Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Nature ; 610(7930): 61-66, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914677

RESUMEN

Digital logic circuits are based on complementary pairs of n- and p-type field effect transistors (FETs) via complementary metal oxide semiconductor technology. In three-dimensional (3D) or bulk semiconductors, substitutional doping of acceptor or donor impurities is used to achieve p- and n-type FETs. However, the controllable p-type doping of low-dimensional semiconductors such as two-dimensional (2D) transition-metal dichalcogenides (TMDs) has proved to be challenging. Although it is possible to achieve high-quality, low-resistance n-type van der Waals (vdW) contacts on 2D TMDs1-5, obtaining p-type devices by evaporating high-work-function metals onto 2D TMDs has not been realized so far. Here we report high-performance p-type devices on single- and few-layered molybdenum disulfide and tungsten diselenide based on industry-compatible electron beam evaporation of high-work-function metals such as palladium and platinum. Using atomic resolution imaging and spectroscopy, we demonstrate near-ideal vdW interfaces without chemical interactions between the 2D TMDs and 3D metals. Electronic transport measurements reveal that the Fermi level is unpinned and p-type FETs based on vdW contacts exhibit low contact resistance of 3.3 kΩ µm, high mobility values of approximately 190 cm2 V-1 s-1 at room temperature, saturation currents in excess of 10-5 A µm-1 and an on/off ratio of 107. We also demonstrate an ultra-thin photovoltaic cell based on n- and p-type vdW contacts with an open circuit voltage of 0.6 V and a power conversion efficiency of 0.82%.

2.
Nature ; 603(7901): 434-438, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296844

RESUMEN

Oxidation can deteriorate the properties of copper that are critical for its use, particularly in the semiconductor industry and electro-optics applications1-7. This has prompted numerous studies exploring copper oxidation and possible passivation strategies8. In situ observations have, for example, shown that oxidation involves stepped surfaces: Cu2O growth occurs on flat surfaces as a result of Cu adatoms detaching from steps and diffusing across terraces9-11. But even though this mechanism explains why single-crystalline copper is more resistant to oxidation than polycrystalline copper, the fact that flat copper surfaces can be free of oxidation has not been explored further. Here we report the fabrication of copper thin films that are semi-permanently oxidation resistant because they consist of flat surfaces with only occasional mono-atomic steps. First-principles calculations confirm that mono-atomic step edges are as impervious to oxygen as flat surfaces and that surface adsorption of O atoms is suppressed once an oxygen face-centred cubic (fcc) surface site coverage of 50% has been reached. These combined effects explain the exceptional oxidation resistance of ultraflat Cu surfaces.

3.
Nature ; 606(7912): 88-93, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650356

RESUMEN

Large-area single-crystal monolayers of two-dimensional (2D) materials such as graphene1-3, hexagonal boron nitride (hBN)4-6 and transition metal dichalcogenides7,8 have been grown. hBN is considered to be the 'ideal' dielectric for 2D-materials-based field-effect transistors (FETs), offering the potential for extending Moore's law9,10. Although hBN thicker than a monolayer is more desirable as substrate for 2D semiconductors11,12, highly uniform and single-crystal multilayer hBN growth has yet to be demonstrated. Here we report the epitaxial growth of wafer-scale single-crystal trilayer hBN by a chemical vapour deposition (CVD) method. Uniformly aligned hBN islands are found to grow on single-crystal Ni (111) at early stage and finally to coalesce into a single-crystal film. Cross-sectional transmission electron microscopy (TEM) results show that a Ni23B6 interlayer is formed (during cooling) between the single-crystal hBN film and Ni substrate by boron dissolution in Ni. There are epitaxial relationships between hBN and Ni23B6 and between Ni23B6 and Ni. We also find that the hBN film acts as a protective layer that remains intact during catalytic evolution of hydrogen, suggesting continuous single-crystal hBN. This hBN transferred onto the SiO2 (300 nm)/Si wafer acts as a dielectric layer to reduce electron doping from the SiO2 substrate in MoS2 FETs. Our results demonstrate high-quality single-crystal  multilayered hBN over large areas, which should open up new pathways for making it a ubiquitous substrate for 2D semiconductors.

4.
Nature ; 568(7750): 70-74, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918403

RESUMEN

As the dimensions of the semiconducting channels in field-effect transistors decrease, the contact resistance of the metal-semiconductor interface at the source and drain electrodes increases, dominating the performance of devices1-3. Two-dimensional (2D) transition-metal dichalcogenides such as molybdenum disulfide (MoS2) have been demonstrated to be excellent semiconductors for ultrathin field-effect transistors4,5. However, unusually high contact resistance has been observed across the interface between the metal and the 2D transition-metal dichalcogenide3,5-9. Recent studies have shown that van der Waals contacts formed by transferred graphene10,11 and metals12 on few-layered transition-metal dichalcogenides produce good contact properties. However, van der Waals contacts between a three-dimensional metal and a monolayer 2D transition-metal dichalcogenide have yet to be demonstrated. Here we report the realization of ultraclean van der Waals contacts between 10-nanometre-thick indium metal capped with 100-nanometre-thick gold electrodes and monolayer MoS2. Using scanning transmission electron microscopy imaging, we show that the indium and gold layers form a solid solution after annealing at 200 degrees Celsius and that the interface between the gold-capped indium and the MoS2 is atomically sharp with no detectable chemical interaction between the metal and the 2D transition-metal dichalcogenide, suggesting van-der-Waals-type bonding between the gold-capped indium and monolayer MoS2. The contact resistance of the indium/gold electrodes is 3,000 ± 300 ohm micrometres for monolayer MoS2 and 800 ± 200 ohm micrometres for few-layered MoS2. These values are among the lowest observed for three-dimensional metal electrodes evaporated onto MoS2, enabling high-performance field-effect transistors with a mobility of 167 ± 20 square centimetres per volt per second. We also demonstrate a low contact resistance of 220 ± 50 ohm micrometres on ultrathin niobium disulfide (NbS2) and near-ideal band offsets, indicative of defect-free interfaces, in tungsten disulfide (WS2) and tungsten diselenide (WSe2) contacted with indium alloy. Our work provides a simple method of making ultraclean van der Waals contacts using standard laboratory technology on monolayer 2D semiconductors.

5.
Nano Lett ; 24(26): 7979-7986, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829309

RESUMEN

Magnetic anisotropy in atomically thin correlated heterostructures is essential for exploring quantum magnetic phases for next-generation spintronics. Whereas previous studies have mostly focused on van der Waals systems, here we investigate the impact of dimensionality of epitaxially grown correlated oxides down to the monolayer limit on structural, magnetic, and orbital anisotropies. By designing oxide superlattices with a correlated ferromagnetic SrRuO3 and nonmagnetic SrTiO3 layers, we observed modulated ferromagnetic behavior with the change of the SrRuO3 thickness. Especially, for three-unit-cell-thick layers, we observe a significant 1500% improvement of the coercive field in the anomalous Hall effect, which cannot be solely attributed to the dimensional crossover in ferromagnetism. The atomic-scale heterostructures further reveal the systematic modulation of anisotropy for the lattice structure and orbital hybridization, explaining the enhanced magnetic anisotropy. Our findings provide valuable insights into engineering the anisotropic hybridization of synthetic magnetic crystals, offering a tunable spin order for various applications.

6.
Small ; 20(22): e2308672, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38155506

RESUMEN

Layered 2D transition metal dichalcogenides (TMDs) have been suggested as efficient substitutes for Pt-group metal electrocatalysts in the hydrogen evolution reaction (HER). However, poor catalytic activities in neutral and alkaline electrolytes considerably hinder their practical applications. Furthermore, the weak adhesion between TMDs and electrodes often impedes long-term durability and thus requires a binder. Here, a universal platform is reported for robust dual-atom doped 2D electrocatalysts with superior HER performance over a wide pH range media. V:Co-ReS2 on a wafer scale is directly grown on oxidized Ti foil by a liquid-phase precursor-assisted approach and subsequently used as highly efficient electrocatalysts. The catalytic performance surpasses that of Pt group metals in a high current regime (≥ 100 mA cm-2) at pH ≥ 7, with a high durability of more than 70 h in all media at 200 mA cm-2. First-principles calculations reveal that V:Co dual doping in ReS2 significantly reduces the water dissociation barrier and simultaneously enables the material to achieve the thermoneutral Gibbs free energy for hydrogen adsorption.

7.
Small ; 19(33): e2300223, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093184

RESUMEN

Memristors are drawing attention as neuromorphic hardware components because of their non-volatility and analog programmability. In particular, electrochemical metallization (ECM) memristors are extensively researched because of their linear conductance controllability. Two-dimensional materials as switching medium of ECM memristors give advantages of fast speed, low power consumption, and high switching uniformity. However, the multistate retention in the switching conductance range for the long-term reliable neuromorphic system has not been achieved using two-dimensional materials-based ECM memristors. In this study, the copper migration-controlled ECM memristor showing excellent multistate retention characteristics in the switching conductance range using molybdenum disulfide (MoS2 ) and aluminum oxide (Al2 O3 ) is proposed. The fabricated device exhibits gradual resistive switching with low switching voltage (<0.5 V), uniform switching (σ/µ âˆ¼ 0.07), and a wide switching range (>12). Importantly, excellent reliabilities with robustness to cycling stress and retention over 104 s for more than 5-bit states in the switching conductance range are achieved. Moreover, the contribution of the Al2 O3 layer to the retention characteristic is investigated through filament morphology observation using transmission electron microscopy (TEM) and copper migration component analysis. This study provides a practical approach to developing highly reliable memristors with exceptional switching performance.

8.
J Am Chem Soc ; 144(43): 19973-19980, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36239442

RESUMEN

Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.

9.
Small ; 18(52): e2205011, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36354161

RESUMEN

Metal halide perovskites (MHPs) have gained traction as emitters owing to their excellent optical properties, such as facile bandgap tuning, defect tolerance, and high color purity. Nevertheless, blue-emitting MHP light-emitting diodes (LEDs) show only marginal progress in device efficiency compared with green and red LEDs. Herein, the origin of the drop in efficiency of blue-emitting perovskite nanocrystals (PNCs) by mixing halides and the genesis of Ruddlesden-Popper faults (RPFs) in CsPbBrX Cl3-X nanocrystals is investigated. Using scanning transmission electron microscopy and density functional theory calculations, the authors have found that RPFs induce possible nonradiative recombination pathways owing to the high chloride vacancy concentration nearby. The authors further confirm that the blue-emitting PNCs do not show RPFs post-halide exchange in the CsPbBr3 nanocrystals. By introducing the post-halide exchange treatment, high-efficiency pure blue-emitting (464 nm) PNC-based LEDs with an external quantum efficiency of 2.1% and excellent spectral stability with a full-width at half-maximum of 14 nm are obtained.

10.
Small ; 18(18): e2107620, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35373528

RESUMEN

By controlling the configuration of polymorphic phases in high-k Hf0.5 Zr0.5 O2 thin films, new functionalities such as persistent ferroelectricity at an extremely small scale can be exploited. To bolster the technological progress and fundamental understanding of phase stabilization (or transition) and switching behavior in the research area, efficient and reliable mapping of the crystal symmetry encompassing the whole scale of thin films is an urgent requisite. Atomic-scale observation with electron microscopy can provide decisive information for discriminating structures with similar symmetries. However, it often demands multiple/multiscale analysis for cross-validation with other techniques, such as X-ray diffraction, due to the limited range of observation. Herein, an efficient and automated methodology for large-scale mapping of the crystal symmetries in polycrystalline Hf0.5 Zr0.5 O2 thin films is developed using scanning probe-based diffraction and a hybrid deep convolutional neural network at a 2 nm2 resolution. The results for the doped hafnia films are fully proven to be compatible with atomic structures revealed by microscopy imaging, not requiring intensive human input for interpretation.


Asunto(s)
Aprendizaje Profundo , Humanos , Difracción de Rayos X
11.
Small ; 18(20): e2106368, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35451163

RESUMEN

Advances in large-area and high-quality 2D transition metal dichalcogenides (TMDCs) growth are essential for semiconductor applications. Here, the gas-phase alkali metal-assisted metal-organic chemical vapor deposition (GAA-MOCVD) of 2D TMDCs is reported. It is determined that sodium propionate (SP) is an ideal gas-phase alkali-metal additive for nucleation control in the MOCVD of 2D TMDCs. The grain size of MoS2 in the GAA-MOCVD process is larger than that in the conventional MOCVD process. This method can be applied to the growth of various TMDCs (MoS2 , MoSe2 , WSe2 , and WSe2 ) and the generation of large-scale continuous films. Furthermore, the growth behaviors of MoS2 under different SP and oxygen injection time conditions are systematically investigated to determine the effects of SP and oxygen on nucleation control in the GAA-MOCVD process. It is found that the combination of SP and oxygen increases the grain size and nucleation suppression of MoS2 . Thus, the GAA-MOCVD with a precise and controllable supply of a gas-phase alkali metal and oxygen allows achievement of optimum growth conditions that maximizes the grain size of MoS2 . It is expected that GAA-MOCVD can provide a way for batch fabrication of large-scale atomically thin electronic devices based on 2D semiconductors.

12.
Small ; 17(49): e2103632, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34677915

RESUMEN

Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size-dependent activity in nanoparticles and thickness-dependent activity of thin films imply that the sub-surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub-surface layers was investigated by employing atomic-scale thickness control of the La0.7 Sr0.3 MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non-monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an "electrochemically-relevant depth" on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core-shell architectures.

13.
Faraday Discuss ; 227: 332-340, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523053

RESUMEN

In this work, we report the synthesis and characterization of mixed phase Nb1+xS2 nanoflakes prepared by chemical vapor deposition. The as-grown samples show a high density of flakes (thickness ∼50 nm) that form a continuous film. Raman and X-ray diffraction data show that the samples consist of both 2H and 3R phases, with the 2H phase containing a high concentration of Nb interstitials. These Nb interstitials sit in between the NbS2 layers to form Nb1+xS2. Cross-sectional Energy Dispersive Spectroscopy analysis with transmission electron microscopy suggests that the 2H Nb1+xS2 region is found in thinner flakes, while 3R NbS2 is observed in thicker regions of the films. The evolution of the phase from 2H Nb1+xS2 to 3R NbS2 may be attributed to the change of the growth environment from Nb-rich at the start of the growth to sulfur-rich at the latter stage. It was also found that the incorporation of Nb interstitials is highly dependent on the temperature of the NbCl5 precursor and the position of the substrate in the furnace. Samples grown at high NbCl5 temperature and with substrate located closer to the NbCl5 source show higher incorporation of Nb interstitials. Electrical measurements show linear I-V characteristics, indicating the metallic nature of the Nb1+xS2 film with relatively low resistivity of 4.1 × 10-3Ω cm.

14.
Nano Lett ; 20(1): 559-566, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31790269

RESUMEN

Phosphorene, a monolayer of black phosphorus (BP), is an elemental two-dimensional material with interesting physical properties, such as high charge carrier mobility and exotic anisotropic in-plane properties. To fundamentally understand these various physical properties, it is critically important to conduct an atomic-scale structural investigation of phosphorene, particularly regarding various defects and preferred edge configurations. However, it has been challenging to investigate mono- and few-layer phosphorene because of technical difficulties arising in the preparation of a high-quality sample and damages induced during the characterization process. Here, we successfully fabricate high-quality monolayer phosphorene using a controlled thinning process with transmission electron microscopy and subsequently perform atomic-resolution imaging. Graphene protection suppresses the e-beam-induced damage to multilayer BP and one-side graphene protection facilitates the layer-by-layer thinning of the samples, rendering high-quality monolayer and bilayer regions. We also observe the formation of atomic-scale crystalline edges predominantly aligned along the zigzag and (101) terminations, which is originated from edge kinetics under e-beam-induced sputtering process. Our study demonstrates a new method to image and precisely manipulate the thickness and edge configurations of air-sensitive two-dimensional materials.

15.
Nano Lett ; 20(10): 7413-7421, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32924501

RESUMEN

Nanoframe alloy structures represent a class of high-performance catalysts for the oxygen reduction reaction (ORR), owing to their high active surface area, efficient molecular accessibility, and nanoconfinement effect. However, structural and chemical instabilities of nanoframes remain an important challenge. Here, we report the synthesis of PtCu nanoframes constructed with an atomically ordered intermetallic structure (O-PtCuNF/C) showing high ORR activity, durability, and chemical stability. We rationally designed the O-PtCuNF/C catalyst by combining theoretical composition predictions with a silica-coating-mediated synthesis. The O-PtCuNF/C combines intensified strain and ligand effects from the intermetallic PtCu L11 structure and advantages of the nanoframes, resulting in superior ORR activity to disordered alloy PtCu nanoframes (D-PtCuNF/C) and commercial Pt/C catalysts. Importantly, the O-PtCuNF/C showed the highest ORR mass activity among PtCu-based catalysts. Furthermore, the O-PtCuNF/C exhibited higher ORR durability and far less etching of constituent atoms than D-PtCuNF/C and Pt/C, attesting to the chemically stable nature of the intermetallic structure.

16.
Nano Lett ; 20(11): 8353-8359, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33111527

RESUMEN

Visualizing the oxygen vacancy distributions is highly desirable for understanding the atomistic oxygen diffusion mechanisms in perovskites. In particular, the direct observation of the one-dimensional oxygen vacancy channels has not yet been achieved in perovskites with dual ion (i.e., cation and anion) ordering. Here, we perform atomic-resolution imaging of the one-dimensional oxygen vacancy channels and their structural dynamics in a NdBaCo2O5.5 double perovskite oxide. An in situ heating transmission electron microscopy investigation reveals the disordering of oxygen vacancy channels by local rearrangement of oxygen vacancies at the specific temperature. A density functional theory calculation suggests that the possible pathway of oxygen vacancy migration is a multistep route via Co-O and Nd-Ov (oxygen vacancy) sites. These findings could provide robust guidance for understanding the static and dynamic behaviors of oxygen vacancies in perovskite oxides.

17.
Nano Lett ; 20(4): 2443-2451, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32191480

RESUMEN

In optoelectronic devices based on two-dimensional (2D) semiconductor heterojunctions, the efficient charge transport of photogenerated carriers across the interface is a critical factor to determine the device performances. Here, we report an unexplored approach to boost the optoelectronic device performances of the WSe2-MoS2 p-n heterojunctions via the monolithic-oxidation-induced doping and resultant modulation of the interface band alignment. In the proposed device, the atomically thin WOx layer, which is directly formed by layer-by-layer oxidation of WSe2, is used as a charge transport layer for promoting hole extraction. The use of the ultrathin oxide layer significantly enhanced the photoresponsivity of the WSe2-MoS2 p-n junction devices, and the power conversion efficiency increased from 0.7 to 5.0%, maintaining the response time. The enhanced characteristics can be understood by the formation of the low Schottky barrier and favorable interface band alignment, as confirmed by band alignment analyses and first-principle calculations. Our work suggests a new route to achieve interface contact engineering in the heterostructures toward realizing high-performance 2D optoelectronics.

18.
Angew Chem Int Ed Engl ; 60(37): 20528-20534, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34263519

RESUMEN

Rational control of the coordination environment of atomically dispersed catalysts is pivotal to achieve desirable catalytic reactivity. We report the reversible control of coordination structure in atomically dispersed electrocatalysts via ligand exchange reactions to reversibly modulate their reactivity for oxygen reduction reaction (ORR). The CO-ligated atomically dispersed Rh catalyst exhibited ca. 30-fold higher ORR activity than the NHx -ligated catalyst, whereas the latter showed three times higher H2 O2 selectivity than the former. Post-treatments of the catalysts with CO or NH3 allowed the reversible exchange of CO and NHx ligands, which reversibly tuned oxidation state of metal centers and their ORR activity and selectivity. DFT calculations revealed that more reduced oxidation state of CO-ligated Rh site could further stabilize the *OOH intermediate, facilitating the two- and four-electron pathway ORR. The reversible ligand exchange reactions were generalized to Ir- and Pt-based catalysts.

19.
Angew Chem Int Ed Engl ; 60(29): 15912-15919, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33961725

RESUMEN

Dry reforming of methane (DRM) is a feasible solution to address the reduction of greenhouse gases stipulated by the Paris Climate Agreement, given that it adds value by converting trivial gases, CO2 and CH4 , simultaneously into useful syngas. However, the conventional Ni catalyst undergoes deactivation due to carbon coking and particle agglomeration. Here we demonstrate a highly efficient and durable DRM catalyst: exsolved Co-Ni-Fe ternary alloy nanoparticles on the layered perovskite PrBaMn1.7 Co0.1 Ni0.2 O5+δ produced by topotactic exsolution. This method readily allows the generation of a larger number of exsolved nanoparticles with enhanced catalytic activity above that of Ni monometallic and Co-Ni bimetallic particles. The enhancement is achieved by the upshift of the d-band center of Co-Ni-Fe relative to those of Co-Ni and Ni, meaning easier charge donation to the adsorbate. Furthermore, the exsolved catalyst shows exceptional stability, with continuous DRM operation for about 350 hours.

20.
Angew Chem Int Ed Engl ; 60(3): 1441-1449, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33043551

RESUMEN

Ordered mesoporous carbons (OMCs) have attracted considerable interest owing to their broad utility. OMCs reported to date comprise amorphous rod-like or tubular or graphitic rod-like frameworks, which exhibit tradeoffs between conductivity and surface area. Here we report ordered mesoporous carbons constructed with graphitic tubular frameworks (OMGCs) with tunable pore sizes and mesostructures via dual templating, using mesoporous silica and molybdenum carbide as exo- and endo-templates, respectively. OMGCs simultaneously realize high electrical conductivity and large surface area and pore volume. Benefitting from these features, Ru nanoparticles (NPs) supported on OMGC exhibit superior catalytic activity for alkaline hydrogen evolution reaction and single-cell performance for anion exchange membrane water electrolysis compared to Ru NPs on other OMCs and commercial catalysts. Further, the OMGC-based full-carbon symmetric cell demonstrates excellent performances for Li-ion capacitors.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda