Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Mol Cell ; 83(23): 4334-4351.e7, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979586

RESUMEN

Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N6-methyladenosine (m6A) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated m6A levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the m6A demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA m6A demethylation in the nucleus. ALKBH5 critically regulated ferroptosis through m6A modulation and YTH N6-methyladenosine RNA binding protein (YTHDF2)-mediated decay of the glutamate-cysteine ligase modifier subunit (GCLM). Pharmacologic targeting of ALKBH5 augmented the anti-tumor efficacy of EGFR and GCLM inhibitors, supporting an EGFR-ALKBH5-GCLM oncogenic axis. Collectively, EGFR reprograms the epitranscriptomic landscape through nuclear retention of the ALKBH5 demethylase to protect against ferroptosis, offering therapeutic paradigms for the treatment of lethal cancers.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Receptores ErbB , Ferroptosis , Glioblastoma , Humanos , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Receptores ErbB/genética , Ferroptosis/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , ARN Mensajero/genética
2.
PLoS Biol ; 22(5): e3002640, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814900

RESUMEN

Glioblastoma, the most aggressive and prevalent form of primary brain tumor, is characterized by rapid growth, diffuse infiltration, and resistance to therapies. Intrinsic heterogeneity and cellular plasticity contribute to its rapid progression under therapy; therefore, there is a need to fully understand these tumors at a single-cell level. Over the past decade, single-cell transcriptomics has enabled the molecular characterization of individual cells within glioblastomas, providing previously unattainable insights into the genetic and molecular features that drive tumorigenesis, disease progression, and therapy resistance. However, despite advances in single-cell technologies, challenges such as high costs, complex data analysis and interpretation, and difficulties in translating findings into clinical practice persist. As single-cell technologies are developed further, more insights into the cellular and molecular heterogeneity of glioblastomas are expected, which will help guide the development of personalized and effective therapies, thereby improving prognosis and quality of life for patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Análisis de la Célula Individual , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/terapia , Análisis de la Célula Individual/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Transcriptoma , Animales
3.
J Neurooncol ; 169(2): 329-340, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38900237

RESUMEN

PURPOSE: Mesenchymal stromal cells (MSCs) within the glioblastoma microenvironment have been shown to promote tumor progression. Tumor Treating Fields (TTFields) are alternating electric fields with low intensity and intermediate frequency that exhibit anti-tumorigenic effects. While the effects of TTFields on glioblastoma cells have been studied previously, nothing is known about the influence of TTFields on MSCs. METHODS: Single-cell RNA sequencing and immunofluorescence staining were employed to identify glioblastoma-associated MSCs in patient samples. Proliferation and clonogenic survival of human bone marrow-derived MSCs were assessed after TTFields in vitro. MSC' characteristic surface marker expression was determined using flow cytometry, while multi-lineage differentiation potential was examined with immunohistochemistry. Apoptosis was quantified based on caspase-3 and annexin-V/7-AAD levels in flow cytometry, and senescence was assessed with ß-galactosidase staining. MSCs' migratory potential was evaluated with Boyden chamber assays. RESULTS: Single-cell RNA sequencing and immunofluorescence showed the presence of glioblastoma-associated MSCs in patient samples. TTFields significantly reduced proliferation and clonogenic survival of human bone marrow-derived MSCs by up to 60% and 90%, respectively. While the characteristic surface marker expression and differentiation capacity were intact after TTFields, treatment resulted in increased apoptosis and senescence. Furthermore, TTFields significantly reduced MSCs' migratory capacity. CONCLUSION: We could demonstrate the presence of tumor-associated MSCs in glioblastoma patients, providing a rationale to study the impact of TTFields on MSCs. TTFields considerably increase apoptosis and senescence in MSCs, resulting in impaired survival and migration. The results provide a basis for further analyses on the role of MSCs in glioblastoma patients receiving TTFields.


Asunto(s)
Apoptosis , Neoplasias Encefálicas , Diferenciación Celular , Proliferación Celular , Glioblastoma , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/fisiología , Glioblastoma/terapia , Glioblastoma/patología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Terapia por Estimulación Eléctrica/métodos , Microambiente Tumoral , Movimiento Celular
4.
Brain ; 146(2): 549-560, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35978480

RESUMEN

Drug-resistant mesial-temporal lobe epilepsy is a devastating disease with seizure onset in the hippocampal formation. A fraction of hippocampi samples from epilepsy-surgical procedures reveals a peculiar histological pattern referred to as 'gliosis only' with unresolved pathogenesis and enigmatic sequelae. Here, we hypothesize that 'gliosis only' represents a particular syndrome defined by distinct clinical and molecular characteristics. We curated an in-depth multiparameter integration of systematic clinical, neuropsychological as well as neuropathological analysis from a consecutive cohort of 627 patients, who underwent hippocampectomy for drug-resistant temporal lobe epilepsy. All patients underwent either classic anterior temporal lobectomy or selective amygdalohippocampectomy. On the basis of their neuropathological exam, patients with hippocampus sclerosis and 'gliosis only' were characterized and compared within the whole cohort and within a subset of matched pairs. Integrated transcriptional analysis was performed to address molecular differences between both groups. 'Gliosis only' revealed demographics, clinical and neuropsychological outcome fundamentally different from hippocampus sclerosis. 'Gliosis only' patients had a significantly later seizure onset (16.3 versus 12.2 years, P = 0.005) and worse neuropsychological outcome after surgery compared to patients with hippocampus sclerosis. Epilepsy was less amendable by surgery in 'gliosis only' patients, resulting in a significantly worse rate of seizure freedom after surgery in this subgroup (43% versus 68%, P = 0.0001, odds ratio = 2.8, confidence interval 1.7-4.7). This finding remained significant after multivariate and matched-pairs analysis. The 'gliosis only' group demonstrated pronounced astrogliosis and lack of significant neuronal degeneration in contrast to characteristic segmental neuron loss and fibrillary astrogliosis in hippocampus sclerosis. RNA-sequencing of gliosis only patients deciphered a distinct transcriptional programme that resembles an innate inflammatory response of reactive astrocytes. Our data indicate a new temporal lobe epilepsy syndrome for which we suggest the term 'Innate inflammatory gliosis only'. 'Innate inflammatory gliosis only' is characterized by a diffuse gliosis pattern lacking restricted hippocampal focality and is poorly controllable by surgery. Thus, 'innate inflammatory gliosis only' patients need to be clearly identified by presurgical examination paradigms of pharmacoresistant temporal lobe epilepsy patients; surgical treatment of this subgroup should be considered with great precaution. 'Innate inflammatory gliosis only' requires innovative pharmacotreatment strategies.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Esclerosis del Hipocampo , Humanos , Epilepsia del Lóbulo Temporal/patología , Gliosis/patología , Esclerosis/patología , Hipocampo/patología , Lóbulo Temporal/patología , Epilepsia Refractaria/complicaciones , Resultado del Tratamiento
5.
Nervenarzt ; 95(2): 104-110, 2024 Feb.
Artículo en Alemán | MEDLINE | ID: mdl-38180512

RESUMEN

BACKGROUND: Primary brain tumors and metastases in the central nervous system (CNS) are characterized by their unique microenvironment, which interacts with neuronal structures and influences structural and adaptive immunity. OBJECTIVE: How significant are various tumor-host interactions from a prognostic and therapeutic perspective? MATERIAL AND METHOD: A literature search was carried out for relevant articles on the topic: microenvironment glioblastoma or metastasis through PubMed and Medline. RESULTS: Modern high-throughput methods, such as spatial and single-cell resolution molecular characterization of tumors and their microenvironment enable a detailed mapping of changes and adaptation of individual cells within the microenvironment of tumors; however, treatment approaches based on altered tumor-host cell interactions, such as immune modeling, cell-based treatment methods or checkpoint inhibition have so far not shown any significant advantages for survival. CONCLUSION: A deeper understanding of the complex immune landscape and the microenvironment of metastases of the CNS and intracerebral tumors is essential to optimize future treatment strategies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/terapia , Glioblastoma/patología , Glioblastoma/terapia , Pronóstico , Sistema Nervioso Central , Comunicación Celular , Microambiente Tumoral
6.
Stroke ; 53(7): 2346-2351, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35317612

RESUMEN

BACKGROUND: Favorable outcomes are seen in up to 50% of patients with World Federation of Neurosurgical Societies (WFNS) grade V aneurysmal subarachnoid hemorrhage. Therefore, the usefulness of the current WFNS grading system for identifying the worst scenarios for clinical studies and for making treatment decisions is limited. We previously modified the WFNS scale by requiring positive signs of brain stem dysfunction to assign grade V. This study aimed to validate the new herniation WFNS grading system in an independent prospective cohort. METHODS: We conducted an international prospective multicentre study in poor-grade aneurysmal subarachnoid hemorrhage patients comparing the WFNS classification with a modified version-the herniation WFNS scale (hWFNS). Here, only patients who showed positive signs of brain stem dysfunction (posturing, anisocoric, or bilateral dilated pupils) were assigned hWFNS grade V. Outcome was assessed by modified Rankin Scale score 6 months after hemorrhage. The primary end point was the difference in specificity of the WFNS and hWFNS grading with respect to poor outcomes (modified Rankin Scale score 4-6). RESULTS: Of the 250 patients included, 237 reached the primary end point. Comparing the WFNS and hWFNS scale after neurological resuscitation, the specificity to predict poor outcome increased from 0.19 (WFNS) to 0.93 (hWFNS) (McNemar, P<0.001) whereas the sensitivity decreased from 0.88 to 0.37 (P<0.001), and the positive predictive value from 61.9 to 88.3 (weighted generalized score statistic, P<0.001). For mortality, the specificity increased from 0.19 to 0.93 (McNemar, P<0.001), and the positive predictive value from 52.5 to 86.7 (weighted generalized score statistic, P<0.001). CONCLUSIONS: The identification of objective positive signs of brain stem dysfunction significantly improves the specificity and positive predictive value with respect to poor outcome in grade V patients. Therefore, a simple modification-presence of brain stem signs is required for grade V-should be added to the WFNS classification. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT02304328.


Asunto(s)
Hemorragia Subaracnoidea , Estudios de Cohortes , Humanos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Estudios Retrospectivos , Hemorragia Subaracnoidea/diagnóstico , Hemorragia Subaracnoidea/terapia , Resultado del Tratamiento
7.
Neurosurg Rev ; 45(2): 1721-1729, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34890000

RESUMEN

Intraoperative histopathological examinations are routinely performed to provide neurosurgeons with information about the entity of tumor tissue. Here, we quantified the neuropathological interpretability of stimulated Raman histology (SRH) acquired using a Raman laser imaging system in a routine clinical setting without any specialized training or prior experience. Stimulated Raman scattering microscopy was performed on 117 samples of pathological tissue from 73 cases of brain and spine tumor surgeries. A board-certified neuropathologist - novice in the interpretation of SRH - assessed image quality by scoring subjective tumor infiltration and stated a diagnosis based on the SRH images. The diagnostic accuracy was determined by comparison to frozen hematoxylin-eosin (H&E)-stained sections and the ground truth defined as the definitive neuropathological diagnosis. The overall SRH imaging quality was rated high with the detection of tumor cells classified as inconclusive in only 4.2% of all images. The accuracy of neuropathological diagnosis based on SRH images was 87.7% and was non-inferior to the current standard of fast frozen H&E-stained sections (87.3 vs. 88.9%, p = 0.783). We found a substantial diagnostic correlation between SRH-based neuropathological diagnosis and H&E-stained frozen sections (κ = 0.8). The interpretability of intraoperative SRH imaging was demonstrated to be equivalent to the current standard method of H&E-stained frozen sections. Further research using this label-free innovative alternative vs. conventional staining is required to determine to which extent SRH-based intraoperative decision-making can be streamlined in order to facilitate the advancement of surgical neurooncology.


Asunto(s)
Neoplasias Encefálicas , Neuropatología , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Humanos
8.
Neurosurg Rev ; 45(2): 1731-1739, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34914024

RESUMEN

Histopathological diagnosis is the current standard for the classification of brain and spine tumors. Raman spectroscopy has been reported to allow fast and easy intraoperative tissue analysis. Here, we report data on the intraoperative implementation of a stimulated Raman histology (SRH) as an innovative strategy offering intraoperative near real-time histopathological analysis. A total of 429 SRH images from 108 patients were generated and analyzed by using a Raman imaging system (Invenio Imaging Inc.). We aimed at establishing a dedicated workflow for SRH serving as an intraoperative diagnostic, research, and quality control tool in the neurosurgical operating room (OR). First experiences with this novel imaging modality were reported and analyzed suggesting process optimization regarding tissue collection, preparation, and imaging. The Raman imaging system was rapidly integrated into the surgical workflow of a large neurosurgical center. Within a few minutes of connecting the device, the first high-quality images could be acquired in a "plug-and-play" manner. We did not encounter relevant obstacles and the learning curve was steep. However, certain prerequisites regarding quality and acquisition of tissue samples, data processing and interpretation, and high throughput adaptions must be considered. Intraoperative SRH can easily be integrated into the workflow of neurosurgical tumor resection. Considering few process optimizations that can be implemented rapidly, high-quality images can be obtained near real time. Hence, we propose SRH as a complementary tool for the diagnosis of tumor entity, analysis of tumor infiltration zones, online quality and safety control and as a research tool in the neurosurgical OR.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Encefálicas/patología , Humanos , Procedimientos Neuroquirúrgicos/métodos , Quirófanos , Espectrometría Raman/métodos , Flujo de Trabajo
9.
Neurocrit Care ; 37(1): 149-159, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35211837

RESUMEN

BACKGROUND: Delayed cerebral ischemia increases mortality and morbidity after aneurysmal subarachnoid hemorrhage (aSAH). Various techniques are applied to detect cerebral vasospasm and hypoperfusion. Contrast-enhanced ultrasound perfusion imaging (UPI) is able to detect cerebral hypoperfusion in acute ischemic stroke. This prospective study aimed to evaluate the use of UPI to enable detection of cerebral hypoperfusion after aSAH. METHODS: We prospectively enrolled patients with aSAH and performed UPI examinations every second day after aneurysm closure. Perfusion of the basal ganglia was outlined to normalize the perfusion records of the anterior and posterior middle cerebral artery territory. We applied various models to characterize longitudinal perfusion alterations in patients with delayed ischemic neurologic deficit (DIND) across the cohort and predict DIND by using a multilayer classification model. RESULTS: Between August 2013 and December 2015, we included 30 patients into this prospective study. The left-right difference of time to peak (TTP) values showed a significant increase at day 10-12. Patients with DIND demonstrated a significant, 4.86 times increase of the left-right TTP ratio compared with a mean fold change in patients without DIND of 0.9 times (p = 0.032). CONCLUSIONS: UPI is feasible to enable detection of cerebral tissue hypoperfusion after aSAH, and the left-right difference of TTP values is the most indicative result of this finding.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/etiología , Humanos , Perfusión , Imagen de Perfusión , Estudios Prospectivos , Hemorragia Subaracnoidea/diagnóstico por imagen , Vasoespasmo Intracraneal/diagnóstico por imagen , Vasoespasmo Intracraneal/etiología
10.
BMC Cancer ; 21(1): 211, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648471

RESUMEN

BACKGROUND: Meningiomas are common brain tumours that are usually defined by benign clinical course. However, some meningiomas undergo a malignant transformation and recur within a short time period regardless of their World Health Organization (WHO) grade. The current study aimed to identify potential markers that can discriminate between benign and malignant meningioma courses. METHODS: We profiled the metabolites from 43 patients with low- and high-grade meningiomas. Tumour specimens were analyzed by nuclear magnetic resonance analysis; 270 metabolites were identified and clustered with the AutoPipe algorithm. RESULTS: We observed two distinct clusters marked by alterations in glycine/serine and choline/tryptophan metabolism. Glycine/serine cluster showed significantly lower WHO grades and proliferation rates. Also progression-free survival was significantly longer in the glycine/serine cluster. CONCLUSION: Our findings suggest that alterations in glycine/serine metabolism are associated with lower proliferation and more recurrent tumours. Altered choline/tryptophan metabolism was associated with increases proliferation, and recurrence. Our results suggest that tumour malignancy can be reflected by metabolic alterations, which may support histological classifications to predict the clinical outcome of patients with meningiomas.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Anciano , Algoritmos , Colina/metabolismo , Análisis por Conglomerados , Progresión de la Enfermedad , Femenino , Glicina/metabolismo , Humanos , Masculino , Neoplasias Meníngeas/química , Neoplasias Meníngeas/mortalidad , Meningioma/química , Meningioma/mortalidad , Persona de Mediana Edad , Clasificación del Tumor , Resonancia Magnética Nuclear Biomolecular , Supervivencia sin Progresión , Serina/metabolismo , Resultado del Tratamiento , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda