Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Annu Rev Cell Dev Biol ; 33: 219-240, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28992439

RESUMEN

A small pool of neural progenitors generates the vast diversity of cell types in the CNS. Spatial patterning specifies progenitor identity, followed by temporal patterning within progenitor lineages to expand neural diversity. Recent work has shown that in Drosophila, all neural progenitors (neuroblasts) sequentially express temporal transcription factors (TTFs) that generate molecular and cellular diversity. Embryonic neuroblasts use a lineage-intrinsic cascade of five TTFs that switch nearly every neuroblast cell division; larval optic lobe neuroblasts also use a rapid cascade of five TTFs, but the factors are completely different. In contrast, larval central brain neuroblasts undergo a major molecular transition midway through larval life, and this transition is regulated by a lineage-extrinsic cue (ecdysone hormone signaling). Overall, every neuroblast lineage uses a TTF cascade to generate diversity, illustrating the widespread importance of temporal patterning.


Asunto(s)
Tipificación del Cuerpo , Sistema Nervioso Central/embriología , Drosophila melanogaster/embriología , Animales , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Factores de Tiempo
2.
Cell ; 152(1-2): 97-108, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332748

RESUMEN

Stem and/or progenitor cells often generate distinct cell types in a stereotyped birth order and over time lose competence to specify earlier-born fates by unknown mechanisms. In Drosophila, the Hunchback transcription factor acts in neural progenitors (neuroblasts) to specify early-born neurons, in part by indirectly inducing the neuronal transcription of its target genes, including the hunchback gene. We used in vivo immuno-DNA FISH and found that the hunchback gene moves to the neuroblast nuclear periphery, a repressive subnuclear compartment, precisely when competence to specify early-born fate is lost and several hours and cell divisions after termination of its transcription. hunchback movement to the lamina correlated with downregulation of the neuroblast nuclear protein, Distal antenna (Dan). Either prolonging Dan expression or disrupting lamina interfered with hunchback repositioning and extended neuroblast competence. We propose that neuroblasts undergo a developmentally regulated subnuclear genome reorganization to permanently silence Hunchback target genes that results in loss of progenitor competence.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , Células-Madre Neurales/citología , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Drosophila/citología , Drosophila/genética , Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo
3.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819456

RESUMEN

Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.


Asunto(s)
Proteínas de Drosophila , Proteínas de Homeodominio , Sistema Nervioso , Factores de Transcripción , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Sistema Nervioso/metabolismo , Sistema Nervioso/embriología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
4.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230563

RESUMEN

An unanswered question in neurobiology is how are diverse neuron cell types generated from a small number of neural stem cells? In the Drosophila larval central brain, there are eight bilateral Type 2 neuroblast (T2NB) lineages that express a suite of early temporal factors followed by a different set of late temporal factors and generate the majority of the central complex (CX) neurons. The early-to-late switch is triggered by the orphan nuclear hormone receptor Seven-up (Svp), yet little is known about how this Svp-dependent switch is involved in specifying CX neuron identities. Here, we: (1) birth date the CX neurons P-EN and P-FN (early and late, respectively); (2) show that Svp is transiently expressed in all early T2NBs; and (3) show that loss of Svp expands the population of early born P-EN neurons at the expense of late born P-FN neurons. Furthermore, in the absence of Svp, T2NBs fail decommissioning and abnormally extend their lineage into week-old adults. We conclude that Svp is required to specify CX neuron identity, as well as to initiate T2NB decommissioning.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Drosophila/metabolismo , Linaje de la Célula/fisiología , Drosophila melanogaster/metabolismo
5.
Nature ; 592(7854): 414-420, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828296

RESUMEN

Critical periods-brief intervals during which neural circuits can be modified by activity-are necessary for proper neural circuit assembly. Extended critical periods are associated with neurodevelopmental disorders; however, the mechanisms that ensure timely critical period closure remain poorly understood1,2. Here we define a critical period in a developing Drosophila motor circuit and identify astrocytes as essential for proper critical period termination. During the critical period, changes in activity regulate dendrite length, complexity and connectivity of motor neurons. Astrocytes invaded the neuropil just before critical period closure3, and astrocyte ablation prolonged the critical period. Finally, we used a genetic screen to identify astrocyte-motor neuron signalling pathways that close the critical period, including Neuroligin-Neurexin signalling. Reduced signalling destabilized dendritic microtubules, increased dendrite dynamicity and impaired locomotor behaviour, underscoring the importance of critical period closure. Previous work defined astroglia as regulators of plasticity at individual synapses4; we show here that astrocytes also regulate motor circuit critical period closure to ensure proper locomotor behaviour.


Asunto(s)
Astrocitos/fisiología , Período Crítico Psicológico , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Vías Eferentes/fisiología , Neuronas Motoras/fisiología , Plasticidad Neuronal/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Dendritas/fisiología , Femenino , Locomoción/fisiología , Masculino , Microtúbulos/metabolismo , Neurópilo/fisiología , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Sinapsis/fisiología , Factores de Tiempo
6.
Semin Cell Dev Biol ; 142: 4-12, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35659165

RESUMEN

The development of the central nervous system (CNS) in flies and mammals requires the production of distinct neurons in different locations and times. Here we review progress on how Drosophila stem cells (neuroblasts; NBs) generate distinct neurons over time. There are two types of NBs: type I and type II NBs (defined below); here we focus on type I NBs; type II NBs are reviewed elsewhere in this issue. Type I NBs generate neural diversity via the cascading expression of specific temporal transcription factors (TTFs). TTFs are sequentially expressed in neuroblasts and required for the identity of neurons born during each TTF expression window. In this way TTFs specify the "temporal identity" or birth-order dependent identity of neurons. Recent studies have shown that TTF expression in neuroblasts alter the identity of their progeny, including directing motor neurons to form proper connectivity to the proper muscle targets, independent of their birth-order. Similarly, optic lobe (OL) type I NBs express a series of TTFs that promote proper neuron morphology and targeting to the four OL neuropils. Together, these studies demonstrate how temporal identity is crucial in promoting proper circuit assembly within the Drosophila CNS. In addition, TTF orthologs in mouse are good candidates for specifying neuron types in the neocortex and retina. In this review we highlight the recent advances in understanding the role of TTFs in CNS circuit assembly in Drosophila and reflect on the conservation of these mechanisms in mammalian CNS development.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Ratones , Drosophila/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Neuronas Motoras/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mamíferos/metabolismo
7.
Cell ; 138(6): 1150-63, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19766567

RESUMEN

Asymmetric cell division is intensely studied because it can generate cellular diversity as well as maintain stem cell populations. Asymmetric cell division requires mitotic spindle alignment with intrinsic or extrinsic polarity cues, but mechanistic detail of this process is lacking. Here, we develop a method to construct cortical polarity in a normally unpolarized cell line and use this method to characterize Partner of Inscuteable (Pins; LGN/AGS3 in mammals) -dependent spindle orientation. We identify a previously unrecognized evolutionarily conserved Pins domain (Pins(LINKER)) that requires Aurora-A phosphorylation to recruit Discs large (Dlg; PSD-95/hDlg in mammals) and promote partial spindle orientation. The well-characterized Pins(TPR) domain has no function alone, but placing the Pins(TPR) in cis to the Pins(LINKER) gives dynein-dependent precise spindle orientation. This "induced cortical polarity" assay is suitable for rapid identification of the proteins, domains, and amino acids regulating spindle orientation or cell polarity.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Aurora Quinasas , Proteínas de Ciclo Celular , Línea Celular , Proteínas de Drosophila/química , Drosophila melanogaster/embriología , Dineínas/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/química , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Profase , Estructura Terciaria de Proteína , Transducción de Señal
8.
Dev Biol ; 489: 21-33, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660371

RESUMEN

Embryonic development results in the production of distinct tissue types, and different cell types within each tissue. A major goal of developmental biology is to uncover the "parts list" of cell types that comprise each organ. Here we perform single cell RNA sequencing (scRNA-seq) of the Drosophila embryo to identify the genes that characterize different cell and tissue types during development. We assay three different timepoints, revealing a coordinated change in gene expression within each tissue. Interestingly, we find that the elav and Mhc genes, whose protein products are widely used as markers for neurons and muscles, respectively, show broad pan-embryonic expression, indicating the importance of post-transcriptional regulation. We next focus on the central nervous system (CNS), where we identify genes whose expression is enriched at each stage of neuronal differentiation: from neural progenitors, called neuroblasts, to their immediate progeny ganglion mother cells (GMCs), followed by new-born neurons, young neurons, and the most mature neurons. Finally, we ask whether the clonal progeny of a single neuroblast (NB7-1) share a similar transcriptional identity. Surprisingly, we find that clonal identity does not lead to transcriptional clustering, showing that neurons within a lineage are diverse, and that neurons with a similar transcriptional profile (e.g. motor neurons, glia) are distributed among multiple neuroblast lineages. Although each lineage consists of diverse progeny, we were able to identify a previously uncharacterized gene, Fer3, as an excellent marker for the NB7-1 lineage. Within the NB7-1 lineage, neurons which share a temporal identity (e.g. Hunchback, Kruppel, Pdm, and Castor temporal transcription factors in the NB7-1 lineage) have shared transcriptional features, allowing for the identification of candidate novel temporal factors or targets of the temporal transcription factors. In conclusion, we have characterized the embryonic transcriptome for all major tissue types and for three stages of development, as well as the first transcriptomic analysis of a single, identified neuroblast lineage, finding a lineage-enriched transcription factor.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Linaje de la Célula/genética , Sistema Nervioso Central/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas Motoras , Factores de Transcripción/metabolismo
9.
J Neurosci ; 41(6): 1119-1129, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568445

RESUMEN

The ability to sense the world, process information, and navigate the environment depends on the assembly and continuous function of neural circuits in the brain. Within the past two decades, new technologies have rapidly advanced our understanding of how neural circuits are wired during development and how they are stably maintained, often for years. Electron microscopy reconstructions of model organism connectomes have provided a map of the stereotyped (and variable) connections in the brain; advanced light microscopy techniques have enabled direct observation of the cellular dynamics that underlie circuit construction and maintenance; transcriptomic and proteomic surveys of both developing and mature neurons have provided insights into the molecular and genetic programs governing circuit establishment and maintenance; and advanced genetic techniques have allowed for high-throughput discovery of wiring regulators. These tools have empowered scientists to rapidly generate and test hypotheses about how circuits establish and maintain connectivity. Thus, the set of principles governing circuit formation and maintenance have been expanded. These principles are discussed in this review.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Conectoma/métodos , Humanos , Proteómica/métodos , Sinapsis/fisiología
10.
Development ; 146(7)2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30890568

RESUMEN

The generation of neuronal diversity is essential for circuit formation and behavior. Morphological differences in sequentially born neurons could be due to intrinsic molecular identity specified by temporal transcription factors (henceforth called intrinsic temporal identity) or due to changing extrinsic cues. Here, we have used the Drosophila NB7-1 lineage to address this issue. NB7-1 generates the U1-U5 motor neurons sequentially; each has a distinct intrinsic temporal identity due to inheritance of different temporal transcription factors at its time of birth. We show that the U1-U5 neurons project axons sequentially, followed by sequential dendrite extension. We misexpressed the earliest temporal transcription factor, Hunchback, to create 'ectopic' U1 neurons with an early intrinsic temporal identity but later birth-order. These ectopic U1 neurons have axon muscle targeting and dendrite neuropil targeting that are consistent with U1 intrinsic temporal identity, rather than with their time of birth or differentiation. We conclude that intrinsic temporal identity plays a major role in establishing both motor axon muscle targeting and dendritic arbor targeting, which are required for proper motor circuit development.


Asunto(s)
Axones/metabolismo , Proteínas de Unión al ADN/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Drosophila , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras , Factores de Transcripción/genética
11.
Genes Dev ; 27(1): 98-115, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23307870

RESUMEN

Transcriptional profiling is a powerful approach for understanding development and disease. Current cell type-specific RNA purification methods have limitations, including cell dissociation trauma or inability to identify all RNA species. Here, we describe "mouse thiouracil (TU) tagging," a genetic and chemical intersectional method for covalent labeling and purification of cell type-specific RNA in vivo. Cre-induced expression of uracil phosphoribosyltransferase (UPRT) provides spatial specificity; injection of 4-thiouracil (4TU) provides temporal specificity. Only UPRT(+) cells exposed to 4TU produce thio-RNA, which is then purified for RNA sequencing (RNA-seq). This method can purify transcripts from spatially complex and rare (<5%) cells, such as Tie2:Cre(+) brain endothelia/microglia (76% validated by expression pattern), or temporally dynamic transcripts, such as those acutely induced by lipopolysaccharide (LPS) injection. Moreover, generating chimeric mice via UPRT(+) bone marrow transplants identifies immune versus niche spleen RNA. TU tagging provides a novel method for identifying actively transcribed genes in specific cells at specific times within intact mice.


Asunto(s)
Biología Molecular/métodos , ARN/aislamiento & purificación , Coloración y Etiquetado/métodos , Tiouracilo/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Encéfalo/embriología , Encéfalo/metabolismo , Quimera , Perfilación de la Expresión Génica , Ratones , Transgenes/genética
12.
Trends Genet ; 33(12): 933-942, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28899597

RESUMEN

During neurogenesis, vertebrate and Drosophila progenitors change over time as they generate a diverse population of neurons and glia. Vertebrate neural progenitors have long been known to use both progenitor-intrinsic and progenitor-extrinsic cues to regulate temporal patterning. In contrast, virtually all temporal patterning mechanisms discovered in Drosophila neural progenitors (neuroblasts) involve progenitor-intrinsic temporal transcription factor cascades. Recent results, however, have revealed several extrinsic pathways that regulate Drosophila neuroblast temporal patterning: nutritional cues regulate the timing of neuroblast proliferation/quiescence and a steroid hormone cue that is required for temporal transcription factor expression. Here, we discuss newly discovered extrinsic cues regulating neural progenitor temporal identity in Drosophila, highlight conserved mechanisms, and raise open questions for the future.


Asunto(s)
Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Células Madre/fisiología , Animales , Drosophila/genética , Proteínas de Drosophila/genética
13.
Development ; 144(24): 4552-4562, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29158446

RESUMEN

Drosophila neuroblasts are an excellent model for investigating how neuronal diversity is generated. Most brain neuroblasts generate a series of ganglion mother cells (GMCs) that each make two neurons (type I lineage), but 16 brain neuroblasts generate a series of intermediate neural progenitors (INPs) that each produce 4-6 GMCs and 8-12 neurons (type II lineage). Thus, type II lineages are similar to primate cortical lineages, and may serve as models for understanding cortical expansion. Yet the origin of type II neuroblasts remains mysterious: do they form in the embryo or larva? If they form in the embryo, do their progeny populate the adult central complex, as do the larval type II neuroblast progeny? Here, we present molecular and clonal data showing that all type II neuroblasts form in the embryo, produce INPs and express known temporal transcription factors. Embryonic type II neuroblasts and INPs undergo quiescence, and produce embryonic-born progeny that contribute to the adult central complex. Our results provide a foundation for investigating the development of the central complex, and tools for characterizing early-born neurons in central complex function.


Asunto(s)
Encéfalo/embriología , Drosophila melanogaster/embriología , Ganglios de Invertebrados/embriología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/citología , Animales , Encéfalo/citología , Linaje de la Célula/fisiología , Proliferación Celular , Femenino , Larva/citología , Masculino
14.
Dev Biol ; 440(1): 1-12, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29679561

RESUMEN

Stem cells must maintain proliferation during tissue development, repair and homeostasis, yet avoid tumor formation. In Drosophila, neural stem cells (neuroblasts) maintain proliferation during embryonic and larval development and terminate cell cycle during metamorphosis. An important question for understanding how tissues are generated and maintained is: what regulates stem cell proliferation versus differentiation? We performed a genetic screen which identified nucleostemin 3 (ns3) as a gene required to maintain neuroblast proliferation. ns3 is evolutionarily conserved with yeast and human Lsg1, which encode putative GTPases and are essential for organism growth and viability. We found NS3 is cytoplasmic and it is required to retain the cell cycle repressor Prospero in neuroblast cytoplasm via a Ran-independent pathway. NS3 is also required for proper neuroblast cell polarity and asymmetric cell division. Structure-function analysis further shows that the GTP-binding domain and acidic domain are required for NS3 function in neuroblast proliferation. We conclude NS3 has novel roles in regulating neuroblast cell polarity and proliferation.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células-Madre Neurales/metabolismo , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , División Celular/fisiología , Polaridad Celular/fisiología , Proliferación Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Unión al GTP/fisiología , Larva/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis , Neuronas/metabolismo
15.
Nature ; 498(7455): 449-55, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23783519

RESUMEN

Human outer subventricular zone (OSVZ) neural progenitors and Drosophila type II neuroblasts both generate intermediate neural progenitors (INPs) that populate the adult cerebral cortex or central complex, respectively. It is unknown whether INPs simply expand or also diversify neural cell types. Here we show that Drosophila INPs sequentially generate distinct neural subtypes, that INPs sequentially express Dichaete, Grainy head and Eyeless transcription factors, and that these transcription factors are required for the production of distinct neural subtypes. Moreover, parental type II neuroblasts also sequentially express transcription factors and generate different neuronal/glial progeny over time, providing a second temporal identity axis. We conclude that neuroblast and INP temporal patterning axes act together to generate increased neural diversity within the adult central complex; OSVZ progenitors may use similar mechanisms to increase neural diversity in the human brain.


Asunto(s)
Linaje de la Célula , Drosophila melanogaster/citología , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/metabolismo , Animales , Biomarcadores/metabolismo , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Femenino , Regulación de la Expresión Génica , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo
16.
Nat Rev Neurosci ; 14(12): 823-38, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24400340

RESUMEN

The vast diversity of neurons and glia of the CNS is generated from a small, heterogeneous population of progenitors that undergo transcriptional changes during development to sequentially specify distinct cell fates. Guided by cell-intrinsic and -extrinsic cues, invertebrate and mammalian neural progenitors carefully regulate when and how many of each cell type is produced, enabling the formation of functional neural circuits. Emerging evidence indicates that neural progenitors also undergo changes in global chromatin architecture, thereby restricting when a particular cell type can be generated. Studies of temporal-identity specification and progenitor competence can provide insight into how we could use neural progenitors to more effectively generate specific cell types for brain repair.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neuronas/fisiología , Animales , Neuroglía/fisiología
17.
Development ; 141(12): 2524-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24917506

RESUMEN

A major limitation in understanding embryonic development is the lack of cell type-specific markers. Existing gene expression and marker atlases provide valuable tools, but they typically have one or more limitations: a lack of single-cell resolution; an inability to register multiple expression patterns to determine their precise relationship; an inability to be upgraded by users; an inability to compare novel patterns with the database patterns; and a lack of three-dimensional images. Here, we develop new 'atlas-builder' software that overcomes each of these limitations. A newly generated atlas is three-dimensional, allows the precise registration of an infinite number of cell type-specific markers, is searchable and is open-ended. Our software can be used to create an atlas of any tissue in any organism that contains stereotyped cell positions. We used the software to generate an 'eNeuro' atlas of the Drosophila embryonic CNS containing eight transcription factors that mark the major CNS cell types (motor neurons, glia, neurosecretory cells and interneurons). We found neuronal, but not glial, nuclei occupied stereotyped locations. We added 75 new Gal4 markers to the atlas to identify over 50% of all interneurons in the ventral CNS, and these lines allowed functional access to those interneurons for the first time. We expect the atlas-builder software to benefit a large proportion of the developmental biology community, and the eNeuro atlas to serve as a publicly accessible hub for integrating neuronal attributes - cell lineage, gene expression patterns, axon/dendrite projections, neurotransmitters--and linking them to individual neurons.


Asunto(s)
Sistema Nervioso Central/citología , Bases de Datos Genéticas , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Animales , Axones/metabolismo , Linaje de la Célula , Biología Computacional , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Interneuronas/metabolismo , Ratones , Neuronas/metabolismo , Neurotransmisores , Ratas , Programas Informáticos
18.
Development ; 140(20): 4155-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24026126

RESUMEN

Stem cells generate progeny that undergo terminal differentiation. The initiation and maintenance of the differentiated status is crucial for tissue development, function and homeostasis. Drosophila neural stem cells (neuroblasts) are a model for stem cell self-renewal and differentiation; they divide asymmetrically to self-renew and generate the neurons and glia of the CNS. Here we report the identification of midlife crisis (mdlc; CG4973) as a gene required for the maintenance of neuronal differentiation and for neuroblast proliferation in Drosophila. mdlc encodes a ubiquitously expressed zinc-finger-containing protein with conserved orthologs from yeast to humans that are reported to have a role in RNA splicing. Using clonal analysis, we demonstrate that mdlc mutant neurons initiate but fail to complete differentiation, as judged by the loss of the pro-differentiation transcription factor Prospero, followed by derepression of the neuroblast factors Deadpan, Asense and Cyclin E. RNA-seq shows that loss of Mdlc decreases pros transcript levels and results in aberrant pros splicing. Importantly, misexpression of the full-length human ortholog, RNF113A, completely rescues all CNS defects in mdlc mutants. We conclude that Mdlc plays an essential role in maintaining neuronal differentiation, raising the possibility that RNF113A regulates neuronal differentiation in the human CNS.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Diferenciación Celular , Proliferación Celular , Ciclina E/biosíntesis , Proteínas de Unión al ADN , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/embriología , Neuronas/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Interferencia de ARN , Empalme del ARN , ARN Interferente Pequeño , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Dedos de Zinc
19.
Nature ; 467(7311): 91-4, 2010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20811457

RESUMEN

The mitotic spindle determines the cleavage furrow site during metazoan cell division, but whether other mechanisms exist remains unknown. Here we identify a spindle-independent mechanism for cleavage furrow positioning in Drosophila neuroblasts. We show that early and late furrow proteins (Pavarotti, Anillin, and Myosin) are localized to the neuroblast basal cortex at anaphase onset by a Pins cortical polarity pathway, and can induce a basally displaced furrow even in the complete absence of a mitotic spindle. Rotation or displacement of the spindle results in two furrows: an early polarity-induced basal furrow and a later spindle-induced furrow. This spindle-independent cleavage furrow mechanism may be relevant to other highly polarized mitotic cells, such as mammalian neural progenitors.


Asunto(s)
Citocinesis , Drosophila/citología , Drosophila/metabolismo , Anafase , Animales , Proteínas de Drosophila/metabolismo , Huso Acromático/metabolismo , Células Madre/citología , Células Madre/metabolismo
20.
J Cell Sci ; 126(Pt 19): 4436-44, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23868974

RESUMEN

To position the mitotic spindle, cytoskeletal components must be coordinated to generate cortical forces on astral microtubules. Although the dynein motor is common to many spindle orientation systems, 'accessory pathways' are often also required. In this work, we identified an accessory spindle orientation pathway in Drosophila that functions with Dynein during planar cell polarity, downstream of the Frizzled (Fz) effector Dishevelled (Dsh). Dsh contains a PDZ ligand and a Dynein-recruiting DEP domain that are both required for spindle orientation. The Dsh PDZ ligand recruits Canoe/Afadin and ultimately leads to Rho GTPase signaling mediated through RhoGEF2. The formin Diaphanous (Dia) functions as the Rho effector in this pathway, inducing F-actin enrichment at sites of cortical Dsh. Chimeric protein experiments show that the Dia-actin accessory pathway can be replaced by an independent kinesin (Khc73) accessory pathway for Dsh-mediated spindle orientation. Our results define two 'modular' spindle orientation pathways and show an essential role for actin regulation in Dsh-mediated spindle orientation.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Dineínas/metabolismo , Receptores Frizzled/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Huso Acromático/metabolismo , Animales , Polaridad Celular/fisiología , Proteínas Dishevelled , Polimerizacion , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda