Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 81(4): 767-783.e11, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33333017

RESUMEN

Chromatin is a barrier to efficient DNA repair, as it hinders access and processing of certain DNA lesions. ALC1/CHD1L is a nucleosome-remodeling enzyme that responds to DNA damage, but its precise function in DNA repair remains unknown. Here we report that loss of ALC1 confers sensitivity to PARP inhibitors, methyl-methanesulfonate, and uracil misincorporation, which reflects the need to remodel nucleosomes following base excision by DNA glycosylases but prior to handover to APEX1. Using CRISPR screens, we establish that ALC1 loss is synthetic lethal with homologous recombination deficiency (HRD), which we attribute to chromosome instability caused by unrepaired DNA gaps at replication forks. In the absence of ALC1 or APEX1, incomplete processing of BER intermediates results in post-replicative DNA gaps and a critical dependence on HR for repair. Hence, targeting ALC1 alone or as a PARP inhibitor sensitizer could be employed to augment existing therapeutic strategies for HRD cancers.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Nucleosomas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas de Unión al ADN/genética , Recombinación Homóloga/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Nucleosomas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética
2.
Nature ; 586(7828): 292-298, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999459

RESUMEN

The RecQ DNA helicase WRN is a synthetic lethal target for cancer cells with microsatellite instability (MSI), a form of genetic hypermutability that arises from impaired mismatch repair1-4. Depletion of WRN induces widespread DNA double-strand breaks in MSI cells, leading to cell cycle arrest and/or apoptosis. However, the mechanism by which WRN protects MSI-associated cancers from double-strand breaks remains unclear. Here we show that TA-dinucleotide repeats are highly unstable in MSI cells and undergo large-scale expansions, distinct from previously described insertion or deletion mutations of a few nucleotides5. Expanded TA repeats form non-B DNA secondary structures that stall replication forks, activate the ATR checkpoint kinase, and require unwinding by the WRN helicase. In the absence of WRN, the expanded TA-dinucleotide repeats are susceptible to cleavage by the MUS81 nuclease, leading to massive chromosome shattering. These findings identify a distinct biomarker that underlies the synthetic lethal dependence on WRN, and support the development of therapeutic agents that target WRN for MSI-associated cancers.


Asunto(s)
Roturas del ADN de Doble Cadena , Expansión de las Repeticiones de ADN/genética , Repeticiones de Dinucleótido/genética , Neoplasias/genética , Helicasa del Síndrome de Werner/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Cromotripsis , División del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica , Humanos , Recombinasas/metabolismo
3.
Nucleic Acids Res ; 44(7): 3176-89, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26792895

RESUMEN

Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Reparación del ADN por Recombinación , Secuencias de Aminoácidos , ADN/biosíntesis , ADN Polimerasa III/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Células HEK293 , Humanos , Ubiquitina-Proteína Ligasas/fisiología , Rayos Ultravioleta
4.
Nat Commun ; 14(1): 6809, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884503

RESUMEN

Poly(ADP-ribose) polymerase (PARP) inhibitors are used in the clinic to treat BRCA-deficient breast, ovarian and prostate cancers. As their efficacy is potentiated by loss of the nucleotide salvage factor DNPH1 there is considerable interest in the development of highly specific small molecule DNPH1 inhibitors. Here, we present X-ray crystal structures of dimeric DNPH1 bound to its substrate hydroxymethyl deoxyuridine monophosphate (hmdUMP). Direct interaction with the hydroxymethyl group is important for substrate positioning, while conserved residues surrounding the base facilitate target discrimination. Glycosidic bond cleavage is driven by a conserved catalytic triad and proceeds via a two-step mechanism involving formation and subsequent disruption of a covalent glycosyl-enzyme intermediate. Mutation of a previously uncharacterised yet conserved glutamate traps the intermediate in the active site, demonstrating its role in the hydrolytic step. These observations define the enzyme's catalytic site and mechanism of hydrolysis, and provide important insights for inhibitor discovery.


Asunto(s)
Nucleótidos , Humanos , Modelos Moleculares , Hidrólisis , Dominio Catalítico , Catálisis
5.
Nature ; 444(7119): 633-7, 2006 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17136093

RESUMEN

Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest, whereas a second barrier is mediated by oncogene-induced senescence. The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression.


Asunto(s)
Transformación Celular Neoplásica/genética , Senescencia Celular/genética , Daño del ADN , Oncogenes , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Ciclina E/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , ADN , Replicación del ADN , Genes mos , Humanos , Ratones , Invasividad Neoplásica/genética , Proteínas Nucleares/genética , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología
6.
Trends Cancer ; 7(12): 1102-1118, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34563478

RESUMEN

Homologous recombination-deficient (HRD) tumours, including those harbouring mutations in the BRCA genes, are hypersensitive to treatment with inhibitors of poly(ADP-ribose) polymerase (PARPis). Despite high response rates, most HRD cancers ultimately develop resistance to PARPi treatment through reversion mutations or genetic/epigenetic alterations to DNA repair pathways. Counteracting these resistance pathways, thereby increasing the potency of PARPi therapy, represents a potential strategy to improve the treatment of HRD cancers. In this review, we discuss recent insights derived from genetic screens that have identified a number of novel genes that can be targeted to improve PARPi treatment of HRD cancers and may provide a means to overcome PARPi resistance.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Femenino , Genes Supresores de Tumor , Recombinación Homóloga/genética , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
7.
Science ; 372(6538): 156-165, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33833118

RESUMEN

Mutations in the BRCA1 or BRCA2 tumor suppressor genes predispose individuals to breast and ovarian cancer. In the clinic, these cancers are treated with inhibitors that target poly(ADP-ribose) polymerase (PARP). We show that inhibition of DNPH1, a protein that eliminates cytotoxic nucleotide 5-hydroxymethyl-deoxyuridine (hmdU) monophosphate, potentiates the sensitivity of BRCA-deficient cells to PARP inhibitors (PARPi). Synthetic lethality was mediated by the action of SMUG1 glycosylase on genomic hmdU, leading to PARP trapping, replication fork collapse, DNA break formation, and apoptosis. BRCA1-deficient cells that acquired resistance to PARPi were resensitized by treatment with hmdU and DNPH1 inhibition. Because genomic hmdU is a key determinant of PARPi sensitivity, targeting DNPH1 provides a promising strategy for the hypersensitization of BRCA-deficient cancers to PARPi therapy.


Asunto(s)
Antineoplásicos/farmacología , N-Glicosil Hidrolasas/antagonistas & inhibidores , N-Glicosil Hidrolasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Apoptosis , Sistemas CRISPR-Cas , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Neoplasias/metabolismo , Desoxicitidina Monofosfato/análogos & derivados , Desoxicitidina Monofosfato/metabolismo , Desoxicitidina Monofosfato/farmacología , Nucleótidos de Desoxiuracil/metabolismo , Resistencia a Antineoplásicos , Genes BRCA1 , Humanos , Hidrólisis , N-Glicosil Hidrolasas/genética , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Mutaciones Letales Sintéticas , Timidina/análogos & derivados , Timidina/antagonistas & inhibidores , Timidina/metabolismo , Timidina/farmacología , Uracil-ADN Glicosidasa/metabolismo
8.
Mol Cell Biol ; 25(9): 3553-62, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15831461

RESUMEN

Human checkpoint kinase 1 (Chk1) is an essential kinase required to preserve genome stability. Here, we show that Chk1 inhibition by two distinct drugs, UCN-01 and CEP-3891, or by Chk1 small interfering RNA (siRNA) leads to phosphorylation of ATR targets. Chk1-inhibition triggered rapid, pan-nuclear phosphorylation of histone H2AX, p53, Smc1, replication protein A, and Chk1 itself in human S-phase cells. These phosphorylations were inhibited by ATR siRNA and caffeine, but they occurred independently of ATM. Chk1 inhibition also caused an increased initiation of DNA replication, which was accompanied by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose that Chk1 is required during normal S phase to avoid aberrantly increased initiation of DNA replication, thereby protecting against DNA breakage. These results may help explain why Chk1 is an essential kinase and should be taken into account when drugs to inhibit this kinase are considered for use in cancer treatment.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN/fisiología , Replicación del ADN/fisiología , Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/fisiología , Estaurosporina/análogos & derivados , Proteínas de la Ataxia Telangiectasia Mutada , Cafeína/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN/efectos de los fármacos , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Humanos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/genética , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Purinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteína de Replicación A , Roscovitina , Estaurosporina/farmacología , Proteína p53 Supresora de Tumor/metabolismo
9.
Nat Cell Biol ; 20(1): 92-103, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29255170

RESUMEN

The resolution of joint molecules that link recombining sister chromatids is essential for chromosome segregation. Here, we determine the fate of unresolved recombination intermediates arising in cells lacking two nucleases required for resolution (GEN1 -/- knockout cells depleted of MUS81). We find that intermediates persist until mitosis and form a distinct class of anaphase bridges, which we term homologous recombination ultra-fine bridges (HR-UFBs). HR-UFBs are distinct from replication stress-associated UFBs, which arise at common fragile sites, and from centromeric UFBs. HR-UFBs are processed by BLM helicase to generate single-stranded RPA-coated bridges that are broken during mitosis. In the next cell cycle, DNA breaks activate the DNA damage checkpoint response, and chromosome fusions arise by non-homologous end joining. Consequently, the cells undergo cell cycle delay and massive cell death. These results lead us to present a model detailing how unresolved recombination intermediates can promote DNA damage and chromosomal instability.


Asunto(s)
Anafase , Aberraciones Cromosómicas , Rotura Cromosómica , Segregación Cromosómica , Recombinación Homóloga , Osteoblastos/metabolismo , Muerte Celular , Línea Celular Tumoral , Cromátides , Inestabilidad Cromosómica , Sitios Frágiles del Cromosoma , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Endonucleasas/deficiencia , Endonucleasas/genética , Células HEK293 , Resolvasas de Unión Holliday/deficiencia , Resolvasas de Unión Holliday/genética , Humanos , Osteoblastos/patología , Ploidias , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
10.
Cell Res ; 26(4): 397-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26902288

RESUMEN

Pathway choice is a critical event in the repair of DNA double-strand breaks. In a recent paper published in Nature, Orthwein et al. define a mechanism by which homologous recombination is controlled in G1 cells to favor non-homologous end joining.


Asunto(s)
Fase G1 , Recombinación Homóloga , Humanos
11.
Cell Rep ; 10(10): 1749-1757, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25772361

RESUMEN

DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks.

12.
Nat Commun ; 4: 1423, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23361013

RESUMEN

The molecular events occurring following the disruption of DNA replication forks are poorly characterized, despite extensive use of replication inhibitors such as hydroxyurea in the treatment of malignancies. Here, we identify a key role for the FBH1 helicase in mediating DNA double-strand break formation following replication inhibition. We show that FBH1-deficient cells are resistant to killing by hydroxyurea, and exhibit impaired activation of the pro-apoptotic factor p53, consistent with decreased DNA double-strand break formation. Similar findings were obtained in murine ES cells carrying disrupted alleles of Fbh1. We also show that FBH1 through its helicase activity co-operates with the MUS81 nuclease in promoting the endonucleolytic DNA cleavage following prolonged replication stress. Accordingly, MUS81 and EME1-depleted cells show increased resistance to the cytotoxic effects of replication stress. Our data suggest that FBH1 helicase activity is required to eliminate cells with excessive replication stress through the generation of MUS81-induced DNA double-strand breaks.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas F-Box/metabolismo , Estrés Fisiológico , Alelos , Animales , Southern Blotting , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Doxiciclina/farmacología , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/enzimología , Humanos , Ratones , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
13.
J Cell Biol ; 197(7): 869-76, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22733999

RESUMEN

To prevent accumulation of mutations, cells respond to DNA lesions by blocking cell cycle progression and initiating DNA repair. Homology-directed repair of DNA breaks requires CtIP-dependent resection of the DNA ends, which is thought to play a key role in activation of ATR (ataxia telangiectasia mutated and Rad3 related) and CHK1 kinases to induce the cell cycle checkpoint. In this paper, we show that CHK1 was rapidly and robustly activated before detectable end resection. Moreover, we show that the key resection factor CtIP was dispensable for initial ATR-CHK1 activation after DNA damage by camptothecin and ionizing radiation. In contrast, we find that DNA end resection was critically required for sustained ATR-CHK1 checkpoint signaling and for maintaining both the intra-S- and G2-phase checkpoints. Consequently, resection-deficient cells entered mitosis with persistent DNA damage. In conclusion, we have uncovered a temporal program of checkpoint activation, where CtIP-dependent DNA end resection is required for sustained checkpoint signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , ADN/metabolismo , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Endodesoxirribonucleasas , Humanos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
14.
Nat Struct Mol Biol ; 19(8): 803-10, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22773103

RESUMEN

Lens epithelium-derived growth factor p75 splice variant (LEDGF) is a chromatin-binding protein known for its antiapoptotic activity and ability to direct human immunodeficiency virus into active transcription units. Here we show that LEDGF promotes the repair of DNA double-strand breaks (DSBs) by the homologous recombination repair pathway. Depletion of LEDGF impairs the recruitment of C-terminal binding protein interacting protein (CtIP) to DNA DSBs and the subsequent CtIP-dependent DNA-end resection. LEDGF is constitutively associated with chromatin through its Pro-Trp-Trp-Pro (PWWP) domain that binds preferentially to epigenetic methyl-lysine histone markers characteristic of active transcription units. LEDGF binds CtIP in a DNA damage-dependent manner, thereby enhancing its tethering to the active chromatin and facilitating its access to DNA DSBs. These data highlight the role of PWWP-domain proteins in DNA repair and provide a molecular explanation for the antiapoptotic and cancer cell survival-activities of LEDGF.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Reparación del ADN por Recombinación/fisiología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas , VIH/genética , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Integración Viral
15.
J Cell Biol ; 192(1): 43-54, 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21220508

RESUMEN

The eukaryotic cell cycle is regulated by multiple ubiquitin-mediated events, such as the timely destruction of cyclins and replication licensing factors. The histone H4 methyltransferase SET8 (Pr-Set7) is required for chromosome compaction in mitosis and for maintenance of genome integrity. In this study, we show that SET8 is targeted for degradation during S phase by the CRL4(CDT2) ubiquitin ligase in a proliferating cell nuclear antigen (PCNA)-dependent manner. SET8 degradation requires a conserved degron responsible for its interaction with PCNA and recruitment to chromatin where ubiquitylation occurs. Efficient degradation of SET8 at the onset of S phase is required for the regulation of chromatin compaction status and cell cycle progression. Moreover, the turnover of SET8 is accelerated after ultraviolet irradiation dependent on the CRL4(CDT2) ubiquitin ligase and PCNA. Removal of SET8 supports the modulation of chromatin structure after DNA damage. These results demonstrate a novel regulatory mechanism, linking for the first time the ubiquitin-proteasome system with rapid degradation of a histone methyltransferase to control cell proliferation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Procesamiento Proteico-Postraduccional/efectos de la radiación , Fase S/efectos de la radiación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de la radiación , Rayos Ultravioleta , Secuencia de Aminoácidos , Línea Celular , Daño del ADN , Fase G1/efectos de la radiación , N-Metiltransferasa de Histona-Lisina/química , Humanos , Datos de Secuencia Molecular , Unión Proteica/efectos de la radiación
16.
Nat Cell Biol ; 12(1): 80-6; sup pp 1-12, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20023648

RESUMEN

Regulatory ubiquitylation is emerging as an important mechanism to protect genome integrity in cells exposed to DNA damage. However, the spectrum of known ubiquitin regulators of the DNA damage response (DDR) is limited and their functional interplay is poorly understood. Here, we identify HERC2 as a factor that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. In response to ionising radiation (IR), HERC2 forms a complex with RNF8, a ubiquitin ligase involved in the DDR. The HERC2-RNF8 interaction requires IR-inducible phosphorylation of HERC2 at Thr 4827, which in turn binds to the forkhead-associated (FHA) domain of RNF8. Mechanistically, we provide evidence that HERC2 facilitates assembly of the ubiquitin-conjugating enzyme Ubc13 with RNF8, thereby promoting DNA damage-induced formation of Lys 63-linked ubiquitin chains. We also show that HERC2 interacts with, and maintains the levels of, RNF168, another ubiquitin ligase operating downstream of RNF8 (Refs 7, 8). Consequently, knockdown of HERC2 abrogates ubiquitin-dependent retention of repair factors such as 53BP1, RAP80 and BRCA1. Together with the increased radiosensitivity of HERC2-depleted cells, these results uncover a regulatory layer in the orchestration of protein interactions on damaged chromosomes and they underscore the role of ubiquitin-mediated signalling in genome maintenance.


Asunto(s)
Cromosomas Humanos/efectos de la radiación , Daño del ADN/fisiología , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Chaperonas de Histonas , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/citología , Riñón/metabolismo , Lisina/genética , Lisina/metabolismo , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Fosforilación , ARN Interferente Pequeño/farmacología , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitinación , Rayos Ultravioleta
17.
J Cell Biol ; 186(5): 655-63, 2009 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19736316

RESUMEN

Homologous recombination (HR) is essential for faithful repair of DNA lesions yet must be kept in check, as unrestrained HR may compromise genome integrity and lead to premature aging or cancer. To limit unscheduled HR, cells possess DNA helicases capable of preventing excessive recombination. In this study, we show that the human Fbh1 (hFbh1) helicase accumulates at sites of DNA damage or replication stress in a manner dependent fully on its helicase activity and partially on its conserved F box. hFbh1 interacted with single-stranded DNA (ssDNA), the formation of which was required for hFbh1 recruitment to DNA lesions. Conversely, depletion of endogenous Fbh1 or ectopic expression of helicase-deficient hFbh1 attenuated ssDNA production after replication block. Although elevated levels of hFbh1 impaired Rad51 recruitment to ssDNA and suppressed HR, its small interfering RNA-mediated depletion increased the levels of chromatin-associated Rad51 and caused unscheduled sister chromatid exchange. Thus, by possessing both pro- and anti-recombinogenic potential, hFbh1 may cooperate with other DNA helicases in tightly controlling cellular HR activity.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Recombinasas/metabolismo , Animales , Línea Celular , Cromatina/metabolismo , Daño del ADN , ADN Helicasas/genética , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Interferencia de ARN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinasas/genética , Recombinación Genética
18.
J Biol Chem ; 282(27): 19638-43, 2007 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17507382

RESUMEN

DNA strand breaks arise continuously as the result of intracellular metabolism and in response to a multitude of genotoxic agents. To overcome such challenges to genomic stability, cells have evolved genome surveillance pathways that detect and repair damaged DNA in a coordinated fashion. Here we identify the previously uncharacterized human protein Xip1 (C2orf13) as a novel component of the checkpoint response to DNA strand breaks. Green fluorescent protein-tagged Xip1 was rapidly recruited to sites of DNA breaks, and this accumulation was dependent on a novel type of zinc finger motif located in the C terminus of Xip1. The initial recruitment kinetics of Xip1 closely paralleled that of XRCC1, a central organizer of single strand break (SSB) repair, and its accumulation was both delayed and sustained when the detection of SSBs was abrogated by inhibition of PARP-1. Xip1 and XRCC1 stably interacted through recognition of CK2 phosphorylation sites in XRCC1 by the Forkhead-associated (FHA) domain of Xip1, and XRCC1 was required to maintain steady-state levels of Xip1. Moreover, Xip1 was phosphorylated on Ser-116 by ataxia telangiectasia-mutated in response to ionizing radiation, further underscoring the potential importance of Xip1 in the DNA damage response. Finally, depletion of Xip1 significantly decreased the clonogenic survival of cells exposed to DNA SSB- or double strand break-inducing agents. Collectively, these findings implicate Xip1 as a new regulator of genome maintenance pathways, which may function to organize DNA strand break repair complexes at sites of DNA damage.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN/fisiología , Inestabilidad Genómica/fisiología , Fosfoproteínas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Proteínas de Unión al ADN/metabolismo , Humanos , Fosfoproteínas/genética , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda