Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611747

RESUMEN

In this study, the effect of various immobilization methods on the biochemical properties of phospholipase C (PLC) from Bacillus cereus obtained from the oily soil located in Sfax, Tunisia, was described. Different supports were checked: octyl sepharose, glyoxyl agarose in the presence of N-acetyl cysteine, and Q-sepharose. In the immobilization by hydrophobic adsorption, a hyperactivation of the PLCBc was obtained with a fold of around 2 times. The recovery activity after immobilization on Q-sepharose and glyoxyl agarose in the presence of N-acetyl cysteine was 80% and 58%, respectively. Furthermore, the biochemical characterization showed an important improvement in the three immobilized enzymes. The performance of the various immobilized PLCBc was compared with the soluble enzyme. The derivatives acquired using Q-sepharose, octyl sepharose, and glyoxyl agarose were stable at 50 °C, 60 °C, and 70 °C. Nevertheless, the three derivatives were more stable in a large range of pH than the soluble enzyme. The three derivatives and the free enzyme were stable in 50% (v/v) ethanol, hexane, methanol, and acetone. The glyoxyl agarose derivative showed high long-term storage at 4 °C, with an activity of 60% after 19 days. These results suggest the sustainable biotechnological application of the developed immobilized enzyme.


Asunto(s)
Acetilcisteína , Bacillus cereus , Glioxilatos , Sefarosa , Enzimas Inmovilizadas , Fosfolipasas de Tipo C
2.
Biotechnol Appl Biochem ; 69(2): 479-491, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33580532

RESUMEN

Our novel strategy for the rational design of immobilized derivatives (RDID) is directed to predict the behavior of the protein immobilized derivative before its synthesis, by the usage of mathematic algorithms and bioinformatics tools. However, this approach needs to be validated for each target enzyme. The objective of this work was to validate the RDID strategy for covalent immobilization of the enzyme laccase from Trametes maxima MUCL 44155 on glyoxyl- and monoaminoethyl-N-aminoethyl (MANA)-Sepharose CL 4B supports. Protein surface clusters, more probable configurations of the protein-supports systems at immobilization pHs, immobilized enzyme activity, and protein load were predicted by RDID1.0 software. Afterward, immobilization was performed and predictions were experimentally confirmed. As a result, the laccase-MANA-Sepharose CL 4B immobilized derivative is better than laccase-glyoxyl-Sepharose CL 4B in predicted immobilized derivative activity (63.6% vs. 29.5%). Activity prediction was confirmed by an experimentally expressed enzymatic activity of 68%, using 2,6-dimethoxyphenol as substrate. Experimental maximum protein load matches the estimated value (11.2 ± 1.3 vs. 12.1 protein mg/support mL). The laccase-MANA-Sepharose CL 4B biocatalyst has a high specificity for the acid blue 62 colorant. The results obtained in this work suggest the possibility of using this biocatalyst for wastewater treatment.


Asunto(s)
Lacasa , Trametes , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Lacasa/metabolismo , Polyporaceae , Sefarosa/análogos & derivados
3.
World J Microbiol Biotechnol ; 37(1): 9, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33392828

RESUMEN

Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design of Immobilized Derivatives (RDID) strategy, applicable for protein, spore and cell immobilization and implemented in the RDID1.0 software. In this work, we propose new algorithms to optimize the theoretical maximal quantity of cells to immobilize (tMQCell) on solid supports, implemented in the RDIDCell software. The main modifications to the preexisting algorithms are related to the sphere packing theory and exclusive immobilization on the support surface. We experimentally validated the new tMQCell parameter by electrostatic immobilization of ten microbial strains on AMBERJET® 4200 Cl- porous solid support. All predicted tMQCell match the practical maximal quantity of cells to immobilize with a 10% confidence. The values predicted by the RDIDCell software are more accurate than the values predicted by the RDID1.0 software. 3-indolacetic acid (IAA) production by one bacterial immobilized derivative was higher (~ 2.6 µg IAA-like indoles/108 cells) than that of the cell suspension (1.5 µg IAA-like indoles/108 cells), and higher than the tryptophan amount added as indole precursor. Another bacterial immobilized derivative was more active (22 µg Cr(III)/108 cells) than the resuspended cells (14.5 µg Cr(III)/108 cells) in bioconversion of Cr(VI) to Cr(III). Optimized RDID strategy can be used to synthesize bacterial immobilized derivatives with useful biotechnological applications.


Asunto(s)
Biodegradación Ambiental , Células Inmovilizadas/metabolismo , Biología Computacional/métodos , Algoritmos , Bacterias/metabolismo , Biomasa , Contaminantes Ambientales , Metales Pesados/metabolismo , Programas Informáticos , Electricidad Estática
4.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652673

RESUMEN

Enhancement, control, and tuning of hydrolytic activity and specificity of lipases are major goals for the industry. Thermoalkaliphilic lipases from the I.5 family, with their native advantages such as high thermostability and tolerance to alkaline pHs, are a target for biotechnological applications. Although several strategies have been applied to increase lipases activity, the enhancement through protein engineering without compromising other capabilities is still elusive. Lipases from the I.5 family suffer a unique and delicate double lid restructuration to transition from a closed and inactive state to their open and enzymatically active conformation. In order to increase the activity of the wild type Geobacillus thermocatenulatus lipase 2 (BTL2) we rationally designed, based on its tridimensional structure, a mutant (ccBTL2) capable of forming a disulfide bond to lock the open state. ccBTL2 was generated replacing A191 and F206 to cysteine residues while both wild type C64 and C295 were mutated to serine. A covalently immobilized ccBTL2 showed a 3.5-fold increment in esterase activity with 0.1% Triton X-100 (2336 IU mg-1) and up to 6.0-fold higher with 0.01% CTAB (778 IU mg-1), both in the presence of oxidizing sulfhydryl agents, when compared to BTL2. The remarkable and industrially desired features of BTL2 such as optimal alkaliphilic pH and high thermal stability were not affected. The designed disulfide bond also conferred reversibility to the enhancement, as the increment on activity observed for ccBTL2 was controlled by redox pretreatments. MD simulations suggested that the most stable conformation for ccBTL2 (with the disulfide bond formed) was, as we predicted, similar to the open and active conformation of this lipase.


Asunto(s)
Proteínas Bacterianas/química , Dominio Catalítico , Cisteína/genética , Geobacillus/enzimología , Lipasa/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína/química , Disulfuros/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Geobacillus/genética , Lipasa/genética , Lipasa/metabolismo , Simulación de Dinámica Molecular
5.
Appl Microbiol Biotechnol ; 102(2): 773-787, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29177938

RESUMEN

Sucrose synthases (SuSys) have been attracting great interest in recent years in industrial biocatalysis. They can be used for the cost-effective production of uridine 5'-diphosphate glucose (UDP-glucose) or its in situ recycling if coupled to glycosyltransferases on the production of glycosides in the food, pharmaceutical, nutraceutical, and cosmetic industry. In this study, the homotetrameric SuSy from Acidithiobacillus caldus (SuSyAc) was immobilized-stabilized on agarose beads activated with either (i) glyoxyl groups, (ii) cyanogen bromide groups, or (iii) heterogeneously activated with both glyoxyl and positively charged amino groups. The multipoint covalent immobilization of SuSyAc on glyoxyl agarose at pH 10.0 under optimized conditions provided a significant stabilization factor at reaction conditions (pH 5.0 and 45 °C). However, this strategy did not stabilize the enzyme quaternary structure. Thus, a post-immobilization technique using functionalized polymers, such as polyethyleneimine (PEI) and dextran-aldehyde (dexCHO), was applied to cross-link all enzyme subunits. The coating of the optimal SuSyAc immobilized glyoxyl agarose with a bilayer of 25 kDa PEI and 25 kDa dexCHO completely stabilized the quaternary structure of the enzyme. Accordingly, the combination of immobilization and post-immobilization techniques led to a biocatalyst 340-fold more stable than the non-cross-linked biocatalyst, preserving 60% of its initial activity. This biocatalyst produced 256 mM of UDP-glucose in a single batch, accumulating 1 M after five reaction cycles. Therefore, this immobilized enzyme can be of great interest as a biocatalyst to synthesize UDP-glucose.


Asunto(s)
Acidithiobacillus/enzimología , Enzimas Inmovilizadas/metabolismo , Glucosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Uridina Difosfato Glucosa/biosíntesis , Proteínas Bacterianas/metabolismo , Biocatálisis , Biotecnología , Bromuro de Cianógeno/química , Estabilidad de Enzimas , Glicómica , Glioxilatos/química , Concentración de Iones de Hidrógeno , Multimerización de Proteína , Sefarosa/química , Temperatura
6.
Int J Mol Sci ; 19(2)2018 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-29439521

RESUMEN

Immobilized enzymes have a very large region that is not in contact with the support surface and this region could be the target of new stabilization strategies. The chemical amination of these regions plus further cross-linking with aldehyde-dextran polymers is proposed here as a strategy to increase the stability of immobilized enzymes. Aldehyde-dextran is not able to react with single amino groups but it reacts very rapidly with polyaminated surfaces. Three lipases-from Thermomyces lanuginosus (TLL), Rhizomucor miehiei (RML), and Candida antarctica B (CALB)-were immobilized using interfacial adsorption on the hydrophobic octyl-Sepharose support, chemically aminated, and cross-linked. Catalytic activities remained higher than 70% with regard to unmodified conjugates. The increase in the amination degree of the lipases together with the increase in the density of aldehyde groups in the dextran-aldehyde polymer promoted a higher number of cross-links. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of those conjugates demonstrates the major role of the intramolecular cross-linking on the stabilization of the enzymes. The highest stabilization was achieved by the modified RML immobilized on octyl-Sepharose, which was 250-fold more stable than the unmodified conjugate. The TLL and the CALB were 40-fold and 4-fold more stable than the unmodified conjugate.


Asunto(s)
Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Lipasa/química , Candida/enzimología , Reactivos de Enlaces Cruzados/química , Dextranos/química , Estabilidad de Enzimas , Rhizomucor/enzimología
7.
BMC Biotechnol ; 17(1): 88, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29246143

RESUMEN

BACKGROUND: Enzymatic ethanolysis of oils (for example, high oleic sunflower oil containing 90% of oleic acid) may yield two different reaction products depending on the regioselectivity of the immobilized lipase biocatalyst. Some lipase biocatalysts exhibit a 1,3-regioselectivity and they produced 2 mols of fatty acid ethyl ester plus 1 mol of sn2-monoacylglycerol (2-MAG) per mol of triglyceride without the release of glycerol. Other lipase biocatalysts are completely non-regioselective releasing 3 mols of fatty acid ethyl ester and 1 mol of glycerol per mol of triglyceride. Lipase from Thermomyces lanuginosus (TLL) adsorbed on hydrophobic supports is a very interesting biocatalyst for the ethanolysis of oil. Modulation of TLL regioselectivity in anhydrous medium was intended via two strategies of TLL immobilization: a. - interfacial adsorption on different hydrophobic supports and b.- interfacial adsorption on a given hydrophobic support under different experimental conditions. RESULTS: Immobilization of TLL on supports containing divinylbenezene moieties yielded excellent 1,3-regioselective biocatalysts but immobilization of TLL on supports containing octadecyl groups yielded non-regioselective biocatalysts. On the other hand, TLL immobilized on Purolite C18 at pH 8.5 and 30 °C in the presence of traces of CTAB yielded a biocatalyst with a perfect 1,3-regioselectivity and a very interesting activity: 2.5 µmols of oil ethanolyzed per min per gram of immobilized derivative. This activity is 10-fold higher than the one of commercial Lipozyme TL IM. Immobilization of the same enzyme on the same support, but at pH 7.0 and 25 °C, led to a biocatalyst which can hydrolyze all ester bonds in TG backbone. CONCLUSIONS: Activity and regioselectivity of TLL in anhydrous media can be easily modulated via Biocatalysis Engineering producing very active immobilized derivatives able to catalyze the ethanolysis of triolein. When the biocatalyst was 1,3-regioselective a 33% of 2-monoolein was obtained and it may be a very interesting surfactant. When biocatalyst catalyzed the ethanolysis of the 3 positions during the reaction process, a 99% of ethyl oleate was obtained and it may be a very interesting drug-solvent and surfactant. The absence of acyl migrations under identical reaction conditions is clearly observed and hence the different activities and regioselectivities seem to be due to the different catalytic properties of different derivatives of TLL.


Asunto(s)
Reactores Biológicos , Enzimas Inmovilizadas/química , Etanol/metabolismo , Proteínas Fúngicas/química , Lipasa/química , Adsorción , Enzimas Inmovilizadas/metabolismo , Eurotiales/enzimología , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Ingeniería Metabólica , Ácido Oléico/metabolismo , Ácidos Oléicos/metabolismo , Estereoisomerismo
8.
Molecules ; 22(2)2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28241445

RESUMEN

Lipases are promising enzymes that catalyze the hydrolysis of triacylglycerol ester bonds at the oil/water interface. Apart from allowing biocatalyst reuse, immobilization can also affect enzyme structure consequently influencing its activity, selectivity, and stability. The lipase from Penicillium sp. section Gracilenta (CBMAI 1583) was successfully immobilized on supports bearing butyl, phenyl, octyl, octadecyl, and divinylbenzyl hydrophobic moieties wherein lipases were adsorbed through the highly hydrophobic opened active site. The highest activity in aqueous medium was observed for the enzyme adsorbed on octyl support, with a 150% hyperactivation regarding the soluble enzyme activity, and the highest adsorption strength was verified with the most hydrophobic support (octadecyl Sepabeads), requiring 5% Triton X-100 to desorb the enzyme from the support. Most of the derivatives presented improved properties such as higher stability to pH, temperature, and organic solvents than the covalently immobilized CNBr derivative (prepared under very mild experimental conditions and thus a reference mimicking free-enzyme behavior). A 30.8- and 46.3-fold thermostabilization was achieved in aqueous medium, respectively, by the octyl Sepharose and Toyopearl butyl derivatives at 60 °C, in relation to the CNBr derivative. The octyl- and phenyl-agarose derivatives retained 50% activity after four and seven cycles of p-nitrophenyl palmitate hydrolysis, respectively. Different derivatives exhibited different properties regarding their properties for fish oil hydrolysis in aqueous medium and ethanolysis in anhydrous medium. The most active derivative in ethanolysis of fish oil was the enzyme adsorbed on a surface covered by divinylbenzyl moieties and it was 50-fold more active than the enzyme adsorbed on octadecyl support. Despite having identical mechanisms of immobilization, different hydrophobic supports seem to promote different shapes of the adsorbed open active site of the lipase and hence different functional properties.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Lipasa/metabolismo , Penicillium/enzimología , Adsorción , Estabilidad de Enzimas , Aceites de Pescado/metabolismo , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas
9.
Prep Biochem Biotechnol ; 47(8): 745-753, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28402172

RESUMEN

Discovery of new protease inhibitors may result in potential therapeutic agents or useful biotechnological tools. Obtainment of these molecules from natural sources requires simple, economic, and highly efficient purification protocols. The aim of this work was the obtainment of affinity matrices by the covalent immobilization of dipeptidyl peptidase IV (DPP-IV) and papain onto cellulose membranes, previously activated with formyl (FCM) or glyoxyl groups (GCM). GCM showed the highest activation grade (10.2 µmol aldehyde/cm2). We implemented our strategy for the rational design of immobilized derivatives (RDID) to optimize the immobilization. pH 9.0 was the optimum for the immobilization through the terminal α-NH2, configuration predicted as catalytically competent. However, our data suggest that protein immobilization may occur via clusters of few reactive groups. DPP-IV-GCM showed the highest maximal immobilized protein load (2.1 µg/cm2), immobilization percentage (91%), and probability of multipoint covalent attachment. The four enzyme-support systems were able to bind at least 80% of the reversible competitive inhibitors bacitracin/cystatin, compared with the available active sites in the immobilized derivatives. Our results show the potentialities of the synthesized matrices for affinity purification of protease inhibitors and confirm the robustness of the RDID strategy to optimize protein immobilization processes with further practical applications.


Asunto(s)
Celulosa/química , Dipeptidil Peptidasa 4/química , Enzimas Inmovilizadas/química , Membranas Artificiales , Papaína/química , Adsorción , Animales , Carica , Pollos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Oxidación-Reducción , Sefarosa , Porcinos
10.
Molecules ; 22(9)2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28869529

RESUMEN

Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from Hypocrea pseudokoningii was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr), glyoxyl-agarose (GX), MANAE-agarose activated with glutaraldehyde (GA) and GA-crosslinked with glutaraldehyde. Results showed a more stable lipase with both the GA-crosslinked and GA derivatives, compared to the control (CNBr), at 50 °C, 60 °C and 70 °C. Moreover, all derivatives were stabilized when incubated with organic solvents at 50%, such as ethanol, methanol, n-propanol and cyclohexane. Furthermore, lipase was highly activated (4-fold) in the presence of cyclohexane. GA-crosslinked and GA derivatives were more stable than the CNBr one in the presence of organic solvents. All derivatives were able to hydrolyze sardine, açaí (Euterpe oleracea), cotton seed and grape seed oils. However, during the hydrolysis of sardine oil, GX derivative showed to be 2.3-fold more selectivity (eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) ratio) than the control. Additionally, the types of immobilization interfered with the lipase enantiomeric preference. Unlike the control, the other three derivatives preferably hydrolyzed the R-isomer of 2-hydroxy-4-phenylbutanoic acid ethyl ester and the S-isomer of 1-phenylethanol acetate racemic mixtures. On the other hand, GX and CNBr derivatives preferably hydrolyzed the S-isomer of butyryl-2-phenylacetic acid racemic mixture while the GA and GA-crosslink derivatives preferably hydrolyzed the R-isomer. However, all derivatives, including the control, preferably hydrolyzed the methyl mandelate S-isomer. Moreover, the derivatives could be used for eight consecutive cycles retaining more than 50% of their residual activity. This work shows the importance of immobilization as a tool to increase the lipase stability to temperature and organic solvents, thus enabling the possibility of their application at large scale processes.


Asunto(s)
Enzimas Inmovilizadas/química , Hypocrea/química , Lipasa/química , Reactivos de Enlaces Cruzados/química , Bromuro de Cianógeno/química , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/química , Activación Enzimática , Estabilidad de Enzimas , Glutaral/química , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Aceites/química , Desnaturalización Proteica , Estabilidad Proteica , Sefarosa/química , Solventes , Estereoisomerismo , Especificidad por Sustrato , Temperatura
11.
Langmuir ; 30(49): 15022-30, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25420004

RESUMEN

The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.


Asunto(s)
Anticuerpos Inmovilizados/química , Magnetismo , Microscopía de Fuerza Atómica , Técnicas Biosensibles , Modelos Biológicos , Modelos Moleculares , Tamaño de la Partícula
12.
Protein Expr Purif ; 95: 57-66, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24326193

RESUMEN

Sticholysin I and Sticholysin II (StI and StII) are two potent hemolysins which form pores in natural and model membranes at nanomolar concentrations. These proteins were purified from the aqueous extract of the sea anemone Stichodactyla helianthus, Ellis 1768, by gel filtration and ionic exchange chromatography. This procedure rendered StI and StII with high purity (purification factors: 36 and 50, respectively) but a low yield of hemolytic activity, HA (<3%). Additionally, these toxins exhibited very low phospholipase activity (10(-3)U/mg of protein). In this work, a mixture StI-StII was obtained (yield >95%, with an increase in specific activity: 14 times) from the animal extract using an oxidized phospholipid-based affinity chromatographic matrix binding phospholipases. Cytolysin identification in the mixture was performed by immunoblotting and N-terminal sequence analyses. Phospholipase A2 (PLA2) activity of StI-StII was relatively high (1.85U/mg) and dependent of Ca(2+). The activity resulted optimum when was measured with the mostly unsaturated soybean phosphatidylcholine (PC), when compared to the less unsaturated egg PC or completely saturated dipalmitoyl PC, in the presence of 40mM Ca(2+) at pH 8.0. This Ca(2+) concentration did not exert any effect on binding of StI-StII with soybean PC monolayers. Then, PLA2 activity seems not be required to binding to membranes.


Asunto(s)
Venenos de Cnidarios/metabolismo , Proteínas Hemolisinas/metabolismo , Fosfolipasas A2/metabolismo , Anémonas de Mar/química , Anémonas de Mar/enzimología , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Cromatografía de Afinidad , Venenos de Cnidarios/química , Venenos de Cnidarios/aislamiento & purificación , Proteínas Hemolisinas/química , Proteínas Hemolisinas/aislamiento & purificación , Datos de Secuencia Molecular , Compuestos Orgánicos/química , Compuestos Orgánicos/aislamiento & purificación , Compuestos Orgánicos/metabolismo , Fosfolipasas A2/química , Fosfolipasas A2/aislamiento & purificación , Alineación de Secuencia
13.
Biomacromolecules ; 15(5): 1896-903, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24720524

RESUMEN

Carrier-free immobilization of Candida rugosa lipase (CRL) and polymers containing primary amino groups were cross-linked using carbodiimide. To accomplish this, the free carboxyl groups of the enzyme were activated with carbodiimide-succinimide in organic medium, and then the activated proteins were cross-linked with different polyethylenimines (PEIs). The effect of the cross-linker chain length, the amount of added bovine serum albumin (BSA), and carbodiimide concentration on the catalytic properties of resulting cross-linked enzyme aggregates (CLEAs) was investigated. The CLEAs' size, shape, specific activity, activity recovery, thermostability and enantioselectivity significantly varied according to the preparation procedure. The highest thermostable CRL-CLEA preparation was obtained with 1.3 kDa polyethyleneimine as cross-linker, 10 mg of BSA and 28 mM of carbodiimide. This preparation is 1.3-fold more active and thermostable than CLEAs prepared by the traditional method of amino cross-linking with glutaraldehyde, and retains 60% of residual activity after 22 h at 50 °C. Additionally, the CRL-CLEA preparation showed an enantioselectivity of 91% enantiomeric excess (ee). This immobilization procedure provides an alternative strategy for CLEA production, particularly for enzymes where the traditional method of cross-linking via lysine residues leads to enzyme inactivation.


Asunto(s)
Candida/enzimología , Carbodiimidas/química , Reactivos de Enlaces Cruzados/metabolismo , Enzimas Inmovilizadas/metabolismo , Lipasa/metabolismo , Polietileneimina/metabolismo , Animales , Bovinos , Reactivos de Enlaces Cruzados/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Lipasa/química , Estructura Molecular , Tamaño de la Partícula , Polietileneimina/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Propiedades de Superficie , Temperatura
14.
Anal Chem ; 85(15): 7060-8, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23819436

RESUMEN

The development of effective array biosensors relies heavily on careful control of the density of surface-immobilized ligands on the transducing platform. In this paper we describe the synthesis of new dextran-lipase conjugates for use in immobilizing low molecular weight haptens onto glass planar waveguides for immunosensor development. The conjugates were synthesized by immobilizing bacterial thermoalkalophilic lipases (Geobacillus thermocatenulatus lipase 2, BTL2) on agarose macroporous beads, followed by covalent coupling to dextran networks of variable molecular weight (1500-40000). The chimeras were immobilized via nonspecific hydrophobic interactions onto glass planar waveguides modified with 1,1,1,3,3,3-hexamethyldisilazane to obtain highly ordered and homogeneous molecular architectures as confirmed by atomic force microscopy. Microcystin LR (MCLR) was covalently bound to the dextran-BTL2 conjugates. The usefulness of this approach in immunosensor development was demonstrated by determining amounts of MCLR down to a few picograms per liter with an automated array biosensor and evanescent wave excitation for fluorescence measurements of attached DyLight649-labeled secondary antibody. Modifying BTL2 with dextrans of an increased molecular weight (>6000) provided surfaces with an increased loading capacity that was ascribed to the production of three-dimensional surfaces by the effect of analyte binding deep in the volume, leading to expanded dynamic ranges (0.09-136.56 ng L(-1)), lower limits of detection (0.007 ± 0.001 ng L(-1)), and lower IC50 values (4.4 ± 0.7 ng L(-1)). These results confirm the effectiveness of our approach for the development of high-performance biosensing platforms.


Asunto(s)
Dextranos/metabolismo , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Lipasa/química , Lipasa/metabolismo , Análisis por Micromatrices/métodos , Geobacillus/enzimología , Vidrio/química , Ligandos , Microcistinas/metabolismo , Peso Molecular , Porosidad , Sefarosa/química , Propiedades de Superficie
15.
Appl Environ Microbiol ; 79(5): 1555-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23263966

RESUMEN

A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or ß24 improved the K(m) for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site.


Asunto(s)
Penicilina Amidasa/genética , Penicilina Amidasa/metabolismo , Ingeniería de Proteínas , Thermus thermophilus/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , Escherichia coli/enzimología , Escherichia coli/genética , Modelos Moleculares , Penicilina Amidasa/aislamiento & purificación , Penicilina G/metabolismo , Penicilinas/metabolismo , Conformación Proteica , Especificidad por Sustrato , Thermus thermophilus/genética
16.
Biomacromolecules ; 14(3): 602-7, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23406524

RESUMEN

This Communication presents the development of a novel strategy for the easy conjugation of biomolecules to hydrophobic magnetic microparticles via reversible coating with previously functionalized lipase molecules. First, the ability of lipase to be strongly adsorbed onto hydrophobic surfaces was exploited for the stabilization of microparticles in aqueous medium by the creation of a hydrophilic surface. Second, the surface amino acids of lipase can be tailored to suit biomolecule conjugation. This approach has been demonstrated by amino-epoxy activation of lipase, enabling the conjugation of different biomolecules to the magnetic particle's surface. For example, it was possible to immobilize 70% of Escherichia coli proteins on the recovered particles. Furthermore, this strategy could be extended to other lipase chemical modification protocols, enabling fine control of biomolecule coupling. These conjugation techniques constitute a modular methodology that also permits the recycling of the magnetic carrier following use.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Lipasa/química , Adsorción , Aminoácidos/química , Enzimas Inmovilizadas/química , Interacciones Hidrofóbicas e Hidrofílicas , Magnetismo , Nanopartículas/química , Propiedades de Superficie
17.
Int J Biol Macromol ; 250: 126009, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536414

RESUMEN

Glycosyltransferases catalyze the regioselective glycosylation of polyphenolic compounds, increasing their solubility without altering their antioxidant properties. Leloir-type glycosyltransferases require UDP-glucose as a cofactor to glycosylate a hydroxyl of the polyphenol, which is expensive and unstable. To simplify these processes for industrial implementation, the preparation of self-sufficient heterogeneous biocatalysts is needed. In this study, a glycosyltransferase and a sucrose synthase (as an UDP-regenerating enzyme) were co-immobilized onto porous agarose-based supports coated with polycationic polymers: polyethylenimine and polyallylamine. In addition, the UDP cofactor was strongly ionically adsorbed and co-immobilized with the enzymes, eliminating the need to add it separately. Thus, the optimal self-sufficient heterogeneous biocatalyst was able to catalyze the glycosylation of three polyphenolic compounds (piceid, phloretin and quercetin) with in situ regeneration of the UDP-glucose, allowing multiple consecutive reaction cycles without the addition of exogenous cofactor. A TTN value of 50 (theoretical maximum) was obtained in the reaction of piceid glycosylation, after 5 reaction cycles, using the self-sufficient biocatalyst based on an improved sucrose synthase variant. This result was 5-fold higher than the obtained using soluble cofactor and the co-immobilized enzymes, and much higher than those reported in the literature for similar processes.

18.
Food Chem ; 401: 134109, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115228

RESUMEN

Lysophospholipids which contain polyunsaturated fatty acids play a key role in food and cosmetic industries because of their bioactivity. Therefore, the formation of mono- and disubstituted phospholipids is quite interesting as they could be used for the formation of different natural liposomes. Using immobilized derivatives of lipases and phospholipases, the esterification of oleic acid with glycerophosphocholine (GPC) has been studied. Thus, derivatives were quite active in completely anhydrous media and in solvent-free reaction systems where the reaction takes place. CALB biocatalyst was able to successfully form oleoyl-LPC at 60 °C in the presence of 30 % butanone, where the synthesis rate was 100 times higher than in the absence of solvents at 40 °C. On the other hand, the best synthesis rate for dioleoyl-PC was achieved with immobilized Lecitase in a solvent-free process at 60 °C, an 83 % synthesis yield was achieved with an initial synthesis rate of 4.32 mg/mL × h × g.


Asunto(s)
Ácido Oléico , Fosfolipasas , Enzimas Inmovilizadas , Liposomas , Lipasa , Glicerilfosforilcolina , Solventes , Lisofosfolípidos , Butanonas
19.
Anal Chim Acta ; 1189: 338907, 2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-34815045

RESUMEN

The immunosensor has been proven a versatile tool to detect various analytes, such as food contaminants, pathogenic bacteria, antibiotics and biomarkers related to cancer. To fabricate robust and reproducible immunosensors with high sensitivity, the covalent immobilization of immunoglobulins (IgGs) in a site-specific manner contributes to better performance. Instead of the random IgG orientations result from the direct yet non-selective immobilization techniques, this review for the first time introduces the advances of stepwise yet site-selective conjugation strategies to give better biosensing efficiency. Noncovalently adsorbing IgGs is the first but decisive step to interact specifically with the Fc fragment, then following covalent conjugate can fix this uniform and antigens-favorable orientation irreversibly. In this review, we first categorized this stepwise strategy into two parts based on the different noncovalent interactions, namely adhesive layer-mediated interaction onto homofunctional support and layer-free interaction onto heterofunctional support (which displays several different functionalities on its surface that are capable to interact with IgGs). Further, the influence of ligands characteristics (synthesis strategies, spacer requirements and matrices selection) on the heterofunctional support has also been discussed. Finally, conclusions and future perspectives for the real-world application of stepwise covalent conjugation are discussed. This review provides more insights into the fabrication of high-efficiency immunosensor, and special attention has been devoted to the well-orientation of full-length IgGs onto the sensing platform.


Asunto(s)
Anticuerpos Inmovilizados , Técnicas Biosensibles , Anticuerpos , Inmunoensayo , Fragmentos Fc de Inmunoglobulinas
20.
Talanta ; 247: 123549, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609483

RESUMEN

Magnetic nanoparticles (MNPs) can be used as antibody carriers in a wide range of immunosensing applications. The conjugation chemistry for preparing antibody-MNP bionanohybrids should assure the nanoparticle's colloidal dispersity, directional conformation and high biofunctionality retention of attached antibodies. In this work, peroxidase (HRP) was selected as model target analyte, and stable antibody-MNP conjugates were prepared using polyaldehyde-dextrans as multivalent linkers, also to prevent nanoparticles agglomeration and steric shielding of non-specific proteins. Under the manipulation of the oxidation variables, MNP-conjugated antibody showed the highest Fab accessibility, of 1.32 µmol analyte per µmol antibody, corresponding to 139 µmol aldehyde per gram of nanocarrier (5 mM NaIO4, 4 h). Demonstrating anti-interference advantage up to 10% serum, colorimetric immunoassay gave a detection limit (LOD) of 300 ng mL-1, while electrochemical transduction led to a considerable (680 times) improvement, with a LOD of 0.44 ng mL-1. In addition, polyaldehyde-dextran showed priority over polycarboxylated-dextran as the multivalent antibody crosslinker for MNPs in terms of sensitivity and LOD value, while immunosensors constructed with carboxylated magnetic microbeads (HOOC-MBs) outperformed MNPs-based immunoplatforms. This work sheds light on the importance of surface chemistry (type and density of functional groups) and the dimension (nanosize vs micrometer) of magnetic carriers to conjugate antibodies with better directional orientation and improve the analytical performance of the resulting immunosensors.


Asunto(s)
Técnicas Biosensibles , Nanopartículas de Magnetita , Nanopartículas , Anticuerpos , Técnicas Biosensibles/métodos , Dextranos/química , Inmunoensayo/métodos , Magnetismo , Nanopartículas de Magnetita/química , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda