Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Korean Med Sci ; 37(4): e30, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075829

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a heterogeneous disease with different age of onset, disease course, clinical symptoms, severity, and risk of comorbidity. The characteristics of children with AD also vary by age or country. However, little is known about the clinical characteristics of AD in Korean school-aged children and adolescents. Furthermore, there are few studies on phenotypic differences according to onset age. This study aimed to explore the clinical characteristics and phenotypes according to onset age and severity of AD in children and adolescents in Korea. METHODS: AD patients aged 6-18 years who presented to 18 hospitals nationwide were surveyed. The patients were examined for disease severity by pediatric allergy specialists, and data on history of other allergic diseases, familial allergy history, onset age, trigger factors, lesion sites, treatment history and quality of life were collected. The results of the patient's allergy test were also analyzed. The patients were classified into infancy-onset (< 2 years of age), preschool-onset (2-5 years of age), and childhood-onset (≥ 6 years of age) groups. Study population was analyzed for clinical features according to onset-age groups and severity groups. RESULTS: A total of 258 patients with a mean age of 10.62 ± 3.18 years were included in the study. Infancy-onset group accounted for about 60% of all patients and presented significantly more other allergic diseases, such as allergic rhinitis and asthma (P = 0.002 and P = 0.001, respectively). Food allergy symptoms and diagnoses were highly relevant to both earlier onset and more severe group. Inhalant allergen sensitization was significantly associated with both infancy-onset group and severe group (P = 0.012 and P = 0.024, respectively). A family history of food allergies was significantly associated with infancy-onset group (P = 0.036). Severe group was significantly associated with a family history of AD, especially a paternal history of AD (P = 0.048 and P = 0.004, respectively). Facial (periorbital, ear, and cheek) lesions, periauricular fissures, hand/foot eczema, and xerosis were associated with infancy-onset group. The earlier the onset of AD, the poorer the quality of life (P = 0.038). Systemic immunosuppressants were used in only 9.6% of the patients in the severe group. CONCLUSION: This study analyzed the clinical features of AD in Korean children and adolescents through a multicenter nationwide study and demonstrated the phenotypic differences according to onset age and severity. Considering the findings that the early-onset group is more severe and accompanied by more systemic allergic diseases, early management should be emphasized in young children and infants.


Asunto(s)
Edad de Inicio , Dermatitis Atópica/diagnóstico , Gravedad del Paciente , Adolescente , Asma/complicaciones , Asma/epidemiología , Niño , Conjuntivitis Alérgica/complicaciones , Conjuntivitis Alérgica/epidemiología , Dermatitis Atópica/epidemiología , Dermatitis Atópica/fisiopatología , Progresión de la Enfermedad , Hipersensibilidad a las Drogas/complicaciones , Hipersensibilidad a las Drogas/epidemiología , Femenino , Hipersensibilidad a los Alimentos/complicaciones , Hipersensibilidad a los Alimentos/epidemiología , Humanos , Masculino , Calidad de Vida/psicología , República de Corea/epidemiología , Rinitis Alérgica/complicaciones , Rinitis Alérgica/epidemiología
2.
Medicina (Kaunas) ; 58(4)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35454319

RESUMEN

Background andObjective: In the present study, a detailed investigation of substructural volume change in the hippocampus (HC) and amygdala (AMG) was performed and the association with clinical features in patients with mesial temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) determined. Methods: The present study included 22 patients with left-sided TLE-HS (LTLE-HS) and 26 patients with right-sided TLE-HS (RTLE-HS). In addition, 28 healthy controls underwent high-resolution T2-weighted image (T2WI) and T1-weighted image (T1WI) MRI scanning. Subfield analysis of HC and AMG was performed using FreeSurfer version 6.0. Results: Patients with TLE-HS showed a decrease in the volume of substructures in both HC and AMG, and this change was observed on the contralateral side and the ipsilateral side with HS. The volume reduction pattern of substructures showed laterality-dependent characteristics. Patients with LTLE-HS had smaller volumes of the ipsilateral subiculum (SUB), contralateral SUB, and ipsilateral cortical nucleus of AMG than patients with RTLE-HS. Patients with RTLE-HS had reduced ipsilateral cornu ammonis (CA) 2/3 and contralateral cortico-amygdaloid transition area (CAT) volumes. The relationship between clinical variables and subregions was different based on the lateralization of the seizure focus. Focal to bilateral tonic-clonic seizures (FTBTCS) was associated with contralateral and ipsilateral side subregions only in LTLE-HS. The abdominal FAS was associated with the volume reduction of AMG subregions only in LTLE-HS, but the volume reduction was less than in patients without FAS. Conclusions: The results indicate that unilateral TLE-HS is a bilateral disease that shows different laterality-dependent characteristics based on the subfield analysis of HC and AMG. Subfield volumes of HC and AMG were associated with clinical variables, and the more damaged substructures depended on laterality in TLE-HS. These findings support the evidence that LTLE-HS and RTLE-HS are disparate epilepsy entities rather than simply identical syndromes harboring a mesial temporal lesion. In addition, the presence of FAS supports good localization value, and abdominal FAS has a high localization value, especially in patients with LTLE-HS.


Asunto(s)
Epilepsia del Lóbulo Temporal , Enfermedades Neurodegenerativas , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/patología , Atrofia , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis/patología , Convulsiones , Lóbulo Temporal
3.
Medicina (Kaunas) ; 57(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203291

RESUMEN

Background and Objectives: Abnormal epileptic discharges in the brain can affect the central brain regions that regulate autonomic activity and produce cardiac symptoms, either at onset or during propagation of a seizure. These autonomic alterations are related to cardiorespiratory disturbances, such as sudden unexpected death in epilepsy. This study aims to investigate the differences in cardiac autonomic function between patients with temporal lobe epilepsy (TLE) and frontal lobe epilepsy (FLE) using ultra-short-term heart rate variability (HRV) analysis around seizures. Materials and Methods: We analyzed electrocardiogram (ECG) data recorded during 309 seizures in 58 patients with epilepsy. Twelve patients with FLE and 46 patients with TLE were included in this study. We extracted the HRV parameters from the ECG signal before, during and after the ictal interval with ultra-short-term HRV analysis. We statistically compared the HRV parameters using an independent t-test in each interval to compare the differences between groups, and repeated measures analysis of variance was used to test the group differences in longitudinal changes in the HRV parameters. We performed the Tukey-Kramer multiple comparisons procedure as the post hoc test. Results: Among the HRV parameters, the mean interval between heartbeats (RRi), normalized low-frequency band power (LF) and LF/HF ratio were statistically different between the interval and epilepsy types in the t-test. Repeated measures ANOVA showed that the mean RRi and RMSSD were significantly different by epilepsy type, and the normalized LF and LF/HF ratio significantly interacted with the epilepsy type and interval. Conclusions: During the pre-ictal interval, TLE patients showed an elevation in sympathetic activity, while the FLE patients showed an apparent increase and decrease in sympathetic activity when entering and ending the ictal period, respectively. The TLE patients showed a maintained elevation of sympathetic and vagal activity in the pos-ictal interval. These differences in autonomic cardiac characteristics between FLE and TLE might be relevant to the ictal symptoms which eventually result in SUDEP.


Asunto(s)
Epilepsia del Lóbulo Frontal , Epilepsia del Lóbulo Temporal , Sistema Nervioso Autónomo , Electroencefalografía , Epilepsia del Lóbulo Temporal/complicaciones , Frecuencia Cardíaca , Humanos , Convulsiones
4.
Eur Respir J ; 53(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30635296

RESUMEN

The lung is highly vulnerable during sepsis, yet its functional deterioration accompanied by disturbances in the pulmonary microcirculation is poorly understood. This study aimed to investigate how the pulmonary microcirculation is distorted in sepsis-induced acute lung injury (ALI) and reveal the underlying cellular pathophysiologic mechanism.Using a custom-made intravital lung microscopic imaging system in a murine model of sepsis-induced ALI, we achieved direct real-time visualisation of the pulmonary microcirculation and circulating cells in vivo We derived the functional capillary ratio (FCR) as a quantitative parameter for assessing the fraction of functional microvasculature in the pulmonary microcirculation and dead space.We identified that the FCR rapidly decreases in the early stage of sepsis-induced ALI. The intravital imaging revealed that this decrease resulted from the generation of dead space, which was induced by prolonged neutrophil entrapment within the capillaries. We further showed that the neutrophils had an extended sequestration time and an arrest-like dynamic behaviour, both of which triggered neutrophil aggregates inside the capillaries and arterioles. Finally, we found that Mac-1 (CD11b/CD18) was upregulated in the sequestered neutrophils and that a Mac-1 inhibitor restored the FCR and improved hypoxaemia.Using the intravital lung imaging system, we observed that Mac-1-upregulated neutrophil aggregates led to the generation of dead space in the pulmonary microcirculation that was recovered by a Mac-1 inhibitor in sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Pulmón/irrigación sanguínea , Antígeno de Macrófago-1/inmunología , Neutrófilos/citología , Sepsis/complicaciones , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/prevención & control , Animales , Anticuerpos Monoclonales/farmacología , Capilares , Modelos Animales de Enfermedad , Pulmón/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Microcirculación , Microscopía por Video , Sepsis/tratamiento farmacológico , Sepsis/patología
5.
Opt Express ; 22(10): 11465-75, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24921268

RESUMEN

The recent development of THz sources in a wide range of THz frequencies and power levels has led to greatly increased interest in potential biomedical applications such as cancer and burn wound diagnosis. However, despite its importance in realizing THz wave based applications, our knowledge of how THz wave irradiation can affect a live tissue at the cellular level is very limited. In this study, an acute inflammatory response caused by pulsed THz wave irradiation on the skin of a live mouse was analyzed at the cellular level using intravital laser-scanning confocal microscopy. Pulsed THz wave (2.7 THz, 4 µs pulsewidth, 61.4 µJ per pulse, 3Hz repetition), generated using compact FEL, was used to irradiate an anesthetized mouse's ear skin with an average power of 260 mW/cm(2) for 30 minutes using a high-precision focused THz wave irradiation setup. In contrast to in vitro analysis using cultured cells at similar power levels of CW THz wave irradiation, no temperature change at the surface of the ear skin was observed when skin was examined with an IR camera. To monitor any potential inflammatory response, resident neutrophils in the same area of ear skin were repeatedly visualized before and after THz wave irradiation using a custom-built laser-scanning confocal microscopy system optimized for in vivo visualization. While non-irradiated control skin area showed no changes in the number of resident neutrophils, a massive recruitment of newly infiltrated neutrophils was observed in the THz wave irradiated skin area after 6 hours, which suggests an induction of acute inflammatory response by the pulsed THz wave irradiation on the skin via a non-thermal process.


Asunto(s)
Microscopía Confocal/instrumentación , Traumatismos Experimentales por Radiación/patología , Radiodermatitis/patología , Piel/patología , Radiación Terahertz/efectos adversos , Animales , Diseño de Equipo , Ratones , Piel/efectos de la radiación
6.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617241

RESUMEN

Tumor metastasis, the main cause of death in cancer patients, requires outgrowth of tumor cells after their dissemination and residence in microscopic niches. Nutrient sufficiency is a determinant of such outgrowth1. Fatty acids (FA) can be metabolized by cancer cells for their energetic and anabolic needs but impair the cytotoxicity of T cells in the tumor microenvironment (TME)2,3, thereby supporting metastatic progression. However, despite the important role of FA in metastatic outgrowth, the regulation of intratumoral FA is poorly understood. In this report, we show that tumor endothelium actively promotes tumor growth and restricts anti-tumor cytolysis by transferring FA into developing metastatic tumors. This process uses transendothelial fatty acid transport via endosome cargo trafficking in a mechanism that requires mTORC1 activity. Thus, tumor burden was significantly reduced upon endothelial-specific targeted deletion of Raptor, a unique component of the mTORC1 complex (RptorECKO). In vivo trafficking of a fluorescent palmitic acid analog to tumor cells and T cells was reduced in RptorECKO lung metastatic tumors, which correlated with improved markers of T cell cytotoxicity. Combination of anti-PD1 with RAD001/everolimus, at a low dose that selectively inhibits mTORC1 in endothelial cells4, impaired FA uptake in T cells and reduced metastatic disease, corresponding to improved anti-tumor immunity. These findings describe a novel mechanism of transendothelial fatty acid transfer into the TME during metastatic outgrowth and highlight a target for future development of therapeutic strategies.

7.
PeerJ ; 10: e14243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340201

RESUMEN

Background: Causes of pediatric pollen food allergy syndrome (PFAS) differ depending on airborne pollen levels in a particular region. We aimed to analyze airborne pollen counts, IgE sensitization rates, and PFAS incidence among children with allergies in South Korea and Japan. Methods: This cross-sectional study included children aged 5-17 years with allergies in 2017. Airborne pollen samples were collected from Busan in South Korea, and Fukuoka and Tochigi in Japan. Questionnaires were used to assess bronchial asthma, seasonal allergic rhinitis, atopic dermatitis, food allergy, and PFAS. The serum IgE specific to Dermatophagoides pteronyssinus, pollen, tomato, and peach were investigated. Results: In total, 57, 56, and 20 patients from Busan, Fukuoka, and Tochigi, respectively, were enrolled. Airborne Japanese cedar and cypress pollen were predominant in Fukuoka and Tochigi, whereas pine and alder pollen were predominant in Busan. Children with allergies in Fukuoka and Tochigi had a significantly higher sensitization rate to Japanese cedar, cypress, juniper, orchard grass, ragweed, Japanese hop, and tomato compared with children in Busan. In Fukuoka and Tochigi, where Japanese cedar and cypress pollen were frequently scattered, high sensitizations among allergic children were observed. The sensitization rate was not affected by the pollen count in alder, grass, ragweed, and Japanese hop. In multivariable analysis, only alder sensitization was found to be associated with PFAS (odds ratio: 6.62, 95% confidence interval: 1.63-26.87, p = 0.008). In patients with PFAS in Busan and Tochigi, peach associated with birch allergen Bet v 1 was a causative food item for PFAS. Moreover, PFAS was associated with ragweed and Japanese hop pollen sensitization in Fukuoka. Conclusion: Regardless of pollen counts, alder pollen sensitization was associated with PFAS in children. Ragweed and Japanese hop pollen sensitization were associated with PFAS, particularly among children in southern Japan.


Asunto(s)
Alnus , Cryptomeria , Fluorocarburos , Hipersensibilidad a los Alimentos , Humanos , Niño , Estudios Transversales , Polen/efectos adversos , Hipersensibilidad a los Alimentos/epidemiología , Alérgenos , Síndrome , Ambrosia , Inmunoglobulina E
8.
J Clin Med ; 11(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35806980

RESUMEN

This study aims to compare directed transfer function (DTF), which is an effective connectivity analysis, derived from scalp EEGs between responder and nonresponder groups implanted with vagus-nerve stimulation (VNS). Twelve patients with drug-resistant epilepsy (six responders and six nonresponders) and ten controls were recruited. A good response to VNS was defined as a reduction of ≥50% in seizure frequency compared with the presurgical baseline. DTF was calculated in five frequency bands (delta, theta, alpha, beta, and broadband) and seven grouped electrode regions (left and right frontal, temporal, parieto-occipital, and midline) in three different states (presurgical, stimulation-on, and stimulation-off states). Responders showed presurgical nodal strength close to the control group in both inflow and outflow, whereas nonresponders exhibited increased inward and outward connectivity measures. Nonresponders also had increased inward and outward connectivity measures in the various brain regions and various frequency bands assessed compared with the control group when the stimulation was on or off. Our study demonstrated that the presurgical DTF profiles of responders were different from those of nonresponders. Moreover, a presurgical normal DTF profile may predict good responsiveness to VNS.

9.
Cancer Res Commun ; 2(7): 694-705, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36381236

RESUMEN

Glutamine is the most abundant non-essential amino acid in blood stream; yet it's concentration in tumor interstitium is markedly lower than that in the serum, reflecting the huge demand of various cell types in tumor microenvironment for glutamine. While many studies have investigated glutamine metabolism in tumor epithelium and infiltrating immune cells, the role of glutamine metabolism in tumor blood vessels remains unknown. Here, we report that inducible genetic deletion of glutaminase (GLS) specifically in host endothelium, GLSECKO, impairs tumor growth and metastatic dissemination in vivo. Loss of GLS decreased tumor microvascular density, increased perivascular support cell coverage, improved perfusion, and reduced hypoxia in mammary tumors. Importantly, chemotherapeutic drug delivery and therapeutic efficacy were improved in tumor-bearing GLSECKO hosts or in combination with GLS inhibitor, CB839. Mechanistically, loss of GLS in tumor endothelium resulted in decreased leptin levels, and exogenous recombinant leptin rescued tumor growth defects in GLSECKO mice. Together, these data demonstrate that inhibition of endothelial glutamine metabolism normalizes tumor vessels, reducing tumor growth and metastatic spread, improving perfusion, and reducing hypoxia, and enhancing chemotherapeutic delivery. Thus, targeting glutamine metabolism in host vasculature may improve clinical outcome in patients with solid tumors.


Asunto(s)
Glutaminasa , Glutamina , Ratones , Animales , Glutaminasa/genética , Glutamina/metabolismo , Leptina , Línea Celular Tumoral
10.
J Clin Invest ; 132(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36519543

RESUMEN

The lymph node (LN) is the primary site of alloimmunity activation and regulation during transplantation. Here, we investigated how fibroblastic reticular cells (FRCs) facilitate the tolerance induced by anti-CD40L in a murine model of heart transplantation. We found that both the absence of LNs and FRC depletion abrogated the effect of anti-CD40L in prolonging murine heart allograft survival. Depletion of FRCs impaired homing of T cells across the high endothelial venules (HEVs) and promoted formation of alloreactive T cells in the LNs in heart-transplanted mice treated with anti-CD40L. Single-cell RNA sequencing of the LNs showed that anti-CD40L promotes a Madcam1+ FRC subset. FRCs also promoted the formation of regulatory T cells (Tregs) in vitro. Nanoparticles (NPs) containing anti-CD40L were selectively delivered to the LNs by coating them with MECA-79, which binds to peripheral node addressin (PNAd) glycoproteins expressed exclusively by HEVs. Treatment with these MECA-79-anti-CD40L-NPs markedly delayed the onset of heart allograft rejection and increased the presence of Tregs. Finally, combined MECA-79-anti-CD40L-NPs and rapamycin treatment resulted in markedly longer allograft survival than soluble anti-CD40L and rapamycin. These data demonstrate that FRCs are critical to facilitating costimulatory blockade. LN-targeted nanodelivery of anti-CD40L could effectively promote heart allograft acceptance.


Asunto(s)
Ligando de CD40 , Supervivencia de Injerto , Ratones , Animales , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ganglios Linfáticos , Sirolimus/farmacología
11.
J Clin Invest ; 118(1): 64-78, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18079969

RESUMEN

Overexpression of the receptor tyrosine kinase EPH receptor A2 (EphA2) is commonly observed in aggressive breast cancer and correlates with a poor prognosis. However, while EphA2 has been reported to enhance tumorigenesis, proliferation, and MAPK activation in several model systems, other studies suggest that EphA2 activation diminishes these processes and inhibits the activity of MAPK upon ligand stimulation. In this study, we eliminated EphA2 expression in 2 transgenic mouse models of mammary carcinoma. EphA2 deficiency impaired tumor initiation and metastatic progression in mice overexpressing ErbB2 (also known as Neu) in the mammary epithelium (MMTV-Neu mice), but not in mice overexpressing the polyomavirus middle T antigen in mammary epithelium (MMTV-PyV-mT mice). Histologic and ex vivo analyses of MMTV-Neu mouse mammary epithelium indicated that EphA2 enhanced tumor proliferation and motility. Biochemical analyses revealed that EphA2 formed a complex with ErbB2 in human and murine breast carcinoma cells, resulting in enhanced activation of Ras-MAPK signaling and RhoA GTPase. Additionally, MMTV-Neu, but not MMTV-PyV-mT, tumors were sensitive to therapeutic inhibition of EphA2. These data suggest that EphA2 cooperates with ErbB2 to promote tumor progression in mice and may provide a novel therapeutic target for ErbB2-dependent tumors in humans. Moreover, EphA2 function in tumor progression appeared to depend on oncogene context, an important consideration for the application of therapies targeting EphA2.


Asunto(s)
Adenocarcinoma/metabolismo , Transformación Celular Neoplásica/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias Mamarias Experimentales/metabolismo , Receptor EphA2/metabolismo , Receptor ErbB-2/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/terapia , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Movimiento Celular/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/terapia , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia , Receptor EphA2/genética , Receptor ErbB-2/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
12.
Dev Dyn ; 239(12): 3226-34, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20960543

RESUMEN

Disease or malformation of heart valves is one of the leading causes of morbidity and mortality in both children and adults. These congenital anomalies can remain undetected until cardiac function is compromised, making it important to understand the underlying nature of these disorders. Here we show that ephrin-A1, a ligand for class A Eph receptor tyrosine kinases, regulates cardiac valve formation. Exogenous ephrin-A1-Fc or overexpression of ephrin-A1 in the heart inhibits epithelial-to-mesenchymal transformation (EMT) in chick atrioventricular cushion explants. In contrast, overexpression of wild-type EphA3 receptor promotes EMT via a kinase-dependent mechanism. To analyze ephrin-A1 in vivo, we generated an ephrin-A1 knockout mouse through gene targeting. Ephrin-A1 null animals are viable but exhibit impaired cardiac function. Loss of ephrin-A1 results in thickened aortic and mitral valves in newborn and adult animals. Analysis of early embryonic hearts revealed increased cellularity in outflow tract endocardial cushions and elevated mesenchymal marker expression, suggesting that excessive numbers of cells undergo EMT. Taken together, these data indicate that ephrin-A1 regulates cardiac valve development, making ephrin-A1-deficient mice a novel model for congenital heart defects.


Asunto(s)
Efrina-A1/metabolismo , Válvulas Cardíacas/embriología , Corazón/embriología , Morfogénesis/fisiología , Animales , Ecocardiografía , Efrina-A1/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Morfogénesis/genética
13.
Transl Vis Sci Technol ; 10(4): 31, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34004010

RESUMEN

Purpose: To establish a custom-built, high-speed 90 frame-per-second laser-scanning confocal microscope for real-time in vivo retinal imaging of individual flowing red blood cells (RBCs) in retinal vasculature of live mouse model. Methods: Fluorescently labeled RBCs were injected into mice of different ages (3 to 62 weeks old). Anti-CD31 antibody conjugated with Alexa Fluor 647 was injected to visualize retinal endothelial cells (ECs). Longitudinal and cross-sectional intravital retinal imaging of flowing RBCs and ECs was performed in two strains (C57BL/6 and Balb/c) by using the custom-built confocal microscope. Results: Simultaneous tracking of the routes of many fluorescently labeled individual RBCs flowing from a large artery and vein to a single capillary in the retina of live mice was achieved, which enabled in vivo measurement of retinal RBC flow velocities in each vessel type in growing mice from 3 to 62 weeks after birth. Average RBC flow velocities were gradually increased during growing from 3 to 14 weeks by more than two times. Then the average RBC flow velocity was maintained at about 20 mm/s in artery and 16 mm/s in vein until 62 weeks. Conclusions: Our study successfully established a custom-built high-speed 90-Hz retinal confocal microscope for measuring RBC flow velocity at the single cell level. It could be a useful tool to investigate the pathophysiology of various retinal diseases associated with blood flow impairment. Translational Relevance: This technological method could be a valuable assessment tool to help the development of novel therapeutics for retinal diseases.


Asunto(s)
Células Endoteliales , Vasos Retinianos , Animales , Estudios Transversales , Eritrocitos , Microscopía Intravital , Ratones , Ratones Endogámicos C57BL , Vasos Retinianos/diagnóstico por imagen
14.
Neuropsychiatr Dis Treat ; 17: 2421-2427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326640

RESUMEN

BACKGROUND AND OBJECTIVE: Subtraction of ictal SPECT coregistered to MRI (SISCOM) provides complementary information for detecting the ictal onset zone, especially in patients with MRI-negative focal epilepsy, and provides additional useful information for predicting long-term postresection outcomes. This study sought to investigate the relationship between surgical failure and increased cerebral blood flow (CBF) pattern using SPECT in patients with mesial temporal lobe epilepsy with unilateral hippocampal sclerosis (MTLE-HS). METHODS: Among 42 subjects who underwent anterior temporal lobectomy with amygdalohippocampectomy (ATL-AH) for MTLE-HS, 29 (69.0%) were seizure-free (SF group). Hyperperfusion was compared in 14 ipsilateral and contralateral brain regions in SISCOM images between the two groups. RESULTS: The pattern of ictal hyperperfusion in temporal regions did not vary significantly between the SF and non-seizure-free (NSF) groups. However, CBF increases in the contralateral occipital area was more frequent in the NSF group than in the SF group. Furthermore, ictal hyperperfusion of the ipsilateral occipital and contralateral parietal areas tended to be more frequent in the NSF group. CONCLUSION: The results indicate that poor ATL-AH surgical outcome is associated with a tendency of ictal hyperperfusion of the contralateral occipital cortex based on SISCOM analysis. The pattern of early ictal CBF changes implicating the propagation from temporal to occipital cortices can be considered a marker of poor surgical outcomes of ATL-AH in MTLE-HS patients.

15.
J Breast Cancer ; 24(5): 463-473, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34652077

RESUMEN

Immunoreactive dynamics of tumor-infiltrating lymphocytes (TILs) within the tumor microenvironment in breast cancer are not well understood. This study aimed to investigate the spatiotemporal cellular dynamics of TILs in breast cancer models. Breast cancer cells were implanted into the dorsal skinfold chamber of BALB/c nude mice, and T lymphocytes were adoptively transferred. Longitudinal intravital imaging was performed, and the spatiotemporal dynamics of TILs were assessed. In the 4T1 model, TILs progressively exhibited increased motility, and their motility inside the tumor was significantly higher than that outside the tumor. In the MDA-MB-231 model, the motility of TILs progressively decreased after an initial increase. TIL motility in the MDA-MB-231 and MCF-7 models differed significantly, suggesting an association between programmed death-ligand 1 expression levels and TIL motility, which warrants further investigation. Furthermore, intravital imaging of TILs can be a useful method for addressing dynamic interactions between TILs and breast cancer cells.

16.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33320840

RESUMEN

Rapidly proliferating tumor and immune cells need metabolic programs that support energy and biomass production. The amino acid glutamine is consumed by effector T cells and glutamine-addicted triple-negative breast cancer (TNBC) cells, suggesting that a metabolic competition for glutamine may exist within the tumor microenvironment, potentially serving as a therapeutic intervention strategy. Here, we report that there is an inverse correlation between glutamine metabolic genes and markers of T cell-mediated cytotoxicity in human basal-like breast cancer (BLBC) patient data sets, with increased glutamine metabolism and decreased T cell cytotoxicity associated with poor survival. We found that tumor cell-specific loss of glutaminase (GLS), a key enzyme for glutamine metabolism, improved antitumor T cell activation in both a spontaneous mouse TNBC model and orthotopic grafts. The glutamine transporter inhibitor V-9302 selectively blocked glutamine uptake by TNBC cells but not CD8+ T cells, driving synthesis of glutathione, a major cellular antioxidant, to improve CD8+ T cell effector function. We propose a "glutamine steal" scenario, in which cancer cells deprive tumor-infiltrating lymphocytes of needed glutamine, thus impairing antitumor immune responses. Therefore, tumor-selective targeting of glutamine metabolism may be a promising therapeutic strategy in TNBC.


Asunto(s)
Antineoplásicos/farmacología , Linfocitos T CD8-positivos/inmunología , Proteínas Portadoras/antagonistas & inhibidores , Glutamina/inmunología , Inmunidad Celular , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias de la Mama Triple Negativas/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Femenino , Glutamina/metabolismo , Xenoinjertos , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
17.
Mol Cancer Res ; 7(5): 615-23, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19435813

RESUMEN

Vav guanine nucleotide exchange factors modulate changes in cytoskeletal organization through activation of Rho, Rac, and Cdc42 small GTPases. Although Vav1 expression is restricted to the immune system, Vav2 and Vav3 are expressed in several tissues, including highly vascularized organs. Here, we provide the first evidence that Vav2 and Vav3 function within the tumor microenvironment to promote tumor growth, survival, and neovascularization. Host Vav2/3 deficiency reduced microvascular density, as well as tumor growth and/or survival, in transplanted B16 melanoma and Lewis lung carcinoma models in vivo. These defects were due in part to Vav2/3 deficiency in endothelial cells. Vav2/3-deficient endothelial cells displayed reduced migration in response to tumor cells in coculture migration assays, and failed to incorporate into tumor vessels and enhance tumor volume in tumor-endothelial cotransplantation experiments. These data suggest that Vav2/3 guanine nucleotide exchange factors play a critical role in host-mediated tumor progression and angiogenesis, particularly in tumor endothelium.


Asunto(s)
Neoplasias Experimentales/patología , Neovascularización Patológica/patología , Proteínas Proto-Oncogénicas c-vav/fisiología , Animales , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/fisiopatología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Técnicas de Cocultivo , Células Endoteliales/citología , Células Endoteliales/fisiología , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/patología , Melanoma Experimental/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/fisiopatología , Neovascularización Patológica/metabolismo , Proteínas Proto-Oncogénicas c-vav/deficiencia , Proteínas Proto-Oncogénicas c-vav/genética , Trasplante Homólogo , Carga Tumoral , Factor de von Willebrand/metabolismo
18.
Diabetes Metab J ; 44(1): 193-198, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31237131

RESUMEN

Longitudinal imaging of murine pancreas is technically challenging due to the mechanical softness of the tissue influenced by peristalsis. Here, we report a novel pancreatic imaging window for long-term stabilized cellular-level observation of the islets in the pancreas in vivo. By spatially separating the pancreas from the bowel movement and physiologic respiration with a metal plate integrated in the imaging window, we successfully tracked the pancreatic islets up to three weeks and visualized the dumbbell-shape transformation from the single islet. This window can be a useful tool for long-term cellular-level visualization of the microstructure in the pancreas.


Asunto(s)
Microscopía Intravital , Islotes Pancreáticos/citología , Páncreas/citología , Animales , Trasplante de Islotes Pancreáticos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales
19.
Transl Vis Sci Technol ; 9(6): 20, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32821517

RESUMEN

Purpose: To investigate the intraocular distribution and kinetics of antibodies and nanoparticles in the experimental model. Methods: Antibodies (whole IgG 149kDa, antigen-binding fragments 48.39 kDa) and four kinds of nondegradable nanoparticles (25, 50, 200, and 250 nm) were intravitreally injected in the right eye of New Zealand white rabbits. The average optical density and concentration were used to measure intraocular distribution and kinetics. Results: After intravitreal injection, antibodies were distributed throughout the vitreous humor and eliminated gradually into anterior and posterior routes. Fluorescence intensity decreased 1 day after injection and was not detected 25 days after injection. The nondegradable nanoparticles migrated posteriorly to the retina 7 days after injection onward and anteriorly to the aqueous humor from 1 hour to 1 day after injection. The fluorescence intensity of the nanoparticles was relatively stable in the vitreous humor, compared to antibodies. Nanoparticles accumulated on the internal limiting membrane of the retina with no penetration into deeper retinal tissue, whereas the smaller size 25 nm nanoparticles passed across the ciliary body and moved into choroid, retina, and suprachoroidal space. A gradual decrease of nanoparticles by their sizes in the vitreous after 30 days after injection was described as the percentage ratio: 61.1% (25 nm), 69.1% (50 nm), 78.6% (200nm), and 85.3% (250 nm). Conclusions: Our study revealed the in vivo intraocular distribution and kinetics of antibodies and nanoparticles with diverse sizes and the result might help to develop newer intraocular drugs and drug delivery systems to treat retinal diseases. Translational Relevance: These experimental results can be valuable data for human research.


Asunto(s)
Nanopartículas , Cuerpo Vítreo , Animales , Coroides , Inyecciones Intravítreas , Cinética , Conejos
20.
Biomed Opt Express ; 10(6): 2719-2729, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259046

RESUMEN

In vivo, longitudinal observation of tumorigenesis in a live mouse model over an extended time period has been actively pursued to obtain a better understanding of the cellular and molecular mechanism in a highly complex tumor microenvironment. However, common intravital imaging approaches based on a conventional laser scanning confocal or a two-photon microscope have been mostly limited to the observation of superficial parts of the solid tumor tissue. In this work, we implemented a small diameter needle-shaped side-view confocal endomicroscope that can be directly inserted into a solid tumor in a minimally-invasive manner in vivo. By inserting the side-view endomicroscope into the breast tumor from the surface, we achieved in vivo depth-wise cellular-level visualization of microvasculature and fluorescently labeled tumor cells located deeply inside the tumor. In addition, we successfully performed longitudinal depth-wise visualization of a growing breast tumor over three weeks in a live mouse model, which revealed dynamic changes in microvasculature such as a decreasing amount of intratumoral blood vessels over time.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda