESUMEN

Excessive alcohol intake can significantly reduce cognitive function and cause irreversible learning and memory disorders. The brain is particularly vulnerable to alcohol-induced ROS damage; the hippocampus is one of the most sensitive areas of the brain for alcohol neurotoxicity. In the present study, we observed significant increasing of intracellular ROS accumulations in Peroxiredoxin II (Prx II) knockdown HT22 cells, which were induced by alcohol treatments. We also found that the level of ROS in mitochondrial was also increased, resulting in a decrease in the mitochondrial membrane potential. The phosphorylation of GSK3ß (Ser9) and anti-apoptotic protein Bcl2 expression levels were significantly downregulated in Prx II knockdown HT22 cells, which suggests that Prx II knockdown HT22 cells were more susceptible to alcohol-induced apoptosis. Scavenging the alcohol-induced ROS with NAC significantly decreased the intracellular ROS levels, as well as the phosphorylation level of GSK3ß in Prx II knockdown HT22 cells. Moreover, NAC treatment also dramatically restored the mitochondrial membrane potential and the cellular apoptosis in Prx II knockdown HT22 cells. Our findings suggest that Prx II plays a crucial role in alcohol-induced neuronal cell apoptosis by regulating the cellular ROS levels, especially through regulating the ROS-dependent mitochondrial membrane potential. Consequently, Prx II may be a therapeutic target molecule for alcohol-induced neuronal cell death, which is closely related to ROS-dependent mitochondria dysfunction.

13.
Anticancer Res ; 39(7): 3677-3686, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31262894

RESUMEN

BACKGROUND/AIM: Peroxiredoxin (Prx) V has been known as an antioxidant enzyme which scavenges intracellular reactive oxygen species (ROS). Also, Prx V has been shown to mediate cell apoptosis in various cancers. However, the mechanism of Prx V-induced apoptosis in colon cancer cells remains unknown. Thus, in this study we analyzed the effects of Prx V in ß-lapachone-induced apoptosis in SW480 human colon cancer cells. MATERIALS AND METHODS: ß-lapachone-induced apoptosis was analyzed by the MTT assay, western blotting, fluorescence microscopy, Annexin V staining and flow cytometry. RESULTS: Overexpression of Prx V, significantly decreased ß-lapachone-induced cellular apoptosis and Prx V silencing increased ß-lapachone-induced cellular apoptosis via modulating ROS scavenging activity compared to mock SW480 cells. In addition, to further explore the mechanism of Prx V regulated ß-lapachone-induced SW480 cells apoptosis, the Wnt/ß-catenin signaling was studied. The Wnt/ ß-catenin signaling pathway was found to be induced by ß-lapachone. CONCLUSION: Prx V regulates SW480 cell apoptosis via scavenging ROS cellular levels and mediating the Wnt/ß-catenin signaling pathway, which was induced by ß-lapachone.


Asunto(s)
Apoptosis , Neoplasias del Colon/metabolismo , Naftoquinonas , Peroxirredoxinas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Vía de Señalización Wnt , Línea Celular Tumoral , Colon/metabolismo , Humanos
14.
In Vivo ; 33(3): 749-755, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31028193

RESUMEN

BACKGROUND/AIM: Staphylococcus aureus (S. aureus) is a major gram-positive pathogen, which can cause toxic and immunogenic injuries both in nosocomial and community-acquired infections. Peroxiredoxin (Prx) I plays crucial roles in cellular apoptosis, proliferation, and signal transduction as well as in immunoregulation. The present study aimed to investigate whether Prx I protects mice from death caused by the heat-killed Staphylococcus aureus. MATERIALS AND METHODS: In the present study, we challenged the wild-type and Prx I-deficient mice with heat-killed S. aureus (HKSA). The effects of Prx I were evaluated by a series of in vitro and in vivo experiments including western blot, Haematoxylin and Eosin staining, splenocyte analysis and cytokines analysis. RESULTS: Intra-peritoneal (ip) inoculation of HKSA resulted in increased mortality of Prx I-knockout (KO) mice with severe liver damage and highly populated spleens with lymphocytes. Furthermore, HKSA infections also bursted the production of both pro-inflammatory and anti-inflammatory serum cytokines in Prx I KO compared to wild-type mice. CONCLUSION: Enhanced mortality of S. aureus-infected mice with Prx I deficiency suggested that Prx I may protect against the infection-associated lethality of mice.


Asunto(s)
Peroxirredoxinas/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Animales , Apoptosis , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Ratones , Mortalidad , Peroxirredoxinas/genética , Infecciones Estafilocócicas/mortalidad , Staphylococcus aureus/genética
15.
Mol Med Rep ; 18(2): 2427-2432, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29901182

RESUMEN

Peroxiredoxin I (Prx I) plays a role in regulating macrophage proinflammatory cytokine production and gene expression and participates in immune regulation. However, the possible protective role of Prx I in endotoxin­induced lethal shock is poorly understood. In the present study, western blot analysis, ELISA and haematoxylin and eosin staining were performed to examine the protein expression of cytoines and analyses the levels of cytokines in the serum and tissue to evaluate the tissue damage. The present study revealed that lipopolysaccharide (LPS)­induced lethality in Prx I­/­ mice was is accelerated via the observed decreased serum IL­10 levels. Results also demonstrated rapid immune cell infiltration and oxidative stress in the Prx I­/­mice liver after LPS injections. These phenomena increased liver apoptosis through increasing cleaved caspase­3 protein expression in Prx I­/­ mice after LPS injections, resulting in high lethality after LPS challenges. These findings provide a new insight for understanding the function of Prx I against endotoxin­induced injury.


Asunto(s)
Estrés Oxidativo/genética , Peroxirredoxinas/genética , Choque Séptico/genética , Animales , Apoptosis/genética , Caspasa 3/genética , Regulación de la Expresión Génica/genética , Humanos , Interleucina-10/sangre , Lipopolisacáridos/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , Choque Séptico/sangre , Choque Séptico/inducido químicamente
16.
Mol Med Rep ; 17(6): 7827-7834, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29620243

RESUMEN

High concentrations of glutamate may mediate neuronal cell apoptosis by increasing intracellular reactive oxygen species (ROS) levels. Peroxiredoxin V (Prx V), a member of the Prx family, serves crucial roles in protecting cells from oxidative stress. The present study investigated the regulatory effect of Prx V on glutamate­induced effects on viability and apoptosis in HT22 cells. Western blotting was used for protein expression analysis and Annexin V/PI staining and flow cytometry for determination of apoptosis. The results demonstrated that glutamate may ROS­dependently increase HT22 cell apoptosis and upregulate Prx V protein levels. Furthermore, knockdown of Prx V protein expression with a lentivirus significantly enhanced HT22 cell apoptosis mediated by glutamate, which was reversed by inhibition of ROS with N­acetyl­L­cysteine. Inhibiting the extracellular signal­regulated kinase (ERK) signaling pathway with PD98059, a specific inhibitor for ERK phosphorylation, markedly decreased glutamate­induced HT22 cell apoptosis in Prx V knockdown cells, indicating the potential involvement of ERK signaling in glutamate­induced HT22 cell apoptosis. In addition, an increase in nuclear apoptosis­inducing factor was observed in Prx V knockdown HT22 cells following glutamate treatment, compared with mock cells, whereas no differences in B­cell lymphoma­2 and cleaved­caspase­3 protein expression levels were observed between mock and Prx V knockdown cells. The results of the present study indicated that Prx V may have potential as a therapeutic molecular target for glutamate­induced neuronal cell death and provide novel insight into the role of Prx V in oxidative­stress induced neuronal cell death.


Asunto(s)
Apoptosis/genética , Ácido Glutámico/metabolismo , Peroxirredoxinas/genética , Células Piramidales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Factor Inductor de la Apoptosis/metabolismo , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnicas de Inactivación de Genes , Ácido Glutámico/farmacología , Ratones , Células Piramidales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
17.
Int J Biochem Cell Biol ; 96: 9-19, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29326072

RESUMEN

1,4-Naphthoquinone and its derivatives have shown some efficacy as therapeutic compounds for cancer and inflammation, though their clinical application is limited by their side-effects. To reduce the toxicity of these compounds and optimize their effects, we synthesized two 1,4-naphthoquinone derivatives-2-butylsulfinyl- 1,4-naphthoquinone (BSNQ) and 2-octylsulfinyl-1,4-naphthoquinone (OSNQ)-and investigated their effects and underlying mechanisms in hepatocellular carcinoma cells. BSNQ and OSNQ decreased cell viability and significantly induced apoptosis, accompanied by the accumulation of reactive oxygen species (ROS). However, pretreatment with N-acetyl-l-cysteine, a specific ROS scavenger, blocked apoptosis. Western blot results indicated that BSNQ and OSNQ up-regulated the phosphorylation of p38 and JNK, and down-regulated the phosphorylation of ERK, Akt and STAT3, and that these effects were blocked by N-acetyl-l-cysteine. Furthermore, BSNQ and OSNQ suppressed tumor growth and modulated MAPK and STAT3 signaling in mouse xenografts without detectable effects on body weight or hematological parameters. These results indicate that BSNQ and OSNQ induce apoptosis in human hepatoma Hep3B cells via ROS-mediated p38/MAPK, Akt and STAT3 signaling pathways, suggesting that these 1,4-naphthoquinone derivatives may provide promising new anticancer agents to treat HCC.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Naftoquinonas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Naftoquinonas/química
18.
Mol Med Rep ; 17(2): 2626-2634, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29207064

RESUMEN

Quinalizarin may be a potential chemical agent for cancer therapy, as it exerts anti­tumour effects against a variety of different types of cancer. However, the underlying regulatory mechanism and signalling pathways of quinalizarin in lung cancer cells remains unknown. The present study sought to investigate the effects of quinalizarin on proliferation, apoptosis and reactive oxygen species (ROS) generation in lung cancer. MTT assays were used to evaluate the effects of quinalizarin on the viability of lung cancer A549, NCI­H460 and NCI­H23 cells. Flow cytometry was employed to evaluate the effects of quinalizarin on the cell cycle, apoptosis and ROS generation in A549 cells. Western blotting was performed to detect cell cycle and apoptosis­associated protein expression levels in A549 cells. Quinalizarin inhibited A549, NCI­H460 and NCI­H23 cell proliferation and induced A549 cell cycle arrest at the G0/G1 phase. Quinalizarin induced apoptosis by upregulating the expression of B­cell lymphoma 2 (Bcl­2)­associated agonist of cell death, cleaved­caspase­3 and cleaved­poly (adenosine diphosphate­ribose) polymerase, and downregulating the expression of Bcl­2. Furthermore, quinalizarin activated mitogen­activated protein kinase (MAPK) and p53, and inhibited the protein kinase B and signal transducer and activator of transcription­3 (STAT3) signalling pathways. In addition, quinalizarin increased ROS generation. The ROS scavenger N­acetyl­L­cysteine restored quinalizarin­induced cell apoptosis, and inactivated the MAPK and STAT3 signalling pathways. The results of the present study demonstrated that quinalizarin induces G0/G1 phase cell cycle arrest and apoptosis via ROS mediated­MAPK and STAT3 signalling pathways.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Oncotarget ; 8(70): 115398-115412, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29383168

RESUMEN

Cryptotanshinone (CT), isolated from the plant Salvia miltiorrhiza Bunge, has been reported to have potential anticancer effects on human prostate and breast cancer cells. However, the mechanisms of action of CT on gastric cancer (GC) cells are not well understood. Here we investigated the antitumor effects of CT on GC cells and its possible molecular mechanism. We found CT suppressed viability of twelve GC cell lines in a dose-dependent manner. CT induced cell cycle arrest at the G2/M phase and mitochondrial apoptosis accompanying the accumulation of reactive oxygen species (ROS). Pretreatment with ROS inhibitor N-acetyl-L-cysteine (NAC) blocked CT-induced apoptosis. CT increased p-JNK and p-p38, and decreased p-ERK and p-STAT3 protein expression, these effects were prevented by NAC. Furthermore, a xenograft assay showed that CT significantly inhibited MKN-45 cell-induced tumor growth in vivo by increasing expression of pro-apoptotic proteins (p-JNK, p-38 and cleaved-caspase-3) and reducing expression of anti-apoptotic proteins (p-ERK and p-STAT3) without adverse effects on nude mice weight. In conclusion, CT induced apoptosis and cell cycle arrest in GC cells via ROS-mediated MAPK and AKT signaling pathways, and this CT may be a useful compound for the developing anticancer agents for GC.

20.
Yi Chuan ; 28(10): 1233-6, 2006 Oct.
Artículo en Zh | MEDLINE | ID: mdl-17035180

RESUMEN

Bovine leukocyte adhesion deficiency (BLAD) is autosomal recessive disease. The pathogeny of BLAD is genic mutation of CD18-integrins on the leukocyte. In order to know the carrier and occurrence of bovine leukocyte adhesion deficiency (BLAD) among cows age from one to six years old in China, 1,000 cows were investigated by means of amplifying a CD18 gene fragment via reverse transcriptase-PCR followed by restriction digestion with Taq I. Results showed that 19 cows were BLAD carriers, indicating that the BLAD carrier rate was 1.9 percent. In addition, one cow was found to have BLAD.


Asunto(s)
Bovinos/genética , Síndrome de Deficiencia de Adhesión del Leucocito/genética , Síndrome de Deficiencia de Adhesión del Leucocito/veterinaria , Animales , Antígenos CD18/genética , Antígenos CD18/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda