Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 544(7650): 362-366, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28405024

RESUMEN

There are no disease-modifying treatments for adult human neurodegenerative diseases. Here we test RNA-targeted therapies in two mouse models of spinocerebellar ataxia type 2 (SCA2), an autosomal dominant polyglutamine disease. Both models recreate the progressive adult-onset dysfunction and degeneration of a neuronal network that are seen in patients, including decreased firing frequency of cerebellar Purkinje cells and a decline in motor function. We developed a potential therapy directed at the ATXN2 gene by screening 152 antisense oligonucleotides (ASOs). The most promising oligonucleotide, ASO7, downregulated ATXN2 mRNA and protein, which resulted in delayed onset of the SCA2 phenotype. After delivery by intracerebroventricular injection to ATXN2-Q127 mice, ASO7 localized to Purkinje cells, reduced cerebellar ATXN2 expression below 75% for more than 10 weeks without microglial activation, and reduced the levels of cerebellar ATXN2. Treatment of symptomatic mice with ASO7 improved motor function compared to saline-treated mice. ASO7 had a similar effect in the BAC-Q72 SCA2 mouse model, and in both mouse models it normalized protein levels of several SCA2-related proteins expressed in Purkinje cells, including Rgs8, Pcp2, Pcp4, Homer3, Cep76 and Fam107b. Notably, the firing frequency of Purkinje cells returned to normal even when treatment was initiated more than 12 weeks after the onset of the motor phenotype in BAC-Q72 mice. These findings support ASOs as a promising approach for treating some human neurodegenerative diseases.


Asunto(s)
Oligonucleótidos Antisentido/uso terapéutico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Potenciales de Acción , Animales , Ataxina-2/deficiencia , Ataxina-2/genética , Ataxina-2/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Movimiento , Fenotipo , Células de Purkinje/metabolismo , Células de Purkinje/patología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/fisiopatología
2.
Genes Dev ; 26(16): 1874-84, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22895255

RESUMEN

Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect-e.g., with ASOs-is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn(-/-) mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with α-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics.


Asunto(s)
Técnicas Genéticas , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Animales , Terapia Genética , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/patología , Oligonucleótidos Antisentido , Empalme del ARN/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
3.
Ann Neurol ; 83(1): 27-39, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29226998

RESUMEN

OBJECTIVE: Alexander disease is a fatal leukodystrophy caused by autosomal dominant gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), an intermediate filament protein primarily expressed in astrocytes of the central nervous system. A key feature of pathogenesis is overexpression and accumulation of GFAP, with formation of characteristic cytoplasmic aggregates known as Rosenthal fibers. Here we investigate whether suppressing GFAP with antisense oligonucleotides could provide a therapeutic strategy for treating Alexander disease. METHODS: In this study, we use GFAP mutant mouse models of Alexander disease to test the efficacy of antisense suppression and evaluate the effects on molecular and cellular phenotypes and non-cell-autonomous toxicity. Antisense oligonucleotides were designed to target the murine Gfap transcript, and screened using primary mouse cortical cultures. Lead oligonucleotides were then tested for their ability to reduce GFAP transcripts and protein, first in wild-type mice with normal levels of GFAP, and then in adult mutant mice with established pathology and elevated levels of GFAP. RESULTS: Nearly complete and long-lasting elimination of GFAP occurred in brain and spinal cord following single bolus intracerebroventricular injections, with a striking reversal of Rosenthal fibers and downstream markers of microglial and other stress-related responses. GFAP protein was also cleared from cerebrospinal fluid, demonstrating its potential utility as a biomarker in future clinical applications. Finally, treatment led to improved body condition and rescue of hippocampal neurogenesis. INTERPRETATION: These results demonstrate the efficacy of antisense suppression for an astrocyte target, and provide a compelling therapeutic approach for Alexander disease. Ann Neurol 2018;83:27-39.


Asunto(s)
Enfermedad de Alexander/tratamiento farmacológico , Proteína Ácida Fibrilar de la Glía/antagonistas & inhibidores , Oligonucleótidos Antisentido/uso terapéutico , Enfermedad de Alexander/genética , Enfermedad de Alexander/patología , Animales , Biomarcadores/líquido cefalorraquídeo , Química Encefálica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/biosíntesis , Proteína Ácida Fibrilar de la Glía/genética , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Humanos , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neurogénesis/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
4.
Nucleic Acids Res ; 44(11): 5299-312, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27131367

RESUMEN

Viable constitutive and tamoxifen inducible liver-specific RNase H1 knockout mice that expressed no RNase H1 activity in hepatocytes showed increased R-loop levels and reduced mitochondrial encoded DNA and mRNA levels, suggesting impaired mitochondrial R-loop processing, transcription and mitochondrial DNA replication. These changes resulted in mitochondrial dysfunction with marked changes in mitochondrial fusion, fission, morphology and transcriptional changes reflective of mitochondrial damage and stress. Liver degeneration ensued, as indicated by apoptosis, fibrosis and increased transaminase levels. Antisense oligonucleotides (ASOs) designed to serve as substrates for RNase H1 were inactive in the hepatocytes from the RNase H1 knockout mice and in vivo, demonstrating that RNase H1 is necessary for the activity of DNA-like ASOs. During liver regeneration, a clone of hepatocytes that expressed RNase H1 developed and partially restored mitochondrial and liver function.


Asunto(s)
Hígado/metabolismo , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Conformación de Ácido Nucleico , ARN/metabolismo , Ribonucleasa H/deficiencia , Animales , Análisis por Conglomerados , Replicación del ADN , ADN Mitocondrial , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , ARN/química , ARN/genética , Ribonucleasa H/metabolismo , Especificidad por Sustrato
5.
Nucleic Acids Res ; 44(5): 2093-109, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26553810

RESUMEN

High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a panel of highly efficacious hepatotoxic or non-hepatotoxic LNA ASOs. We observed highly selective transcript knockdown in mice treated with non-hepatotoxic LNA ASOs, while the levels of many unintended transcripts were reduced in mice treated with hepatotoxic LNA ASOs. This transcriptional signature was concurrent with on-target RNA reduction and preceded transaminitis. Remarkably, the mRNA transcripts commonly reduced by toxic LNA ASOs were generally not strongly associated with any particular biological process, cellular component or functional group. However, they tended to have much longer pre-mRNA transcripts. We also demonstrate that the off-target RNA knockdown and hepatotoxicity is attenuated by RNase H1 knockdown, and that this effect can be generalized to high affinity modifications beyond LNA. This suggests that for a certain set of ASOs containing high affinity modifications such as LNA, hepatotoxicity can occur as a result of unintended off-target RNase H1 dependent RNA degradation.


Asunto(s)
Hígado/efectos de los fármacos , Oligonucleótidos Antisentido/toxicidad , Oligonucleótidos/toxicidad , ARN Mensajero/genética , Ribonucleasa H/genética , Alanina Transaminasa/sangre , Alanina Transaminasa/genética , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Análisis por Micromatrices , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Precursores del ARN/antagonistas & inhibidores , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa H/antagonistas & inhibidores , Ribonucleasa H/metabolismo , Transcriptoma/efectos de los fármacos
6.
Genes Dev ; 24(15): 1634-44, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20624852

RESUMEN

Increasing survival of motor neuron 2, centromeric (SMN2) exon 7 inclusion to express more full-length SMN protein in motor neurons is a promising approach to treat spinal muscular atrophy (SMA), a genetic neurodegenerative disease. Previously, we identified a potent 2'-O-(2-methoxyethyl) (MOE) phosphorothioate-modified antisense oligonucleotide (ASO) that blocks an SMN2 intronic splicing silencer element and efficiently promotes exon 7 inclusion in transgenic mouse peripheral tissues after systemic administration. Here we address its efficacy in the spinal cord--a prerequisite for disease treatment--and its ability to rescue a mild SMA mouse model that develops tail and ear necrosis, resembling the distal tissue necrosis reported in some SMA infants. Using a micro-osmotic pump, we directly infused the ASO into a lateral cerebral ventricle in adult mice expressing a human SMN2 transgene; the ASO gave a robust and long-lasting increase in SMN2 exon 7 inclusion measured at both the mRNA and protein levels in spinal cord motor neurons. A single embryonic or neonatal intracerebroventricular ASO injection strikingly rescued the tail and ear necrosis in SMA mice. We conclude that this MOE ASO is a promising drug candidate for SMA therapy, and, more generally, that ASOs can be used to efficiently redirect alternative splicing of target genes in the CNS.


Asunto(s)
Empalme Alternativo , Neuronas Motoras/efectos de los fármacos , Atrofia Muscular Espinal , Necrosis/fisiopatología , Oligonucleótidos Antisentido/farmacología , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Atrofia Muscular Espinal/fisiopatología , Atrofia Muscular Espinal/terapia , Necrosis/tratamiento farmacológico , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacocinética , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Transgenes/genética
7.
J Neurosci ; 36(1): 125-41, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26740655

RESUMEN

In Huntington's disease (HD), mutant Huntingtin (mHtt) protein causes striatal neuron dysfunction, synaptic loss, and eventual neurodegeneration. To understand the mechanisms responsible for synaptic loss in HD, we developed a corticostriatal coculture model that features age-dependent dendritic spine loss in striatal medium spiny neurons (MSNs) from YAC128 transgenic HD mice. Age-dependent spine loss was also observed in vivo in YAC128 MSNs. To understand the causes of spine loss in YAC128 MSNs, we performed a series of mechanistic studies. We previously discovered that mHtt protein binds to type 1 inositol (1,4,5)-trisphosphate receptor (InsP3R1) and increases its sensitivity to activation by InsP3. We now report that the resulting increase in steady-state InsP3R1 activity reduces endoplasmic reticulum (ER) Ca(2+) levels. Depletion of ER Ca(2+) leads to overactivation of the neuronal store-operated Ca(2+) entry (nSOC) pathway in YAC128 MSN spines. The synaptic nSOC pathway is controlled by the ER resident protein STIM2. We discovered that STIM2 expression is elevated in aged YAC128 striatal cultures and in YAC128 mouse striatum. Knock-down of InsP3R1 expression by antisense oligonucleotides or knock-down or knock-out of STIM2 resulted in normalization of nSOC and rescue of spine loss in YAC128 MSNs. The selective nSOC inhibitor EVP4593 was identified in our previous studies. We now demonstrate that EVP4593 reduces synaptic nSOC and rescues spine loss in YAC128 MSNs. Intraventricular delivery of EVP4593 in YAC128 mice rescued age-dependent striatal spine loss in vivo. Our results suggest EVP4593 and other inhibitors of the STIM2-dependent nSOC pathway as promising leads for HD therapeutic development. SIGNIFICANCE STATEMENT: In Huntington's disease (HD) mutant Huntingtin (mHtt) causes early corticostriatal synaptic dysfunction and eventual neurodegeneration of medium spine neurons (MSNs) through poorly understood mechanisms. We report here that corticostriatal cocultures prepared from YAC128 HD mice feature age-dependent MSN spine loss, mirroring YAC128 MSN spine loss in vivo. This finding establishes a system for mechanistic studies of synaptic instability in HD. We use it to demonstrate that sensitization of type 1 inositol (1,4,5)-trisphosphate receptors by mHtt, which depletes endoplasmic reticulum calcium, contributes to synaptotoxic enhancement of STIM2-dependent store-operated calcium (SOC) entry. Treatment with EVP4593, a neuroprotective inhibitor of neuronal SOC channels, rescues YAC128 MSN spine loss both in vitro and in vivo. These results suggest that enhanced neuronal SOC causes synaptic loss in HD-afflicted MSNs.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cuerpo Estriado/metabolismo , Enfermedad de Huntington/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Animales , Células Cultivadas , Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos
8.
Hum Mol Genet ; 24(21): 5985-94, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26231218

RESUMEN

Spinal and bulbar muscular atrophy (SBMA), an adult-onset neurodegenerative disease that affects males, results from a CAG triplet repeat/polyglutamine expansions in the androgen receptor (AR) gene. Patients develop progressive muscular weakness and atrophy, and no effective therapy is currently available. The tissue-specific pathogenesis, especially relative pathological contributions between degenerative motor neurons and muscles, remains inconclusive. Though peripheral pathology in skeletal muscle caused by toxic AR protein has been recently reported to play a pivotal role in the pathogenesis of SBMA using mouse models, the role of motor neuron degeneration in SBMA has not been rigorously investigated. Here, we exploited synthetic antisense oligonucleotides to inhibit the RNA levels of mutant AR in the central nervous system (CNS) and explore its therapeutic effects in our SBMA mouse model that harbors a mutant AR gene with 97 CAG expansions and characteristic SBMA-like neurogenic phenotypes. A single intracerebroventricular administration of the antisense oligonucleotides in the presymptomatic phase efficiently suppressed the mutant gene expression in the CNS, and delayed the onset and progression of motor dysfunction, improved body weight gain and survival with the amelioration of neuronal histopathology in motor units such as spinal motor neurons, neuromuscular junctions and skeletal muscle. These findings highlight the importance of the neurotoxicity of mutant AR protein in motor neurons as a therapeutic target.


Asunto(s)
Atrofia Muscular Espinal/genética , Receptores Androgénicos/genética , Animales , Progresión de la Enfermedad , Expresión Génica/efectos de los fármacos , Silenciador del Gen , Ratones , Ratones Transgénicos , Neuronas Motoras , Músculo Esquelético/patología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/terapia , Mutación , Unión Neuromuscular/patología , Oligonucleótidos Antisentido/administración & dosificación
9.
Lancet ; 388(10063): 3017-3026, 2016 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-27939059

RESUMEN

BACKGROUND: Nusinersen is a 2'-O-methoxyethyl phosphorothioate-modified antisense drug being developed to treat spinal muscular atrophy. Nusinersen is specifically designed to alter splicing of SMN2 pre-mRNA and thus increase the amount of functional survival motor neuron (SMN) protein that is deficient in patients with spinal muscular atrophy. METHODS: This open-label, phase 2, escalating dose clinical study assessed the safety and tolerability, pharmacokinetics, and clinical efficacy of multiple intrathecal doses of nusinersen (6 mg and 12 mg dose equivalents) in patients with infantile-onset spinal muscular atrophy. Eligible participants were of either gender aged between 3 weeks and 7 months old with onset of spinal muscular atrophy symptoms between 3 weeks and 6 months, who had SMN1 homozygous gene deletion or mutation. Safety assessments included adverse events, physical and neurological examinations, vital signs, clinical laboratory tests, cerebrospinal fluid laboratory tests, and electrocardiographs. Clinical efficacy assessments included event free survival, and change from baseline of two assessments of motor function: the motor milestones portion of the Hammersmith Infant Neurological Exam-Part 2 (HINE-2) and the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) motor function test, and compound motor action potentials. Autopsy tissue was analysed for target engagement, drug concentrations, and pharmacological activity. HINE-2, CHOP-INTEND, and compound motor action potential were compared between baseline and last visit using the Wilcoxon signed-rank test. Age at death or permanent ventilation was compared with natural history using the log-rank test. The study is registered at ClinicalTrials.gov, number NCT01839656. FINDINGS: 20 participants were enrolled between May 3, 2013, and July 9, 2014, and assessed through to an interim analysis done on Jan 26, 2016. All participants experienced adverse events, with 77 serious adverse events reported in 16 participants, all considered by study investigators not related or unlikely related to the study drug. In the 12 mg dose group, incremental achievements of motor milestones (p<0·0001), improvements in CHOP-INTEND motor function scores (p=0·0013), and increased compound muscle action potential amplitude of the ulnar nerve (p=0·0103) and peroneal nerve (p<0·0001), compared with baseline, were observed. Median age at death or permanent ventilation was not reached and the Kaplan-Meier survival curve diverged from a published natural history case series (p=0·0014). Analysis of autopsy tissue from patients exposed to nusinersen showed drug uptake into motor neurons throughout the spinal cord and neurons and other cell types in the brainstem and other brain regions, exposure at therapeutic concentrations, and increased SMN2 mRNA exon 7 inclusion and SMN protein concentrations in the spinal cord. INTERPRETATION: Administration of multiple intrathecal doses of nusinersen showed acceptable safety and tolerability, pharmacology consistent with its intended mechanism of action, and encouraging clinical efficacy. Results informed the design of an ongoing, sham-controlled, phase 3 clinical study of nusinersen in infantile-onset spinal muscular atrophy. FUNDING: Ionis Pharmaceuticals, Inc and Biogen.


Asunto(s)
Oligonucleótidos/administración & dosificación , Seguridad del Paciente , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Femenino , Humanos , Inyecciones Espinales , Masculino , Mutación , Oligonucleótidos/efectos adversos , Oligonucleótidos/farmacocinética , ARN Mensajero/genética
10.
Nature ; 478(7367): 123-6, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21979052

RESUMEN

Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality; it results from loss-of-function mutations in the survival motor neuron 1 (SMN1) gene. Humans have a paralogue, SMN2, whose exon 7 is predominantly skipped, but the limited amount of functional, full-length SMN protein expressed from SMN2 cannot fully compensate for a lack of SMN1. SMN is important for the biogenesis of spliceosomal small nuclear ribonucleoprotein particles, but downstream splicing targets involved in pathogenesis remain elusive. There is no effective SMA treatment, but SMN restoration in spinal cord motor neurons is thought to be necessary and sufficient. Non-central nervous system (CNS) pathologies, including cardiovascular defects, were recently reported in severe SMA mouse models and patients, reflecting autonomic dysfunction or direct effects in cardiac tissues. Here we compared systemic versus CNS restoration of SMN in a severe mouse model. We used an antisense oligonucleotide (ASO), ASO-10-27, that effectively corrects SMN2 splicing and restores SMN expression in motor neurons after intracerebroventricular injection. Systemic administration of ASO-10-27 to neonates robustly rescued severe SMA mice, much more effectively than intracerebroventricular administration; subcutaneous injections extended the median lifespan by 25 fold. Furthermore, neonatal SMA mice had decreased hepatic Igfals expression, leading to a pronounced reduction in circulating insulin-like growth factor 1 (IGF1), and ASO-10-27 treatment restored IGF1 to normal levels. These results suggest that the liver is important in SMA pathogenesis, underscoring the importance of SMN in peripheral tissues, and demonstrate the efficacy of a promising drug candidate.


Asunto(s)
Modelos Animales de Enfermedad , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Animales , Animales Recién Nacidos , Proteínas Portadoras/metabolismo , Glicoproteínas/deficiencia , Glicoproteínas/metabolismo , Hormona del Crecimiento/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/deficiencia , Factor I del Crecimiento Similar a la Insulina/metabolismo , Estimación de Kaplan-Meier , Hígado/metabolismo , Longevidad/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Isoformas de ARN/análisis , Isoformas de ARN/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Transgenes
11.
Eur Heart J ; 37(39): 2993-2997, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27125949

RESUMEN

AIMS: Normalization of hypercholesterolaemia, inflammation, hyperglycaemia, and obesity are main desired targets to prevent cardiovascular clinical events. Here we present a novel regulator of cholesterol metabolism, which simultaneously impacts on glucose intolerance and inflammation. METHODS AND RESULTS: Mice deficient for oxygen sensor HIF-prolyl hydroxylase 1 (PHD1) were backcrossed onto an atherogenic low-density lipoprotein receptor (LDLR) knockout background and atherosclerosis was studied upon 8 weeks of western-type diet. PHD1-/-LDLR-/- mice presented a sharp reduction in VLDL and LDL plasma cholesterol levels. In line, atherosclerotic plaque development, as measured by plaque area, necrotic core expansion and plaque stage was hampered in PHD1-/-LDLR-/- mice. Mechanistically, cholesterol-lowering in PHD1 deficient mice was a result of enhanced cholesterol excretion from blood to intestines and ultimately faeces. Additionally, flow cytometry of whole blood of these mice revealed significantly reduced counts of leucocytes and particularly of Ly6Chigh pro-inflammatory monocytes. In addition, when studying PHD1-/- in diet-induced obesity (14 weeks high-fat diet) mice were less glucose intolerant when compared with WT littermate controls. CONCLUSION: Overall, PHD1 knockout mice display a metabolic phenotype that generally is deemed protective for cardiovascular disease. Future studies should focus on the efficacy, safety, and gender-specific effects of PHD1 inhibition in humans, and unravel the molecular actors responsible for PHD1-driven, likely intestinal, and regulation of cholesterol metabolism.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Hiperglucemia , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxígeno , Prolil Hidroxilasas , Receptores de LDL
12.
J Pharmacol Exp Ther ; 350(1): 46-55, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24784568

RESUMEN

Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by the loss of survival of motor neuron (SMN) protein. Previously, we demonstrated that ISIS 396443, an antisense oligonucleotide (ASO) targeted to the SMN2 pre-mRNA, is a potent inducer of SMN2 exon 7 inclusion and SMN protein expression, and improves function and survival of mild and severe SMA mouse models. Here, we demonstrate that ISIS 396443 is the most potent ASO in central nervous system (CNS) tissues of adult mice, compared with several other chemically modified ASOs. We evaluated methods of ISIS 396443 delivery to the CNS and characterized its pharmacokinetics and pharmacodynamics in rodents and nonhuman primates (NHPs). Intracerebroventricular bolus injection is a more efficient method of delivering ISIS 396443 to the CNS of rodents, compared with i.c.v. infusion. For both methods of delivery, the duration of ISIS 396443-mediated SMN2 splicing correction is long lasting, with maximal effects still observed 6 months after treatment discontinuation. Administration of ISIS 396443 to the CNS of NHPs by a single intrathecal bolus injection results in widespread distribution throughout the spinal cord. Based upon these preclinical studies, we have advanced ISIS 396443 into clinical development.


Asunto(s)
Encéfalo/efectos de los fármacos , Atrofia Muscular Espinal/genética , Oligodesoxirribonucleótidos Antisentido/farmacología , Oligonucleótidos/farmacología , Empalme del ARN/efectos de los fármacos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Animales , Encéfalo/metabolismo , Femenino , Infusiones Intraventriculares , Inyecciones Intraventriculares , Macaca fascicularis , Masculino , Ratones , Ratones Noqueados , Atrofia Muscular Espinal/tratamiento farmacológico , Oligodesoxirribonucleótidos Antisentido/administración & dosificación , Oligodesoxirribonucleótidos Antisentido/farmacocinética , Oligodesoxirribonucleótidos Antisentido/uso terapéutico , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacocinética , Oligonucleótidos/uso terapéutico
13.
J Pharmacol Exp Ther ; 342(1): 150-62, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22505629

RESUMEN

Antisense oligonucleotides (ASO) containing 2'-O-methoxyethyl ribose (2'-MOE) modifications have been shown to possess both excellent pharmacokinetic properties and robust pharmacological activity in several animal models of human disease. 2'-MOE ASOs are generally well tolerated, displaying minimal to mild proinflammatory effect at doses far exceeding therapeutic doses. Although the vast majority of 2'-MOE ASOs are safe and well tolerated, a small subset of ASOs inducing acute inflammation in mice has been identified. The mechanism for these findings is not clear at this point, but the effects are clearly sequence-specific. One of those ASOs, ISIS 147420, causes a severe inflammatory response atypical of this class of oligonucleotides characterized by induction in interferon-ß (IFN-ß) at 48 h followed by acute transaminitis and extensive hepatocyte apoptosis and necrosis at 72 h. A large number of interferon-stimulated genes were significantly up-regulated in liver as early as 24 h. We speculated that a specific sequence motif might cause ISIS 147420 to be mistaken for viral RNA or DNA, thus triggering an acute innate immune response. ISIS 147420 toxicity was independent of Toll-like receptors, because there was no decrease in IFN-ß in Toll/interleukin-1 receptor-domain-containing adapter-inducing IFN-ß or Myd88-deficient mice. The involvement of cytosolic retinoic acid-inducible gene (RIG)-I-like pattern recognition receptors was also investigated. Pretreatment of mice with melanoma differentiation-associated gene 5 (MDA5) and IFN-ß promoter stimulator-1 ASOs, but not RIG-I or laboratory of genetics and physiology 2 (LGP2) ASOs, prevented the increase in IFN-ß and alanine aminotransferase induced by ISIS 147420. These results revealed a novel mechanism of oligonucleotide-mediated toxicity requiring both MDA5 and IPS-1 and resulting in the activation of the innate immune response.


Asunto(s)
ARN Helicasas DEAD-box/inmunología , ADN/inmunología , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Oligonucleótidos Antisentido/inmunología , Ribosa/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Alanina Transaminasa/genética , Alanina Transaminasa/inmunología , Alanina Transaminasa/metabolismo , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/genética , ADN/metabolismo , Hepatocitos/inmunología , Hepatocitos/metabolismo , Inmunidad Innata/genética , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1 , Interferón beta/genética , Interferón beta/inmunología , Interferón beta/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Oligonucleótidos Antisentido/genética , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Ribosa/genética , Ribosa/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo
14.
Mol Ther ; 19(12): 2178-85, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21971427

RESUMEN

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion in the huntingtin gene (HTT) that results in a toxic gain of function in the mutant huntingtin protein (mHTT). Reducing the expression of mHTT is therefore an attractive therapy for HD. However, wild-type HTT protein is essential for development and has critical roles in maintaining neuronal health. Therapies for HD that reduce wild-type HTT may therefore generate unintended negative consequences. We have identified single-nucleotide polymorphism (SNP) targets in the human HD population for the disease-specific targeting of the HTT gene. Using primary cells from patients with HD and the transgenic YAC18 and BACHD mouse lines, we developed antisense oligonucleotide (ASO) molecules that potently and selectively silence mHTT at both exonic and intronic SNP sites. Modification of these ASOs with S-constrained-ethyl (cET) motifs significantly improves potency while maintaining allele selectively in vitro. The developed ASO is potent and selective for mHTT in vivo after delivery to the mouse brain. We demonstrate that potent and selective allele-specific knockdown of the mHTT protein can be achieved at therapeutically relevant SNP sites using ASOs in vitro and in vivo.


Asunto(s)
Enfermedad de Huntington/terapia , Proteínas Mutantes/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Oligonucleótidos Antisentido/uso terapéutico , Polimorfismo de Nucleótido Simple/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Alelos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Silenciador del Gen , Terapia Genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Linaje , ARN Mensajero/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Expansión de Repetición de Trinucleótido/genética
15.
J Clin Invest ; 116(8): 2290-6, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16878173

RESUMEN

Neurotoxicity from accumulation of misfolded/mutant proteins is thought to drive pathogenesis in neurodegenerative diseases. Since decreasing levels of proteins responsible for such accumulations is likely to ameliorate disease, a therapeutic strategy has been developed to downregulate almost any gene in the CNS. Modified antisense oligonucleotides, continuously infused intraventricularly, have been demonstrated to distribute widely throughout the CNS of rodents and primates, including the regions affected in the major neurodegenerative diseases. Using this route of administration, we found that antisense oligonucleotides to superoxide dismutase 1 (SOD1), one of the most abundant brain proteins, reduced both SOD1 protein and mRNA levels throughout the brain and spinal cord. Treatment initiated near onset significantly slowed disease progression in a model of amyotrophic lateral sclerosis (ALS) caused by a mutation in SOD1. This suggests that direct delivery of antisense oligonucleotides could be an effective, dosage-regulatable means of treating neurodegenerative diseases, including ALS, where appropriate target proteins are known.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Animales , Secuencia de Bases , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Macaca mulatta , Enfermedad de la Neurona Motora/enzimología , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , Pliegue de Proteína , ARN Mensajero/genética , Ratas , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Función Ventricular
16.
Nucleic Acids Res ; 35(2): 687-700, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17182632

RESUMEN

A series of antisense oligonucleotides (ASOs) containing either 2'-O-methoxyethylribose (MOE) or locked nucleic acid (LNA) modifications were designed to investigate whether LNA antisense oligonucleotides (ASOs) have the potential to improve upon MOE based ASO therapeutics. Some, but not all, LNA containing oligonucleotides increased potency for reducing target mRNA in mouse liver up to 5-fold relative to the corresponding MOE containing ASOs. However, they also showed profound hepatotoxicity as measured by serum transaminases, organ weights and body weights. This toxicity was evident for multiple sequences targeting three different biological targets, as well as in mismatch control sequences having no known mRNA targets. Histopathological evaluation of tissues from LNA treated animals confirmed the hepatocellular involvement. Toxicity was observed as early as 4 days after a single administration. In contrast, the corresponding MOE ASOs showed no evidence for toxicity while maintaining the ability to reduce target mRNA. These studies suggest that while LNA ASOs have the potential to improve potency, they impose a significant risk of hepatotoxicity.


Asunto(s)
Hígado/efectos de los fármacos , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/toxicidad , Animales , Apoptosis , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado/patología , Hepatopatías/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Oligonucleótidos , Ratas
17.
Sci Rep ; 9(1): 14010, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31570767

RESUMEN

Chronic Kidney Disease is a growing problem across the world and can lead to end-stage kidney disease and cardiovascular disease. Fibrosis is the underlying mechanism that leads to organ dysfunction, but as yet we have no therapeutics that can influence this process. Ras monomeric GTPases are master regulators that direct many of the cytokines known to drive fibrosis to downstream effector cascades. We have previously shown that K-Ras is a key isoform that drives fibrosis in the kidney. Here we demonstrate that K-Ras expression and activation are increased in rodent models of CKD. By knocking down expression of K-Ras using antisense oligonucleotides in a mouse model of chronic folic acid nephropathy we can reduce fibrosis by 50% and prevent the loss of renal function over 3 months. In addition, we have demonstrated in vitro and in vivo that reduction of K-Ras expression is associated with a reduction in Jag1 expression; we hypothesise this is the mechanism by which targeting K-Ras has therapeutic benefit. In conclusion, targeting K-Ras expression with antisense oligonucleotides in a mouse model of CKD prevents fibrosis and protects against renal dysfunction.


Asunto(s)
Ácido Fólico/toxicidad , Riñón/patología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Insuficiencia Renal Crónica/prevención & control , Lesión Renal Aguda/complicaciones , Animales , Modelos Animales de Enfermedad , Fibrosis , Técnicas de Silenciamiento del Gen , Proteína Jagged-1/metabolismo , Masculino , Ratones , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología
18.
Sci Transl Med ; 10(465)2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30381411

RESUMEN

Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurodegenerative disorder characterized by cerebellar and retinal degeneration, and is caused by a CAG-polyglutamine repeat expansion in the ATAXIN-7 gene. Patients with SCA7 develop progressive cone-rod dystrophy, typically resulting in blindness. Antisense oligonucleotides (ASOs) are single-stranded chemically modified nucleic acids designed to mediate the destruction, prevent the translation, or modify the processing of targeted RNAs. Here, we evaluated ASOs as treatments for SCA7 retinal degeneration in representative mouse models of the disease after injection into the vitreous humor of the eye. Using Ataxin-7 aggregation, visual function, retinal histopathology, gene expression, and epigenetic dysregulation as outcome measures, we found that ASO-mediated Ataxin-7 knockdown yielded improvements in treated SCA7 mice. In SCA7 mice with retinal disease, intravitreal injection of Ataxin-7 ASOs also improved visual function despite initiating treatment after symptom onset. Using color fundus photography and autofluorescence imaging, we also determined the nature of retinal degeneration in human SCA7 patients. We observed variable disease severity and cataloged rapidly progressive retinal degeneration. Given the accessibility of neural retina, availability of objective, quantitative readouts for monitoring therapeutic response, and the rapid disease progression in SCA7, ASOs targeting ATAXIN-7 might represent a viable treatment for SCA7 retinal degeneration.


Asunto(s)
Ataxina-7/metabolismo , Proteínas Mutantes/metabolismo , Oligonucleótidos Antisentido/farmacología , Ataxias Espinocerebelosas/fisiopatología , Visión Ocular/efectos de los fármacos , Animales , Ataxina-7/genética , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inyecciones Intravítreas , Ratones , Oligonucleótidos Antisentido/administración & dosificación , Péptidos/metabolismo , Fenotipo , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Agregado de Proteínas/efectos de los fármacos , Retina/efectos de los fármacos , Retina/metabolismo , Degeneración Retiniana/complicaciones , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/patología
19.
J Clin Invest ; 128(1): 359-368, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29202483

RESUMEN

Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by duplication of peripheral myelin protein 22 (PMP22) and is the most common hereditary peripheral neuropathy. CMT1A is characterized by demyelination and axonal loss, which underlie slowed motor nerve conduction velocity (MNCV) and reduced compound muscle action potentials (CMAP) in patients. There is currently no known treatment for this disease. Here, we show that antisense oligonucleotides (ASOs) effectively suppress PMP22 mRNA in affected nerves in 2 murine CMT1A models. Notably, initiation of ASO treatment after disease onset restored myelination, MNCV, and CMAP almost to levels seen in WT animals. In addition to disease-associated gene expression networks that were restored with ASO treatment, we also identified potential disease biomarkers through transcriptomic profiling. Furthermore, we demonstrated that reduction of PMP22 mRNA in skin biopsies from ASO-treated rats is a suitable biomarker for evaluating target engagement in response to ASO therapy. These results support the use of ASOs as a potential treatment for CMT1A and elucidate potential disease and target engagement biomarkers for use in future clinical trials.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Neuronas Motoras/metabolismo , Proteínas de la Mielina/antagonistas & inhibidores , Oligodesoxirribonucleótidos Antisentido/farmacología , Piel/metabolismo , Potenciales de Acción/genética , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Proteínas de la Mielina/biosíntesis , Proteínas de la Mielina/genética , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Piel/patología
20.
Mol Ther Nucleic Acids ; 7: 200-210, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28624196

RESUMEN

The most common dominantly inherited ataxia, spinocerebellar ataxia type 3 (SCA3), is an incurable neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene that encodes an abnormally long polyglutamine tract in the disease protein, ATXN3. Mice lacking ATXN3 are phenotypically normal; hence, disease gene suppression offers a compelling approach to slow the neurodegenerative cascade in SCA3. Here we tested antisense oligonucleotides (ASOs) that target human ATXN3 in two complementary mouse models of SCA3: yeast artificial chromosome (YAC) MJD-Q84.2 (Q84) mice expressing the full-length human ATXN3 gene and cytomegalovirus (CMV) MJD-Q135 (Q135) mice expressing a human ATXN3 cDNA. Intracerebroventricular injection of ASOs resulted in widespread delivery to the most vulnerable brain regions in SCA3. In treated Q84 mice, three of five tested ASOs reduced disease protein levels by >50% in the diencephalon, cerebellum, and cervical spinal cord. Two ASOs also significantly reduced mutant ATXN3 in the mouse forebrain and resulted in no signs of astrogliosis or microgliosis. In Q135 mice expressing a single ATXN3 isoform via a cDNA transgene, ASOs did not result in similar robust ATXN3 silencing. Our results indicate that ASOs targeting full-length human ATXN3 would likely be well tolerated and could lead to a preventative therapy for SCA3.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda