RESUMEN
Aim: Understanding the variation in community composition and species abundances (i.e., ß-diversity) is at the heart of community ecology. A common approach to examine ß-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.
RESUMEN
With anticipated expansion of agricultural areas for food production and increasing intensity of pressures stemming from land-use, it is critical to better understand how species respond to land-use change. This is particularly true for microbial communities which provide key ecosystem functions and display fastest responses to environmental change. However, regional land-use effects on local environmental conditions are often neglected, and, hence, underestimated when investigating community responses. Here we show that the effects stemming from agricultural and forested land use are strongest reflected in water conductivity, pH and phosphorus concentration, shaping microbial communities and their assembly processes. Using a joint species distribution modelling framework with community data based on metabarcoding, we quantify the contribution of land-use types in determining local environmental variables and uncover the impact of both, land-use, and local environment, on microbial stream communities. We found that community assembly is closely linked to land-use type but that the local environment strongly mediates the effects of land-use, resulting in systematic variation of taxon responses to environmental conditions, depending on their domain (bacteria vs. eukaryote) and trophic mode (autotrophy vs. heterotrophy). Given that regional land-use type strongly shapes local environments, it is paramount to consider its key role in shaping local stream communities.
RESUMEN
Ecological systems are quintessentially complex systems. Understanding and being able to predict phenomena typical of complex systems is, therefore, critical to progress in ecology and conservation amidst escalating global environmental change. However, myriad definitions of complexity and excessive reliance on conventional scientific approaches hamper conceptual advances and synthesis. Ecological complexity may be better understood by following the solid theoretical basis of complex system science (CSS). We review features of ecological systems described within CSS and conduct bibliometric and text mining analyses to characterize articles that refer to ecological complexity. Our analyses demonstrate that the study of complexity in ecology is a highly heterogeneous, global endeavor that is only weakly related to CSS. Current research trends are typically organized around basic theory, scaling, and macroecology. We leverage our review and the generalities identified in our analyses to suggest a more coherent and cohesive way forward in the study of complexity in ecology.
Asunto(s)
Ecología , Ecosistema , Ecología/métodos , Minería de Datos , Bibliometría , Animales , Actividades HumanasRESUMEN
One of the main symptoms of eutrophication is the proliferation of phytoplankton biomass, including nuisance cyanobacteria. Reduction of the external nutrient load is essential to control eutrophication, and in-lake interventions are suggested for mitigating cyanobacterial blooms to accelerate ecosystem recovery. Floc & Sink (F&S) is one such intervention technique that consists of applying a low dose of coagulants in combination with ballasts for removing cyanobacteria biomass. It is especially suitable for deep lakes with an external nutrient load that is higher than the internal load and suffers from perennial cyanobacterial bloom events. Studies showing the efficacy of the F&S technique have been published, but those testing its variation in efficacy with changes in the environmental conditions are still scarce. Therefore, we evaluated the efficiency of the F&S technique to remove cyanobacteria from water samples collected monthly from two different sites in a deep tropical reservoir (Funil Reservoir, Brazil) in the laboratory. We tested the efficacy of two coagulants, chitosan (CHI) and poly-aluminum chloride (PAC), alone and in combination with lanthanum-modified bentonite (LMB) in settling phytoplankton biomass. We hypothesized that: â °) the combined treatments are more effective in removing the algal biomass and â ±) the efficiency of F&S treatments varies spatially and monthly due to changes in environmental conditions. The combined treatments (PAC + LMB or CHI + LMB) removed up to seven times more biomass than single treatments (PAC, CHI, or LMB). Only the treatments CHI and LMB + CHI differed in efficiency between the sites, although all treatments showed significant variation in efficiency over the months at both the sampling sites. The combined treatments exhibited lower removal efficacy during the warm-rainy months (October-March) than during the mild-cold dry months (April-September). At high pH (pH > 10), the efficiency of the CHI and LMB + CHI treatments decreased. CHI had lower removal efficiency when single-cell cyanobacteria were abundant, while the combined treatments were equally efficient regardless of the morphology of the cyanobacteria. Hence, the combination of PAC as a coagulant with a ballast LMB is the most effective technique to precipitate cyanobacteria under the conditions that are encountered around the year in this tropical reservoir.
Asunto(s)
Cianobacterias , Ecosistema , Bentonita/farmacología , Eutrofización , Lagos , FitoplanctonRESUMEN
Species traits are an essential currency in ecology, evolution, biogeography, and conservation biology. However, trait databases are unavailable for most organisms, especially those living in difficult-to-access habitats such as caves and other subterranean ecosystems. We compiled an expert-curated trait database for subterranean spiders in Europe using both literature data (including grey literature published in many different languages) and direct morphological measurements whenever specimens were available to us. We started by updating the checklist of European subterranean spiders, now including 512 species across 20 families, of which at least 192 have been found uniquely in subterranean habitats. For each of these species, we compiled 64 traits. The trait database encompasses morphological measures, including several traits related to subterranean adaptation, and ecological traits referring to habitat preference, dispersal, and feeding strategies. By making these data freely available, we open up opportunities for exploring different research questions, from the quantification of functional dimensions of subterranean adaptation to the study of spatial patterns in functional diversity across European caves.
Asunto(s)
Bases de Datos Factuales , Arañas , Animales , Ecosistema , Europa (Continente)RESUMEN
Environmental heterogeneity (EH) in space and time promotes niche-partition, which leads to high variation in biological communities, such as in algae. In streams, EH is highly related to the intensity of the water flow and may lead to community variation mainly during the low flow conditions. Despite the wide knowledge on the responses of phytoplankton communities to EH in lentic and semi-lentic systems, studies of riverine phytoplankton community variation are still scarce. Here, we first investigated the relationship between phytoplankton community variation and EH in different courses of the river and between seasons. We expected that under low or intermediate flow conditions, there is a positive correlation between community variation and EH. Alternatively, we did not expect any relationship between EH and community variation under high flow condition because stronger downstream transport would mask environmental filtering. We sampled nine sites monthly (May 2012 to April 2013) in a tropical river of Brazilian Southeast. We calculated EH from abiotic data whereas for community variation, here community distinctiveness (CD), we used Sorensen (CDSor) and Bray-Curtis (CDBray) dissimilarities. Differences in EH, CDSor and CDBray were tested at between-season and among-course levels. We found lower distinctiveness during the dry season when EH was the highest. Contrastingly, phytoplankton CD was the highest even when EH was low during the wet season. We found that this pattern raised from the increasing in individuals dispersal during the wet season, promoting mass effects. Finally, our results thus reject the first hypothesis and show a negative relationship between EH and distinctiveness. However, results support our alternative hypothesis and show that during the wet season, distinctiveness is not driven by EH. These results provide new insights into how EH drives community variation, being useful for both basic research about riverine algal communities and biomonitoring programs using phytoplankton communities as bioindicators.