Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nano Lett ; 23(18): 8779-8786, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37695253

RESUMEN

Efficient nanophotonic devices are essential for applications in quantum networking, optical information processing, sensing, and nonlinear optics. Extensive research efforts have focused on integrating two-dimensional (2D) materials into photonic structures, but this integration is often limited by size and material quality. Here, we use hexagonal boron nitride (hBN), a benchmark choice for encapsulating atomically thin materials, as a waveguiding layer while simultaneously improving the optical quality of the embedded films. When combined with a photonic inverse design, it becomes a complete nanophotonic platform to interface with optically active 2D materials. Grating couplers and low-loss waveguides provide optical interfacing and routing, tunable cavities provide a large exciton-photon coupling to transition metal dichalcogenide (TMD) monolayers through Purcell enhancement, and metasurfaces enable the efficient detection of TMD dark excitons. This work paves the way for advanced 2D-material nanophotonic structures for classical and quantum nonlinear optics.

2.
Nano Lett ; 20(8): 6076-6083, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32692566

RESUMEN

Recently twisted bilayer graphene (t-BLG) has emerged as a strongly correlated physical platform. Besides the apparent significance of band flatness, band topology may be another critical element in t-BLG and yet receives much less attention. Here we report the compelling evidence for nontrivial noninteracting Moiré band topology in t-BLG through a systematic nonlocal transport study and a K-theory examination. The nontrivial topology manifests itself as two pronounced nonlocal responses in the electron and hole superlattice gaps. We show that the nonlocal responses are robust to the twist angle and edge termination, exhibiting a universal scaling law. We elucidate that, although Berry curvature is symmetry-trivialized, two nontrivial Z2 invariants characterize the Moiré Dirac bands, validating the topological origin of the observed nonlocal responses. Our findings not only provide a new perspective for understanding the strongly correlated t-BLG but also suggest a potential strategy to achieve topological metamaterials from trivial vdW materials.

3.
Nano Lett ; 19(3): 1488-1493, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30721622

RESUMEN

Recently rediscovered layered black phosphorus (BP) provides rich opportunities for investigations of device physics and applications. The band gap of BP is widely tunable by its layer number and a vertical electric field, covering a wide electromagnetic spectral range from visible to mid-infrared. Despite much progress in BP optoelectronics, the fundamental photoluminescence (PL) properties of thin-film BP in mid-infrared have rarely been investigated. Here, we report bright PL emission from thin-film BP (with thickness of 4.5 to 46 nm) from 80 to 300 K. The PL measurements indicate a band gap of 0.308 ± 0.003 eV in 46 nm thick BP at 80 K, and it increases monotonically to 0.334 ± 0.003 eV at 300 K. Such an anomalous blueshift agrees with the previous theoretical and photoconductivity spectroscopy results. However, the observed blueshift of 26 meV from 80 to 300 K is about 60% of the previously reported value. Most importantly, we show that the PL emission intensity from thin-film BP is only a few times weaker than that of an indium arsenide (InAs) multiple quantum well (MQW) structure grown by molecular beam epitaxy. Finally, we report the thickness-dependent PL spectra in thin-film BP in mid-infrared regime. Our work reveals the mid-infrared light emission properties of thin-film BP, suggesting its promising future in tunable mid-infrared light emitting and lasing applications.

4.
Nat Mater ; 17(11): 1048, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30202113

RESUMEN

In the version of this Article originally published, the units of the right-hand y axis of Fig. 2a were incorrectly labelled as mS; they should have been µS. Also, the x-axis tick marks of Fig. 3b should have been aligned with Fig. 3a,c. These have now been corrected.

5.
Nat Mater ; 17(11): 986-992, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150622

RESUMEN

Optical excitation and subsequent decay of graphene plasmons can produce a significant increase in charge-carrier temperature. An efficient method to convert this temperature elevation into electrical signals can enable important mid-infrared applications. However, the modest thermoelectric coefficient and weak temperature dependence of carrier transport in graphene hinder this goal. Here, we demonstrate mid-infrared graphene detectors consisting of arrays of plasmonic resonators interconnected by quasi-one-dimensional nanoribbons. Localized barriers associated with disorder in the nanoribbons produce a dramatic temperature dependence of carrier transport, thus enabling the electrical detection of plasmon decay in the nearby graphene resonators. Our device has a subwavelength footprint of 5 × 5 µm2 and operates at 12.2 µm with an external responsivity of 16 mA W-1 and a low noise-equivalent power of 1.3 nW Hz-1/2 at room temperature. It is fabricated using large-scale graphene and possesses a simple two-terminal geometry, representing an essential step towards the realization of an on-chip graphene mid-infrared detector array.

6.
Nano Lett ; 18(5): 3172-3179, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29584948

RESUMEN

Layered black phosphorus (BP) has attracted wide attention for mid-infrared photonics and high-speed electronics, due to its moderate band gap and high carrier mobility. However, its intrinsic band gap of around 0.33 electronvolt limits the operational wavelength range of BP photonic devices based on direct interband transitions to around 3.7 µm. In this work, we demonstrate that black arsenic phosphorus alloy (b-As xP1- x) formed by introducing arsenic into BP can significantly extend the operational wavelength range of photonic devices. The as-fabricated b-As0.83P0.17 photodetector sandwiched within hexagonal boron nitride (hBN) shows peak extrinsic responsivity of 190, 16, and 1.2 mA/W at 3.4, 5.0, and 7.7 µm at room temperature, respectively. Moreover, the intrinsic photoconductive effect dominates the photocurrent generation mechanism due to the preservation of pristine properties of b-As0.83P0.17 by complete hBN encapsulation, and these b-As0.83P0.17 photodetectors exhibit negligible transport hysteresis. The broad and large photoresponsivity within mid-infrared resulting from the intrinsic photoconduction, together with the excellent long-term air stability, makes b-As0.83P0.17 alloy a promising alternative material for mid-infrared applications, such as free-space communication, infrared imaging, and biomedical sensing.

7.
Nano Lett ; 16(7): 4648-55, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27332146

RESUMEN

Recently, black phosphorus (BP) has joined the two-dimensional material family as a promising candidate for photonic applications due to its moderate bandgap, high carrier mobility, and compatibility with a diverse range of substrates. Photodetectors are probably the most explored BP photonic devices, however, their unique potential compared with other layered materials in the mid-infrared wavelength range has not been revealed. Here, we demonstrate BP mid-infrared detectors at 3.39 µm with high internal gain, resulting in an external responsivity of 82 A/W. Noise measurements show that such BP photodetectors are capable of sensing mid-infrared light in the picowatt range. Moreover, the high photoresponse remains effective at kilohertz modulation frequencies, because of the fast carrier dynamics arising from BP's moderate bandgap. The high photoresponse at mid-infrared wavelengths and the large dynamic bandwidth, together with its unique polarization dependent response induced by low crystalline symmetry, can be coalesced to promise photonic applications such as chip-scale mid-infrared sensing and imaging at low light levels.

8.
Nat Nanotechnol ; 19(7): 955-961, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961247

RESUMEN

In atomically thin van der Waals materials, grain boundaries-the line defects between adjacent crystal grains with tilted in-plane rotations-are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS2 mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy. We showed that these epitaxial MTBs are one-dimensionally metallic to a circuit length scale. By utilizing the ultimate one-dimensional (1D) feature (width ~0.4 nm and length up to a few tens of micrometres), we incorporated the epitaxial MTBs as a 1D gate to build integrated two-dimensional field-effect transistors (FETs). The critical role of the 1D MTB gate was verified to scale the depletion channel length down to 3.9 nm, resulting in a substantially lowered channel off-current at lower gate voltages. With that, in both individual and array FETs, we demonstrated state-of-the-art performances for low-power logics. The 1D epitaxial MTB gates in this work suggest a novel synthetic pathway for the integration of two-dimensional FETs-that are immune to high gate capacitance-towards ultimate scaling.

9.
Sci Adv ; 6(7): eaay6134, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32110733

RESUMEN

Thin-film black phosphorus (BP) is an attractive material for mid-infrared optoelectronic applications because of its layered nature and a moderate bandgap of around 300 meV. Previous photoconduction demonstrations show that a vertical electric field can effectively reduce the bandgap of thin-film BP, expanding the device operational wavelength range in mid-infrared. Here, we report the widely tunable mid-infrared light emission from a hexagonal boron nitride (hBN)/BP/hBN heterostructure device. With a moderate displacement field up to 0.48 V/nm, the photoluminescence (PL) peak from a ~20-layer BP flake is continuously tuned from 3.7 to 7.7 µm, spanning 4 µm in mid-infrared. The PL emission remains perfectly linear-polarized along the armchair direction regardless of the bias field. Moreover, together with theoretical analysis, we show that the radiative decay probably dominates over other nonradiative decay channels in the PL experiments. Our results reveal the great potential of thin-film BP in future widely tunable, mid-infrared light-emitting and lasing applications.

10.
ACS Nano ; 13(1): 552-559, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30457832

RESUMEN

Light-matter interactions in the van der Waals (vdWs) heterostructures exhibit many fascinating properties which can be harnessed to realize optoelectronic applications and probe fundamental physics. Moreover, the electron-phonon interaction in the vdWs heterostructures can have a profound impact on light-matter interaction properties because light excited electrons can strongly couple with phonons in heterostructures. Here, we report symmetry-controlled electron-phonon interactions in engineered two-dimensional (2D) material/silicon dioxide (SiO2) vdWs heterostructures. We observe two Raman modes arising from originally Raman-silent phonon modes in SiO2. The Raman modes have fixed peak positions regardless of the type of 2D materials in the heterostructures. Interestingly, such Raman emissions exhibit various symmetry properties in heterostructures with 2D materials of different crystalline structures, controlled by their intrinsic electronic band properties. In particular, we reveal chiral Raman emissions with reversed helicity in contrast to that of typical valley polarization in honeycomb 2D materials due to the phonon-assisted excitonic intervalley scattering process induced by electron-hole exchange interaction. The observation of the symmetry-controlled Raman scattering process not only provides a deep insight into the microscopic mechanisms of electron-phonon interactions in vdWs heterostructures but also may lead to the realization of valley-phononic devices.

11.
ACS Nano ; 12(5): 5003-5010, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29714472

RESUMEN

A high saturation velocity semiconductor is appealing for applications in electronics and optoelectronics. Thin-film black phosphorus (BP), an emerging layered semiconductor, shows a high carrier mobility and strong mid-infrared photoresponse at room temperature. Here, we report the observation of high intrinsic saturation velocity in 7 to 11 nm thick BP for both electrons and holes as a function of charge-carrier density, temperature, and crystalline direction. We distinguish a drift velocity transition point due to the competition between the electron-impurity and electron-phonon scatterings. We further achieve a room-temperature saturation velocity of 1.2 (1.0) × 107 cm s-1 for hole (electron) carriers at a critical electric field of 14 (13) kV cm-1, indicating an intrinsic current-gain cutoff frequency ∼20 GHz·µm for radio frequency applications. Moreover, the current density is as high as 580 µA µm-1 at a low electric field of 10 kV cm-1. Our studies demonstrate that thin-film BP outperforms silicon in terms of saturation velocity and critical field, revealing its great potential in radio-frequency electronics, high-speed mid-infrared photodetectors, and optical modulators.

12.
Adv Mater ; 30(18): e1706076, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29573299

RESUMEN

For the electrochemical hydrogen evolution reaction (HER), the electrical properties of catalysts can play an important role in influencing the overall catalytic activity. This is particularly important for semiconducting HER catalysts such as MoS2 , which has been extensively studied over the last decade. Herein, on-chip microreactors on two model catalysts, semiconducting MoS2 and semimetallic WTe2 , are employed to extract the effects of individual factors and study their relations with the HER catalytic activity. It is shown that electron injection at the catalyst/current collector interface and intralayer and interlayer charge transport within the catalyst can be more important than thermodynamic energy considerations. For WTe2 , the site-dependent activities and the relations of the pure thermodynamics to the overall activity are measured and established, as the microreactors allow precise measurements of the type and area of the catalytic sites. The approach presents opportunities to study electrochemical reactions systematically to help establish rational design principles for future electrocatalysts.

13.
Adv Mater ; 30(6)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29314276

RESUMEN

Black phosphorus (BP) has recently attracted significant attention due to its exceptional physical properties. Currently, high-quality few-layer and thin-film BP are produced primarily by mechanical exfoliation, limiting their potential in future applications. Here, the synthesis of highly crystalline thin-film BP on 5 mm sapphire substrates by conversion from red to black phosphorus at 700 °C and 1.5 GPa is demonstrated. The synthesized ≈50 nm thick BP thin films are polycrystalline with a crystal domain size ranging from 40 to 70 µm long, as indicated by Raman mapping and infrared extinction spectroscopy. At room temperature, field-effect mobility of the synthesized BP thin film is found to be around 160 cm2 V-1 s-1 along armchair direction and reaches up to about 200 cm2 V-1 s-1 at around 90 K. Moreover, red phosphorus (RP) covered by exfoliated hexagonal boron nitride (hBN) before conversion shows atomically sharp hBN/BP interface and perfectly layered BP after the conversion. This demonstration represents a critical step toward the future realization of large scale, high-quality BP devices and circuits.

14.
Adv Mater ; 29(31)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28621022

RESUMEN

Graphene plasmons are known to offer an unprecedented level of confinement and enhancement of electromagnetic field. They are hence amenable to interacting strongly with various other excitations (for example, phonons) in their surroundings and are an ideal platform to study the properties of hybrid optical modes. Conversely, the thermally induced motion of particles and quasiparticles can in turn interact with electronic degrees of freedom in graphene, including the collective plasmon modes via the Coulomb interaction, which opens up new pathways to manipulate and control the behavior of these modes. This study demonstrates tunable electrothermal control of coupling between graphene mid-infrared (mid-IR) plasmons and IR active optical phonons in silicon nitride. This study utilizes graphene nanoribbons functioning as both localized plasmonic resonators and local Joule heaters upon application of an external bias. In the latter role, they achieve up to ≈100 K of temperature variation within the device area. This study observes increased modal splitting of two plasmon-phonon polariton hybrid modes with temperature, which is a manifestation of increased plasmon-phonon coupling strength. Additionally, this study also reports on the existence of a thermally excited hybrid plasmon-phonon mode. This work can open the door for future optoelectronic devices such as electrically switchable graphene mid-infrared plasmon sources.

15.
Nat Commun ; 8(1): 1672, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29162821

RESUMEN

Lately rediscovered orthorhombic black phosphorus (BP) exhibits promising properties for near- and mid-infrared optoelectronics. Although recent electrical measurements indicate that a vertical electric field can effectively reduce its transport bandgap, the impact of the electric field on light-matter interaction remains unclear. Here we show that a vertical electric field can dynamically extend the photoresponse in a 5 nm-thick BP photodetector from 3.7 to beyond 7.7 µm, leveraging the Stark effect. We further demonstrate that such a widely tunable BP photodetector exhibits a peak extrinsic photo-responsivity of 518, 30, and 2.2 mA W-1 at 3.4, 5, and 7.7 µm, respectively, at 77 K. Furthermore, the extracted photo-carrier lifetime indicates a potential operational speed of 1.3 GHz. Our work not only demonstrates the potential of BP as an alternative mid-infrared material with broad optical tunability but also may enable the compact, integrated on-chip high-speed mid-infrared photodetectors, modulators, and spectrometers.

16.
Nat Commun ; 8: 14474, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28422160

RESUMEN

Recently rediscovered black phosphorus is a layered semiconductor with promising electronic and photonic properties. Dynamic control of its bandgap can allow for the exploration of new physical phenomena. However, theoretical investigations and photoemission spectroscopy experiments indicate that in its few-layer form, an exceedingly large electric field in the order of several volts per nanometre is required to effectively tune its bandgap, making the direct electrical control unfeasible. Here we reveal the unique thickness-dependent bandgap tuning properties in intrinsic black phosphorus, arising from the strong interlayer electronic-state coupling. Furthermore, leveraging a 10 nm-thick black phosphorus, we continuously tune its bandgap from ∼300 to below 50 meV, using a moderate displacement field up to 1.1 V nm-1. Such dynamic tuning of bandgap may not only extend the operational wavelength range of tunable black phosphorus photonic devices, but also pave the way for the investigation of electrically tunable topological insulators and semimetals.

17.
ACS Nano ; 10(12): 11172-11178, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-28024379

RESUMEN

Plasmons in graphene nanostructures show great promise for mid-infrared applications ranging from a few to tens of microns. However, mid-infrared plasmonic resonances in graphene nanostructures are usually weak and narrow-banded, limiting their potential in light manipulation and detection. Here, we investigate the coupling among graphene plasmonic nanostructures and further show that, by engineering the coupling, enhancement of light-graphene interaction strength and broadening of spectral width can be achieved simultaneously. Leveraging the concept of coupling, we demonstrate a hybrid two-layer graphene nanoribbon array which shows 5-7% extinction within the entire 8-14 µm (∼700-1250 cm-1) wavelength range, covering one of the important atmosphere "infrared transmission windows". Such coupled hybrid graphene plasmonic nanostructures may find applications in infrared sensing and free-space communications.

18.
Nanoscale ; 8(36): 16371-16378, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27722443

RESUMEN

MXenes, a new family of two-dimensional structures, have recently gained significant attention due to their unique physical properties suitable for a wide range of potential applications. Here we introduce Ti3C2Tx delaminated monolayers as ultrathin transparent conductors with properties exceeding comparable reduced graphene oxide films. Solution processed Ti3C2Tx films exhibit sheet resistances as low as 437 Ω sq-1 with 77% transmittance at 550 nm. Field effect transistor measurements confirm that these films have a metallic nature, which makes them suitable as electrodes. We show using Kelvin Probe Atomic Force Microscopy that the work function of delaminated Ti3C2Tx flakes (with OH terminal groups) is 5.28 ± 0.03 eV. These results demonstrate that solution-processed Ti3C2Tx conducting films could open up a new direction for the next generation of transparent conductive electrodes.

19.
ACS Nano ; 10(11): 10428-10435, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27794601

RESUMEN

Nonvolatile charge-trap memory plays an important role in many modern electronics technologies, from portable electronic systems to large-scale data centers. Conventional charge-trap memory devices typically work with fixed channel carrier polarity and device characteristics. However, many emerging applications in reconfigurable electronics and neuromorphic computing require dynamically tunable properties in their electronic device components that can lead to enhanced circuit versatility and system functionalities. Here, we demonstrate an ambipolar black phosphorus (BP) charge-trap memory device with dynamically reconfigurable and polarity-reversible memory behavior. This BP memory device shows versatile memory properties subject to electrostatic bias. Not only the programmed/erased state current ratio can be continuously tuned by the back-gate bias, but also the polarity of the carriers in the BP channel can be reversibly switched between electron- and hole-dominated conductions, resulting in the erased and programmed states exhibiting interchangeable high and low current levels. The BP memory also shows four different memory states and, hence, 2-bit per cell data storage for both n-type and p-type channel conductions, demonstrating the multilevel cell storage capability in a layered material based memory device. The BP memory device with a high mobility and tunable programmed/erased state current ratio and highly reconfigurable device characteristics can offer adaptable memory device properties for many emerging applications in electronics technology, such as neuromorphic computing, data-adaptive energy efficient memory, and dynamically reconfigurable digital circuits.

20.
Nanoscale Res Lett ; 9(1): 2496, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26089003

RESUMEN

We describe a facile, low-cost, and green method to fabricate porous graphene networks/nickel foam (PG/NF) electrodes by electrochemical deposition of graphene sheets on nickel foams (NFs) for the application of supercapacitor electrodes. The electrodeposition process was accomplished by electrochemical reduction of graphene oxide (GO) in its aqueous suspension. The resultant binder-free PG/NF electrodes exhibited excellent double-layer capacitive performance with a high rate capability and a high specific capacitance of 183.2 mF cm(-2) at the current density of 1 mA cm(-2). Moreover, the specific capacitance maintains nearly 100% over 10,000 charge-discharge cycles, demonstrating a remarkable cyclic stability of these porous supercapacitor electrodes. PACS: 82.47.Uv (Electrochemical capacitors); 82.45.Fk (Electrodes electrochemistry); 81.05.Rm (Fabrication of porous materials).

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda