RESUMEN
A radar altimeter (RA) is useful to improve autonomous functions such as landing guidance or navigation control of an aircraft. To ensure more precise and safer flights by aircraft, an interferometric RA (IRA) capable of measuring the angle of a target is required. However, the phase-comparison monopulse (PCM) technique used in IRAs has a problem in that an angular ambiguity arises with respect to a target with multiple reflection points, such as terrain. In this paper, we propose an altimetry method for IRAs that reduces the angular ambiguity by evaluating the quality of the phase. The altimetry method as introduced here is sequentially described based on synthetic aperture radar, a delay/Doppler radar altimeter, and PCM techniques. Finally, a phase quality evaluation method is proposed for use in the azimuth estimation process. Aircraft captive flight test results are presented and analyzed, and the validity of the proposed method is examined.
Asunto(s)
Aeronaves , Radar , InterferometríaRESUMEN
In this study, an efficient high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-ion trap-tandem mass spectrometry (MS/MS) was developed for the identification of the biosynthetic congeners involved in the aminocyclitol aminoglycosidic fortimicin pathway from Micromonospora olivasterospora fermentation. The usage of both acid extraction (pH â¼2.5) followed by an cationic-exchanging SPE cleanup and pentafluoropropionic acid mediated ion-pairing chromatography with ESI-ion trap-MS/MS detection was determined to be sufficiently practical to profile the fortimicin (FOR) congeners produced in a culture broth. The limit of the quantification for the fortimicin A (FOR-A) standard spiked in the culture broth was â¼1.6 ng mL(-1). The average recovery rate was 93.6%, and the intra- and inter-day precisions were <5% with accuracy in the range from 87.1 to 94.2%. Moreover, the epimeric mixtures including FOR-KH, FOR-KR, and FOR-B were separately resolved through a macrocyclic glycopeptide (teicoplanin)-bonded chiral column. As a result, ten natural FOR pseudodisaccharide analogs were identified and semi-quantified in descending order as follows: FOR-A, FOR-B, DCM, FOR-KH plus FOR-KR, FOR-KK1, FOR-AP, FOR-KL1, FOR-AO, and FOR-FU-10. This is the first report on both the simultaneous characterization of diverse structurally closely related FORs derived from bacterial fermentation using HPLC-ESI-ion trap-MS/MS analysis and the chromatographic separation of the three FOR epimers.
Asunto(s)
Aminoglicósidos/análisis , Aminoglicósidos/química , Cromatografía Líquida de Alta Presión/métodos , Micromonospora/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Aminoglicósidos/metabolismo , Fermentación , Límite de Detección , Espectroscopía de Resonancia Magnética , Espectrometría de Masas en Tándem/métodosRESUMEN
Survival of fungal species depends on the ability of these organisms to respond to environmental stresses. Osmotic stress or high levels of reactive oxygen species (ROS) can cause stress in fungi resulting in growth inhibition. Both eukaryotic and prokaryotic cells have developed numerous mechanisms to counteract and survive the stress in the presence of ROS. In many fungi, the HOG signaling pathway is crucial for the oxidative stress response as well as for osmotic stress response. This study revealed that while the osmotic stress response is only slightly affected by the master regulator veA, this gene, also known to control morphological development and secondary metabolism in numerous fungal species, has a profound effect on the oxidative stress response in the aflatoxin-producing fungus Aspergillus flavus. We found that the expression of A. flavus homolog genes involved in the HOG signaling pathway is regulated by veA. Deletion of veA resulted in a reduction in transcription levels of oxidative stress response genes after exposure to hydrogen peroxide. Furthermore, analyses of the effect of VeA on the promoters of cat1 and trxB indicate that the presence of VeA alters DNA-protein complex formation. This is particularly notable in the cat1 promoter, where the absence of VeA results in abnormally stronger complex formation with reduced cat1 expression and more sensitivity to ROS in a veA deletion mutant, suggesting that VeA might prevent binding of negative transcription regulators to the cat1 promoter. Our study also revealed that veA positively influences the expression of the transcription factor gene atfB and that normal formation of DNA-protein complexes in the cat1 promoter is dependent on AtfB.
Asunto(s)
Aspergillus flavus/metabolismo , Proteínas Fúngicas/fisiología , Estrés Oxidativo , Factores de Transcripción/fisiología , Adaptación Fisiológica , Aflatoxinas/biosíntesis , Aspergillus flavus/genética , Catalasa/genética , Catalasa/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Expresión Génica , Regulación Fúngica de la Expresión Génica , Presión Osmótica , Regiones Promotoras Genéticas , Unión ProteicaRESUMEN
Patulin is a mycotoxin produced by several species of Penicillium sp., Aspergillus sp., and Byssochlamys sp. on apples and pears. Most studies have been focused on Penicillium expansum, a common postharvest pathogen, but little is known about the characteristics of Penicillium paneum. In the present study, we evaluated the effects of temperature, pH, and relative humidity (RH) on the growth of P. paneum OM1, which was isolated from pears, and its patulin production. The fungal strain showed the highest growth rate at 25 °C and pH 4.5 on pear puree agar medium (PPAM) under 97 % RH, while it produced the highest amount of patulin at 20 °C and pH 4.5 on PPAM under 97 % RH. Moreover, RT-qPCR analysis of relative expression levels of 5 patulin biosynthetic genes (patA, patE, patK, patL, and patN) in P. paneum OM1 exhibited that the expression of the 4 patulin biosynthetic genes except patL was up-regulated in YES medium (patulin conducive), while it was not in PDB medium (patulin non-conducive). Our data demonstrated that the 3 major environmental parameters had significant impact on the growth of P. paneum OM1 and its patulin production. These results could be exploited to prevent patulin contamination by P. paneum OM1 during pear storage.
Asunto(s)
Patulina , Penicillium , Pyrus , Medios de Cultivo/química , Humedad , Concentración de Iones de Hidrógeno , Patulina/biosíntesis , Patulina/metabolismo , Penicillium/metabolismo , Penicillium/crecimiento & desarrollo , Penicillium/genética , Penicillium/aislamiento & purificación , Pyrus/microbiología , TemperaturaRESUMEN
Aflatoxin is among the most potent naturally occurring carcinogens known. Previous studies demonstrated that endosomes in the filamentous fungus Aspergillus parasiticus carry enzymes that catalyze the final two steps in aflatoxin synthesis, and these structures also play a role in aflatoxin storage and export. We hypothesized that endosomes house a complete and functional aflatoxin biosynthetic pathway. To address this hypothesis, we purified a cellular fraction containing endosomes, transport vesicles, and vacuoles (V fraction) from A. parasiticus grown under aflatoxin inducing and noninducing conditions. We also added (fed) aflatoxin pathway intermediates to V fraction to test the functional status of aflatoxin pathway enzymes. High throughput LC-MS/MS analysis of proteins in V fraction detected 8 aflatoxin enzymes with high reliability and 8 additional enzymes at lower reliability, suggesting that most aflatoxin pathway enzymes are present. Purified V fraction synthesized aflatoxin and addition of the pathway intermediate versicolorin A increased aflatoxin synthesis, confirming that middle and late aflatoxin enzymes in V fraction are functional. Of particular significance, proteomic and biochemical analysis strongly suggested that additional secondary metabolic pathways as well as proteins involved in response to heat, osmotic, and oxidative stress are housed in V fraction.
Asunto(s)
Aflatoxinas/metabolismo , Aspergillus/metabolismo , Proteínas Bacterianas/análisis , Endosomas/metabolismo , Vesículas Transportadoras/metabolismo , Aspergillus/citología , Aspergillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Cromatografía Liquida , Medios de Cultivo , Endosomas/química , Endosomas/enzimología , Redes y Vías Metabólicas , Proteoma/análisis , Proteoma/química , Proteoma/aislamiento & purificación , Estrés Fisiológico , Espectrometría de Masas en Tándem , Vesículas Transportadoras/química , Vesículas Transportadoras/enzimología , Vacuolas/química , Vacuolas/enzimología , Vacuolas/metabolismoRESUMEN
Patulin (PAT) is a toxic secondary metabolite produced by certain species of Penicillium sp. and Aspergillus sp. on apples and pears. In this study, we investigated the effects of ascorbic acid and the combination of ascorbic acid and ferrous iron on degradation of PAT in 100% pure pear juice and apple juice using high-performance liquid chromatography UV detector (HPLC-UVD). The addition of 2 different levels of ascorbic acid (143 or 286 µg/mL) into pear juice or apple juice containing 0.08 or 0.4 µg/mL of PAT showed 87.7-100% and 67.3-68.7% of PAT degradation rates, respectively, after 24 h incubation at 25 °C. Moreover, the addition of both ascorbic acid (143 or 286 µg/mL) and ferrous iron (0.033 or 0.11 µmol/mL) into pear juice or apple juice containing the same level of PAT exhibited higher PAT degradation rates (100 and 75-94%, respectively) than the addition of only ascorbic acid after 24 h incubation at 25 °C. Our data demonstrated that ascorbic acid plus ferrous iron as well as ascorbic acid were highly effective on degradation of PAT in pear juice and apple juice and that addition of both ascorbic acid and ferrous iron produced higher PAT degradation rates than addition of only ascorbic acid.
Asunto(s)
Malus , Patulina , Pyrus , Patulina/metabolismo , Malus/química , Ácido Ascórbico/análisis , Hierro , Contaminación de Alimentos/análisis , Bebidas/análisisRESUMEN
BACKGROUND: Anticoagulation during extracorporeal membrane oxygenation (ECMO) usually is required to prevent thrombosis. The aim of this study was to investigate the usefulness of nafamostat mesilate (NM) as a regional anticoagulant during veno-arterial ECMO (VA-ECMO) treatment. METHODS: We retrospectively reviewed the medical records of 16 patients receiving VA-ECMO and NM from January 2017 to June 2020 at Haeundae Paik Hospital. We compared clinical and laboratory data, including activated partial thromboplastin time (aPTT), which was measured simultaneously in patients and the ECMO site, to estimate the efficacy of regional anticoagulation. RESULTS: The median patient age was 68.5 years, and 56.3% of patients were men. Cardiovascular disease was the most common primary disease (75.0%) requiring ECMO treatment, followed by respiratory disease (12.5%). The median duration of ECMO treatment was 7.5 days. Among 16 patients, seven were switched to NM after first using heparin as an anticoagulation agent, and nine received only NM. When comparing aPTT values in the NM group between patients and the ECMO site, that in patients was significantly lower than that at the ECMO site (73.57 vs. 79.25 seconds; P=0.010); in contrast, no difference was observed in the heparin group. CONCLUSIONS: NM showed efficacy as a regional anticoagulation method by sustaining a lower aPTT value compared to that measured at the ECMO site. NM should be considered as a safer regional anticoagulation method in VA-ECMO for patients at high risk of bleeding.
RESUMEN
BACKGROUND: Pears have been world-widely used as a sweet and nutritious food and a folk medicine for more than two millennia. METHODS: We conducted a review from ancient literatures to current reports to extract evidence-based functions of pears. RESULTS: We found that pears have many active compounds, e.g., flavonoids, triterpenoids, and phenolic acids including arbutin, chlorogenic acid, malaxinic acid, etc. Most of researchers agree that the beneficial compounds are concentrated in the peels. From various in vitro, in vivo, and human studies, the medicinal functions of pears can be summarized as anti-diabetic,-obese, -hyperlipidemic, -inflammatory, -mutagenic, and -carcinogenic effects, detoxification of xenobiotics, respiratory and cardio-protective effects, and skin whitening effects. Therefore, pears seem to be even effective for prevention from Covid-19 or PM2.5 among high susceptible people with multiple underlying diseases. CONCLUSION: For the current or post Covid-19 era, pears have potential for functional food or medicine for both of communicable and non-communicable disease.
Asunto(s)
Frutas/química , Alimentos Funcionales , Fitoquímicos/farmacología , Pyrus/química , COVID-19 , Flavonoides , Humanos , Fenoles , TriterpenosRESUMEN
Aflatoxins (AFs) are biologically active toxic metabolites, which are produced by certain toxigenic Aspergillus sp. on agricultural crops. In this study, five edible mushroom-forming fungi were analyzed using high-performance liquid chromatography fluorescence detector (HPLC-FLD) for their ability to remove aflatoxin B1 (AFB1), one of the most potent naturally occurring carcinogens known. Bjerkandera adusta and Auricularia auricular-judae showed the most significant AFB1 removal activities (96.3% and 100%, respectively) among five strains after 14-day incubation. The cell lysate from B. adusta exhibited higher AFB1 removal activity (35%) than the cell-free supernatant (13%) after 1-day incubation and the highest removal activity (80%) after 5-day incubation at 40 °C. In addition, AFB1 analyses using whole cells, cell lysates, and cell debris from B. adusta showed that cell debris had the highest AFB1 removal activity at 5th day (95%). Moreover, exopolysaccharides from B. adusta showed an increasing trend (24-48%) similar to whole cells and cell lysates after 5- day incubation. Our results strongly suggest that AFB1 removal activity by whole cells was mainly due to AFB1 binding onto cell debris during early incubation and partly due to binding onto cell lysates along with exopolysaccharides after saturation of AFB1 binding process onto cell wall components.
Asunto(s)
Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidad , Agaricales/metabolismo , Aspergillus/química , Aspergillus/metabolismo , Biodegradación Ambiental , Contaminación de Alimentos , Auricularia/metabolismo , Coriolaceae/metabolismo , Productos Agrícolas/microbiología , Hericium/metabolismo , República de Corea , Hongos Shiitake/metabolismo , Wolfiporia/metabolismoRESUMEN
PURPOSE: Blunt small bowel injury is rare, and its timely diagnosis may be difficult. The effects of a delayed intervention on prognosis are unclear. We aimed to determine whether the time to surgical intervention affects outcomes in patients with blunt small bowel perforation. METHODS: The study was performed between March 2010 and December 2018 in adults (age >18 years) who initially underwent computed tomography and small bowel surgery only and survived more than one day postoperatively. They were categorized into three groups based on injury-to-surgery time intervals: ≤8, 8-24, and >24 h; similarly, they were also categorized into two groups of ≤24 and >24 h. RESULTS: Bowel resection, length of stay (LOS), intensive care unit (ICU) LOS, morbidity, and mortality were analyzed as outcomes in 52 patients. The number of patients in the three groups (≤8, 8-24, and >24 h) based on the time-to-surgery was 33, 13, and 6, respectively. On comparing the three groups, there were no significant differences in LOS (24 [18-35], 21 [10-40], and 28 [20-98] days, respectively; p=0.321), ICU LOS (2 [1-12], 4 [2-26], and 11 [7-14] days; respectively, p=0.153), mortality (3% (n = 1), 15% (n = 2), and 0%, respectively; p=0.291), and morbidity (46% (n = 15), 39% (n = 5), and 50% (n = 3), respectively; p=0.871). However, there was a significant difference between the groups in bowel resection (67% (n = 22), 31% (n = 4), and 83% (n = 5), respectively; p=0.037). Additionally, there was no significant difference in outcomes between the two groups (≤24 and >24 h) with small bowel perforation. CONCLUSIONS: Delay in surgical intervention following blunt abdominal trauma may not affect the outcomes of patients with small bowel injuries, such as LOS, ICU LOS, morbidity, and mortality, except bowel resection.
RESUMEN
Aflatoxin biosynthesis in Aspergillus parasiticus requires at least 17 enzyme activities (from acetate). Although the activities of most aflatoxin biosynthetic enzymes have been established, the mechanisms that govern transport and sub-cellular localization of these enzymes are not clear. We developed plasmid constructs that express Nor-1 fused to a green fluorescent protein reporter (EGFP) to monitor transport and localization of this early pathway enzyme in real time in Aspergillus parasiticus. Plasmids expressing EGFP fused to Nor-1 were introduced into A. parasiticus B62 (carries non-functional Nor-1). Transformants were screened for increased aflatoxin accumulation (restored Nor-1 activity) on coconut agar medium and for EGFP expression using fluorescence microscopy. Increased aflatoxin accumulation was confirmed by TLC and ELISA. Nor-1 fused to EGFP at either the N- or C- terminus functionally complemented non-functional Nor-1 in B62 and increased aflatoxin synthesis to wild-type (N-terminus) or lower levels (C-terminus). We detected full-length Nor-1 fusion proteins in transformants with increased aflatoxin accumulation (Western blot) and determined that the expression plasmid integrated at the nor-1 locus in these cells (Southern blot). Confocal laser scanning microscopy (CLSM) demonstrated that Nor-1 fusion proteins localized in the cytoplasm and vacuoles of fungal hyphae grown on aflatoxin-inducing solid media for 48h; control EGFP (no Nor-1) did not localize to vacuoles until 72h. The highest rate of aflatoxin synthesis coincided with the highest rate of transport of Nor-1 fusion proteins to the vacuole strongly suggesting that Nor-1 is synthesized in the cytoplasm and transported to the vacuole to carry out an early step in aflatoxin synthesis.
Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Aspergillus/enzimología , Citoplasma/enzimología , Proteínas Fúngicas/metabolismo , Fracciones Subcelulares/enzimología , Vacuolas/enzimología , Oxidorreductasas de Alcohol/genética , Aspergillus/genética , Southern Blotting , Western Blotting , Citoplasma/genética , Ensayo de Inmunoadsorción Enzimática , Proteínas Fúngicas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+) , Plásmidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vacuolas/genéticaRESUMEN
Aflatoxin, a mycotoxin synthesized by Aspergillus spp., is among the most potent naturally occurring carcinogens known. Little is known about the subcellular organization of aflatoxin synthesis. Previously, we used transmission electron microscopy and immunogold labeling to demonstrate that the late aflatoxin enzyme OmtA localizes primarily to vacuoles in fungal cells on the substrate surface of colonies. In the present work, we monitored subcellular localization of Ver-1 in real time in living cells. Aspergillus parasiticus strain CS10-N2 was transformed with plasmid constructs that express enhanced green fluorescent protein (EGFP) fused to Ver-1. Analysis of transformants demonstrated that EGFP fused to Ver-1 at either the N or C terminus functionally complemented nonfunctional Ver-1 in recipient cells. Western blot analysis detected predominantly full-length Ver-1 fusion proteins in transformants. Confocal laser scanning microscopy demonstrated that Ver-1 fusion proteins localized in the cytoplasm and in the lumen of up to 80% of the vacuoles in hyphae grown for 48 h on solid media. Control EGFP (no Ver-1) expressed in transformants was observed in only 13% of the vacuoles at this time. These data support a model in which middle and late aflatoxin enzymes are synthesized in the cytoplasm and transported to vacuoles, where they participate in aflatoxin synthesis.
Asunto(s)
Aspergillus/enzimología , Proteínas Fúngicas/metabolismo , Aflatoxinas/biosíntesis , Fusión Artificial Génica , Aspergillus/genética , Citoplasma/química , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hifa/química , Microscopía Confocal , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vacuolas/químicaRESUMEN
Aflatoxins are classified as Group 1 (carcinogenic to humans) by the International Agency for Research on Cancer. In this study, a total of 134 fungal strains were isolated from 65 meju samples, and two fungal isolates were selected as potential aflatoxin B1 (AFB1)-biodetoxification fungi. These fungi were identified as Aspergillus oryzae MAO103 and A. oryzae MAO104 by sequencing the beta-tubulin gene. The two A. oryzae strains were able to degrade more than 90% of AFB1 (initial concentration: 40 µg/l) in a culture broth in 14 days. The mutagenic effects of AFB1 treated with A. oryzae MAO103 and MAO104 significantly decreased to 5.7% and 6.4%, respectively, in the frame-shift mutation of Ames tests using Salmonella typhimurium TA98. The base-substituting mutagenicity of AFB1 was also decreased by the two fungi. Moreover, AFB1 production by Aspergillus flavus was significantly decreased by the two A. oryzae strains on soybean-based agar plates. Our data suggest that the two AFB1-detoxifying A. oryzae strains have potential application to control AFB1 in foods and feeds.
RESUMEN
Fungal basic leucine zipper (bZIP) transcription factors mediate responses to oxidative stress. The ability to regulate stress response pathways in Aspergillus spp. was postulated to be an important virulence-associated cellular process, because it helps establish infection in humans, plants, and animals. Previous studies have demonstrated that the fungal transcription factor AtfB encodes a protein that is associated with resistance to oxidative stress in asexual conidiospores, and AtfB binds to the promoters of several stress response genes. Here, we conducted a gene silencing of AtfB in Aspergillus parasiticus, a well-characterized fungal pathogen of plants, animals, and humans that produces the secondary metabolite and carcinogen aflatoxin, in order to determine the mechanisms by which AtfB contributes to virulence. We show that AtfB silencing results in a decrease in aflatoxin enzyme levels, the down-regulation of aflatoxin accumulation, and impaired conidiospore development in AtfB-silenced strains. This observation is supported by a decrease of AtfB protein levels, and the down-regulation of many genes in the aflatoxin cluster, as well as genes involved in secondary metabolism and conidiospore development. Global expression analysis (RNA Seq) demonstrated that AtfB functionally links oxidative stress response pathways to a broader and novel subset of target genes involved in cellular defense, as well as in actin and cytoskeleton arrangement/transport. Thus, AtfB regulates the genes involved in development, stress response, and secondary metabolism in A. parasiticus. We propose that the bZIP regulatory circuit controlled by AtfB provides a large number of excellent cellular targets to reduce fungal virulence. More importantly, understanding key players that are crucial to initiate the cellular response to oxidative stress will enable better control over its detrimental impacts on humans.
Asunto(s)
Aspergillus/patogenicidad , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas Fúngicas , Virulencia , Aflatoxinas/biosíntesis , Aspergillus/genética , Aspergillus/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Virulencia/genéticaRESUMEN
An improved analytical method compared with conventional ones was developed for simultaneous determination of 13 mycotoxins (deoxynivalenol, nivalenol, 3-acetylnivalenol, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, fumonisin B1, fumonisin B2, T-2, HT-2, zearalenone, and ochratoxin A) in cereal grains by liquid chromatography-tandem mass spectrometry (LC/MS/MS) after a single immunoaffinity column clean-up. The method showed a good linearity, sensitivity, specificity, and accuracy in mycotoxin determination by LC/MS/MS. The levels of 13 mycotoxins in 5 types of commercial grains (brown rice, maize, millet, sorghum, and mixed cereal) from South Korea were determined in a total of 507 cereal grains. Mycotoxins produced from Fusarium sp. (fumonisins, deoxynivalenol, nivalenol, and zearalenone) were more frequently (more than 5%) and concurrently detected in all cereal grains along with higher mean levels (4.3-161.0 ng/g) in positive samples than other toxins such as aflatoxins and ochratoxin A (less than 9% and below 5.2 ng/g in positive samples) from other fungal species.
Asunto(s)
Grano Comestible/química , Micotoxinas/análisis , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis , Mijos , Oryza , República de Corea , Sorghum , Espectrometría de Masas en Tándem , Zea maysRESUMEN
Biomass waste treatment and detrimental dye adsorption are two of the crucial environmental issues nowadays. In this study, we investigate to simultaneously resolve the aforementioned issues by synthesizing chitosan sponges as adsorbents toward rose bengal (RB) dye adsorption. Through a temperature-controlled freeze-casting process, robust and recyclable chitosan sponges are fabricated with hierarchical porosities resulted from the control of concentrations of chitosan solutions. Tested as the adsorbents for RB, to the best of our knowledge, the as-prepared chitosan sponge in this work reports the highest adsorption capacity of RB (601.5 mg/g) ever. The adsorption mechanism, isotherm, kinetics, and thermodynamics are comprehensively studied by employing statistical analysis. Importantly and desirably, the sponge type of chitosan adsorbents exceedingly facilitates the retrieving and elution of chitosan sponges for recyclable uses. Therefore, the chitosan sponge adsorbent is demonstrated to possess dramatically squeezable capability with durability for 10,000 cycles and recyclable adsorption for at least 10 cycles, which provides an efficient and economical way for both biomass treatment and water purification.
RESUMEN
The current scenario regarding the widespread Zika virus (ZIKV) has resulted in numerous diagnostic studies, specifically in South America and in locations where there is frequent entry of travelers returning from ZIKV-affected areas, including pregnant women with or without clinical symptoms of ZIKV infection. The World Health Organization, WHO, announced that millions of cases of ZIKV are likely to occur in the USA in the near future. This situation has created an alarming public health emergency of international concern requiring the detection of this life-threatening viral candidate due to increased cases of newborn microcephaly associated with ZIKV infection. Hence, this review reports possible methods and strategies for the fast and reliable detection of ZIKV with particular emphasis on current updates, knowledge, and new hypotheses that might be helpful for medical professionals in poor and developing countries that urgently need to address this problem. In particular, we emphasize liposome-based biosensors. Although these biosensors are currently among the less popular tools for human disease detection, they have become useful tools for the screening and detection of pathogenic bacteria, fungi, and viruses because of their versatile advantageous features compared to other sensing devices. This review summarizes the currently available methods employed for the rapid detection of ZIKV and suggests an innovative approach involving the application of a liposome-based hypothesis for the development of new strategies for ZIKV detection and their use as effective biomedicinal tools.
RESUMEN
A uridine diphosphate-glucose:sterol glycosyltransferase-encoding gene was isolated and cloned from the established fosmid library of Micromonospora rhodorangea ATCC 27932 that usually produces the aminoglycoside antibiotic geneticin. The gene consists of 1,185 base pairs and encodes a 41.4 kDa protein, which was heterologously expressed in Escherichia coli BL21(DE3). In silico analyses of the deduced gene product suggested that it is a member of the family 1 glycosyltransferases. The recombinant protein MrSGT was able to catalyze the transfer of a glucosyl moiety onto the C-3 hydroxy function in sterols (ß-sitosterol, campesterol, and cholesterol), resulting in the corresponding steryl glucosides (ß-sitosterol-3-O-ß-D-glucoside, campesterol-3-O-ß-D-glucoside, and cholesterol-3-O-ß-D-glucoside). This enzyme prefers phytosterols to cholesterol, and also shows substrate flexibility to some extent, in that it could recognize a number of acceptor substrates.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Glucósidos/biosíntesis , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Micromonospora/enzimología , Uridina Difosfato Glucosa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Glicosiltransferasas/genética , Micromonospora/genética , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Esteroles/metabolismoRESUMEN
Ochratoxin A (OTA), a mycotoxin, contaminates agricultural products and poses a serious threat to public health worldwide. Microbiological methods are known to be a promising approach for OTA biodegradation because physical and chemical methods have practical limitations. In the present study, a total of 130 fungal isolates obtained from 65 traditional Korean meju (a fermented starter for fermentation of soybeans) samples were examined for OTA-biodegradation activity using thin-layer chromatography. Two fungal isolates were selected for OTA-biodegradation activity and were identified as Aspergillus tubingensis M036 and M074 through sequence analysis of the beta-tubulin gene. After culturing both A. tubingensis isolates in Soytone-Czapek medium containing OTA (40 ng/ml), OTA-biodegradation activity was analyzed using high-performance liquid chromatography (HPLC). Both A. tubingensis strains degraded OTA by more than 95.0% after 14 days, and the HPLC analysis showed that the OTA biodegradation by the A. tubingensis strains led to the production of ochratoxin α, which is much less toxic than OTA. Moreover, crude enzymes from the cultures of A. tubingensis M036 and M074 led to OTA biodegradation of 97.5% and 91.3% at pH 5, and 80.3% and 75.3% at pH 7, respectively, in a buffer solution containing OTA (40 ng/ml) after 24 h. In addition, the OTA-biodegrading fungi did not exhibit OTA production activity. Our data suggest that A. tubingensis isolates and their enzymes have the potential for practical application to reduce levels of OTA in food and feed.
Asunto(s)
Aspergillus/metabolismo , Glycine max/microbiología , Ocratoxinas/metabolismo , Aspergillus/clasificación , Aspergillus/aislamiento & purificación , Biodegradación Ambiental , Fermentación , Inocuidad de los Alimentos , Ocratoxinas/análisis , Ocratoxinas/químicaRESUMEN
To select appropriate microorganisms as starter cultures for the reliable and reproducible fermentation of soybean fermented products of Korean Doenjang, various ratios of fungi (Aspergillus oryzae J, Mucor racemosus 15, M. racemosus 42) combined with Bacillus subtilis TKSP 24 were selected as either single, double, or multiple Meju strains for commercial mass production of Doenjang, followed by analysis of sensory characteristics. In the sensory evaluation, Doenjang BAM15-1 and BAM42-1, which were fermented with multiple strains (1:1:1), showed the highest sensory scores as compared to control. Based on sensory characteristics, 6 Doenjang samples were subjected to quantitative determination of amino acids, free sugars, and organic acids (volatile and nonvolatile) contents, followed by determination of biogenic amines. Total sweet taste amino acid contents were highest in BAM15-1 and BAM42-1 samples (333.7 and 295.8 mg/100 g, respectively) and similar that of control (391.1 mg/100 g). Samples BAM15-1 and BAM42-1 showed the relatively high volatile and nonvolatile organic acid contents (154.24, 192.26, and 71.31, 82.42 mg/100 g, respectively). In addition, BAM15-1 and BAM42-1 showed negligible biogenic amine formation, ranging from 0.00 to 1.02 and 0.00 to 3.92 mg/100 g, respectively. These findings indicate that determination of food components along with sensory and quality attributes using multiple microbial Meju strains as a starter culture may provide substantial results on improved quality fermented Doenjang products.