Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chem Commun (Camb) ; 56(3): 399-402, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31820751

RESUMEN

A combinatorial approach using a one-bead-one-compound method and a screening based on a SOD-activity assay was set up for the discovery of an efficient peptidyl copper complex. The complex exhibited good stability constants, suitable redox potentials and excellent intrinsic activity. This complex was further assayed in cells for its antioxidant properties and showed beneficial effects when cells were subjected to oxidative stress.


Asunto(s)
Materiales Biocompatibles/metabolismo , Cobre/química , Péptidos/química , Secuencia de Aminoácidos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Colon/citología , Colon/efectos de los fármacos , Colon/metabolismo , Cobre/metabolismo , Células HT29 , Humanos , Interleucina-8/metabolismo , Lipopolisacáridos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Péptidos/metabolismo , Superóxido Dismutasa/metabolismo
2.
Dalton Trans ; 46(26): 8626-8642, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28650056

RESUMEN

Manganese(ii), copper(ii) and zinc(ii) complexes of four polydentate tripodal ligands (tachpyr (N,N',N''-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane), trenpyr (tris[2-(2-pyridylmethyl)aminoethyl]amine, tach3pyr (N,N',N''-tris(3-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane) and tren3pyr (tris[2-(2-pyridylmethyl)aminoethyl]amine)) were characterized in both solution and solid states. A combined evaluation of potentiometric, UV-VIS, NMR and EPR data allowed the conclusion of both thermodynamic and structural information about the complexes formed in solution. The four tailored polydentate tripodal ligands studied here exhibit a high thermodynamic stability, and a variety of coordination environments/geometries for the studied transition metal ions. Our data indicate that tachpyr is a more efficient zinc(ii) chelator and a similar copper(ii) chelator compared to trenpyr. Considering the higher number of N-donors and conformational flexibility of trenpyr, as well as the energy demanding switch to the triaxial conformation required for metal ion binding of tachpyr, the above observation is surprising and is very likely due to the encapsulating effect of the more rigid tachpyr skeleton. This relative binding preference of tachpyr for zinc(ii) may be related to the observation that zinc(ii) is one of the principal metals targeted by tachpyr in cells. In contrast, trenpyr is a considerably more efficient manganese(ii) chelator, since it acts as a heptadentate ligand in the aqueous Mn(trenpyr) complex. The crystal structures of copper(ii) and zinc(ii) complexes of tachpyr indicated important differences in the ligand conformation, induced by the position of counter ions, as compared to earlier reports. The closely related new ligands, tach3pyr and tren3pyr, have been designed to form oligonuclear complexes. Indeed, we obtained a three dimensional polymer with a copper(ii)/tren3pyr ratio of 11/6. Within this metal-organic framework, three distinctly different copper geometries can be identified: square pyramidal, trigonal bipyramidal and tetrahedral. Two square pyramidal and four trigonal bipyramidal copper centres create a hexanuclear subunit with a large inside cavity. These moieties are linked by tetrahedral copper(ii) centres, constructing the three-dimensional polymer structure. The formation of such polynuclear complexes was not detected in solution. Both tach3pyr and tren3pyr form only mononuclear complexes with square pyramidal and trigonal bipyramidal geometries, respectively.

3.
Dalton Trans ; 42(33): 12031-40, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23839275

RESUMEN

The brain specific zinc transporter protein ZnT3 can be related to the amyloid neuropathology of Alzheimer's disease. In order to analyze the metal binding ability of human ZnT3 protein, here we report a potentiometric and solution structural (UV-Vis, CD, EPR, NMR) study of nickel(II), copper(II) and zinc(II) complexes of three peptides mimicking the possible metal binding sequences of this protein. The peptide L¹ (Ac-RHQAGPPHSHR-NH2) is a minimalist, the cyclic peptide L² (cyclo(Ac-CKLHQAGPPHSHGSRGAEYAPLEEGPEEKC-NH2) is a more complete model of the intracellular His-rich loop, which is widely accepted as a putative metal binding site. The peptide L³ (Ac-PFHHCHRD-NH2) is the model of the conserved cytoplasmic N-terminal -HHCH- sequence. In the physiological pH-range, the ZnL¹, ZnH3L² and ZnL³ complexes are the major species in the corresponding binary systems, with {3N(im)}, {3N(im),2/3O(amide)} and {3N(im),S(-)} coordination environments, respectively. The species ZnL³ has 3-4 orders of magnitude higher stability than the other two complexes, indicating the presence of a high-affinity zinc-binding site at the N-terminal tail of the human ZnT3 transporter. Moreover, L³ shows preferred zinc binding as compared to nickel (log ß(ZnL³) - log ß(NiL³) = 2.3), probably due to the higher preference of zinc(II) for tetrahedral geometry. These facts suggest that zinc binding to the N-terminal -HHCH- sequence of human ZnT3 may be involved in the biological activity of this zinc transporter protein in zinc sensing, binding or translocation processes.


Asunto(s)
Proteínas de Transporte de Catión/química , Compuestos Organometálicos/química , Zinc/química , Secuencia de Aminoácidos , Sitios de Unión , Cobre/química , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Níquel/química , Alineación de Secuencia
4.
J Inorg Biochem ; 126: 61-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23787141

RESUMEN

In order to mimic the active center of matrix metalloproteinases (MMPs), we synthesized a pentadecapeptide (Ac-KAHEFGHSLGLDHSK-NH2) corresponding to the catalytic zinc(II) binding site of human MMP-13. The multi-domain structural organization of MMPs fundamentally determines their metal binding affinity, catalytic activity and selectivity. Our potentiometric, UV-visible, CD, EPR, NMR, mass spectrometric and kinetic studies are aimed to explore the usefulness of such flexible peptides to mimic the more rigid metal binding sites of proteins, to examine the intrinsic metal binding properties of this naked sequence, as well as to contribute to the development of a minimalist, peptide-based chemical model of MMPs, including the catalytic properties. Since the multiimidazole environment is also characteristic for copper(II), and recently copper(II) containing variants of MMPs have been identified, we also studied the copper(II) complexes of the above peptide. Around pH 6-7 the peptide, similarly to MMPs, offers a {3Nim} coordination binding site for both zinc(II) and copper(II). In the case of copper(II), the formation of amide coordinated species at higher pH abolished the analogy with the copper(II) containing MMP variant. On the other hand, the zinc(II)-peptide system mimics some basic features of the MMP active sites: the main species around pH7 (ZnH2L) possesses a {3Nim,H2O} coordination environment, the deprotonation of the zinc-bound water takes place near the physiological pH, it forms relatively stable ternary complexes with hydroxamic acids, and the species ZnH2L(OH) and ZnH2L(OH)2 have notable hydrolytic activity between pH7 and 9.


Asunto(s)
Cobre/química , Metaloproteinasa 13 de la Matriz/química , Modelos Biológicos , Péptidos/química , Zinc/química , Secuencia de Aminoácidos , Sitios de Unión , Cationes Bivalentes , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Imitación Molecular , Datos de Secuencia Molecular , Péptidos/síntesis química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda