Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 23(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37420681

RESUMEN

The large number of estimated parameters in a reconfigurable intelligent surface (RIS) makes it difficult to achieve accurate channel estimation accuracy in 6G. Therefore, we suggest a novel two-phase channel estimation framework for uplink multiuser communication. In this context, we propose an orthogonal matching pursuit (OMP)-based linear minimum mean square error (LMMSE) channel estimation approach. The OMP algorithm is used in the proposed algorithm to update the support set and pick the columns of the sensing matrix that are most correlated with the residual signal, which successfully reduces pilot overhead by removing redundancy. Here, we use LMMSE's advantages for handling noise to address the problem of inadequate channel estimation accuracy when the signal-to-noise ratio (SNR) is low. Simulation findings demonstrate that the proposed approach outperforms least-squares (LS), traditional OMP, and other OMP-based algorithms in terms of estimate accuracy.


Asunto(s)
Algoritmos , Simulación por Computador , Relación Señal-Ruido , Análisis de los Mínimos Cuadrados
2.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904935

RESUMEN

Extracting circle information from images has always been a basic problem in computer vision. Common circle detection algorithms have some defects, such as poor noise resistance and slow computation speed. In this paper, we propose an anti-noise fast circle detection algorithm. In order to improve the anti-noise of the algorithm, we first perform curve thinning and connection on the image after edge extraction, then suppress noise interference by the irregularity of noise edges and extract circular arcs by directional filtering. In order to reduce the invalid fitting and speed up the running speed, we propose a circle fitting algorithm with five quadrants, and improve the efficiency of the algorithm by the idea of "divide and conquer". We compare the algorithm with RCD, CACD, WANG and AS on two open datasets. The results show that we have the best performance under noise while keeping the speed of the algorithm.

3.
Sensors (Basel) ; 22(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36236562

RESUMEN

To achieve fast and accurate channel estimation of reconfigurable intelligent surface (RIS)-assisted multiple-input single-output (MISO) systems, we propose an accelerated bilinear alternating least squares algorithm (ABALS) based on parallel factor decomposition. Firstly, we build a tensor model of the received signal, and expand it to obtain the unfolded forms of the model. Secondly, we derive the expression of the estimation problem of two channels based on the unfolded forms to transform the problem into a cost function problem. Furthermore, we solve the cost function problem by introducing a simpler iterative optimization constraint and linear interpolation. Finally, we provide a strategy on the receiver design based on the feasibility conditions discussed in this paper, which can guarantee the uniqueness of the channel estimation problem. Simulation results show that the proposed algorithm can obtain a faster estimation speed and less iteration steps than the alternating least squares (ALS) algorithm, and the accuracy of the two algorithms is very close.

4.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36015972

RESUMEN

In order to investigate the effect of cooperative Intelligent Reflecting Surface (IRS) in improving spectral efficiency, this paper explores the joint design of active and passive beamforming based on a double IRS-assisted model. First, considering the maximum power constraint of the active vector and the unit modulus constraint of the cooperative passive vector, we establish the non-linear and non-convex optimization problem of multi-user maximization weighted sum rate (WSR). Then, we propose an alternating optimization (AO) algorithm to design the active vector and the cooperative passive vector based on fractional programming (FP) and successive convex approximations (SCA). In addition, we conduct a study on the optimization of the passive reflection vector under discrete phase shift. The simulation results show that the proposed beamforming scheme of double IRS-assisted model performs better than the conventional single IRS-assisted model.

5.
Sensors (Basel) ; 22(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080925

RESUMEN

In this paper, we considered uplink communication, focusing on the improvement of spectral efficiency (SE) for millimeter wave (mmWave) multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) systems. Firstly, we proposed an adaptive cluster head selection algorithm. Then, a channel-aligned analog beamforming scheme was designed based on the selected cluster heads. After that, the user grouping algorithm was designed based on the user-equivalent channel correlation. Subsequently, the power allocation problem was transformed from a nonconvex problem to a convex one using the quadratic transformation (QT) method considering all relevant constraints. Finally, the optimal user power allocation and digital beamforming design was obtained by iteratively optimizing the power and digital beamforming. Simulation results show that our proposed scheme can achieve a higher SE than existing methods.

6.
Sensors (Basel) ; 22(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35957318

RESUMEN

It is an urgent problem to know how to quickly and accurately measure the length of irregular curves in complex background images. To solve the problem, we first proposed a quasi-bimodal threshold segmentation (QBTS) algorithm, which transforms the multimodal histogram into a quasi-bimodal histogram to achieve a faster and more accurate segmentation of the target curve. Then, we proposed a single-pixel skeleton length measurement (SPSLM) algorithm based on the 8-neighborhood model, which used the 8-neighborhood feature to measure the length for the first time, and achieved a more accurate measurement of the curve length. Finally, the two algorithms were tested and analyzed in terms of accuracy and speed on the two original datasets of this paper. The experimental results show that the algorithms proposed in this paper can quickly and accurately segment the target curve from the neon design rendering with complex background interference and measure its length.

7.
Sensors (Basel) ; 22(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35957465

RESUMEN

In a reconfigurable intelligent surface (RIS) assisted millimeter Wave (mmWave) communication system, the channel coefficient increases exponentially with the number of RIS elements which results in expensive pilot overhead. Most previous works have proposed some channel estimation algorithms for the estimation accuracy of cascaded channels, which have improved the estimation accuracy, but the pilot overhead is discouraging in the estimation process. To improve the channel estimation accuracy with reduced pilot overhead, we propose a two-stage channel estimation protocol by exploiting semi-passive elements and the coherent time difference of the channel, where the quasi-static channel between the base stations (BS) and RIS is estimated at the RIS, and the user (UE)-RIS time-varying channel is estimated at the BS. In the first stage, we formulate the BS-RIS channel estimation as a mathematical optimization problem by an iterative weighting method and then propose a gradient descent (GD)-based algorithm to solve it. In the second stage, we first transform the received the UE-RIS signal model into an equivalent parallel factor (PARAFAC) tensor model and estimate the UE-RIS channel by the least-squares (LS) algorithm. The simulation results show that the proposed method has better estimation accuracy than the LS, compression sensing (CS) and minimum mean square error (MMSE) methods with less pilot overhead, and the spectral efficiency is improved by at least 10.5% compared to the other three methods.

8.
Sensors (Basel) ; 22(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36236365

RESUMEN

Circle detection is a fundamental problem in computer vision. However, conventional circle detection algorithms are usually time-consuming and sensitive to noise. In order to solve these shortcomings, we propose a fast circle detection algorithm based on information compression. First, we introduce the idea of information compression, which compresses the circular information on the image into a small number of points while removing some of the noise through sharpness estimation and orientation filtering. Then, the circle parameters stored in the information point are obtained by the average sampling algorithm with a time complexity of O(1) to obtain candidate circles. Finally, we set different constraints on the complete circle and the defective circle according to the sampling results and find the true circle from the candidate circles. The experimental results on the three datasets show that our method can compress the circular information in the image into 1% of the information points, and compared to RHT, RCD, Jiang, Wang and CACD, Precision, Recall, Time and F-measure are greatly improved.

9.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502728

RESUMEN

The suspended monorail (SM) vehicle-bridge system has been considered a promising modern transit mode due to its clear advantages: low pollution, high safety, convenient construction, and low cost. The wind-induced response can significantly affect the running safety and comfort of this type of vehicle due to its special suspended position from a fixed track. This study is the first to systematically investigate its aerodynamic characteristics and interference effects under various spacing ratios using wind tunnel tests and numerical simulations. A high level of agreement between the wind tunnel test and CFD (computational fluid dynamics) results was obtained, and the aerodynamic interference mechanism can be well explained using the CFD technique from a flow field perspective. A wireless wind pressure acquisition system is proposed to achieve synchronization acquisition for multi wind pressure test taps. The paper confirms that (1) the proposed wireless wind pressure acquisition system performed well; (2) the aerodynamic coefficients of the upstream vehicle and bridge were nearly unchanged for vehicle-bridge combinations with varying spacing ratios; (3) the aerodynamic interference effects were amplified when two vehicles meet, but the effects decrease as the spacing ratio increases; (4) the aerodynamic force coefficients, mean, and root mean square (RMS) wind pressure coefficients for the downstream vehicle and bridge are readily affected by the upstream vehicle; (5) the vortex shedding frequencies of vehicles and bridges can be readily obtained from the lift force spectra, and they decrease as the spacing ratio increases; and (6) a spacing ratio of 3.5 is suggested in the field applications to ensure the running safety and stability of the SM vehicle-bridge system under exposure to crosswinds.

10.
J Org Chem ; 80(2): 1192-9, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25485888

RESUMEN

A novel and efficient nickel-catalyzed tandem 1,4-1,2-addition of P(O)H compounds to 1,10-phenanthrolines forming various 2,4-diphosphono-1,2,3,4-tetrahydro-1,10-phenanthrolines has been developed. This reaction breaks up the aromatic stabilization and directly introduces two phosphorus moieties in one single step. This finding is the first example of transition-metal-catalyzed double hydrophosphonylation of 1,10-phenanthrolines.


Asunto(s)
Níquel/química , Compuestos Organofosforados/química , Compuestos Organofosforados/síntesis química , Fenantrolinas/química , Fenantrolinas/síntesis química , Catálisis , Estructura Molecular
11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(12): 3490-4, 2015 Dec.
Artículo en Zh | MEDLINE | ID: mdl-26964236

RESUMEN

The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value of the absorptance spectrum varied with temperature and the calculating error for the integral value fluctuates with ranges of temperature, in the gas measurement when we usd integral values of the absoptance spectrum, we should select a suitable temperature variation and obtain a more accurate measurement result.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda