Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Gastroenterology ; 159(4): 1311-1327.e19, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32619460

RESUMEN

BACKGROUND & AIMS: We investigated the transcriptome of esophageal squamous cell carcinoma (ESCC) cells, activity of gene regulatory (enhancer and promoter regions), and the effects of blocking epigenetic regulatory proteins. METHODS: We performed chromatin immunoprecipitation sequencing with antibodies against H3K4me1, H3K4me3, and H3K27ac and an assay for transposase-accessible chromatin to map the enhancer regions and accessible chromatin in 8 ESCC cell lines. We used the CRC_Mapper algorithm to identify core regulatory circuitry transcription factors in ESCC cell lines, and determined genome occupancy profiles for 3 of these factors. In ESCC cell lines, expression of transcription factors was knocked down with small hairpin RNAs, promoter and enhancer regions were disrupted by CRISPR/Cas9 genome editing, or bromodomains and extraterminal (BET) family proteins and histone deacetylases (HDACs) were inhibited with ARV-771 and romidepsin, respectively. ESCC cell lines were then analyzed by whole-transcriptome sequencing, immunoprecipitation, immunoblots, immunohistochemistry, and viability assays. Interactions between distal enhancers and promoters were identified and verified with circular chromosome conformation capture sequencing. NOD-SCID mice were given injections of modified ESCC cells, some mice where given injections of HDAC or BET inhibitors, and growth of xenograft tumors was measured. RESULTS: We identified super-enhancer-regulated circuits and transcription factors TP63, SOX2, and KLF5 as core regulatory factors in ESCC cells. Super-enhancer regulation of ALDH3A1 mediated by core regulatory factors was required for ESCC viability. We observed direct interactions between the promoter region of TP63 and functional enhancers, mediated by the core regulatory circuitry transcription factors. Deletion of enhancer regions from ESCC cells decreased expression of the core regulatory circuitry transcription factors and reduced cell viability; these same results were observed with knockdown of each core regulatory circuitry transcription factor. Incubation of ESCC cells with BET and HDAC disrupted the core regulatory circuitry program and the epigenetic modifications observed in these cells; mice given injections of HDAC or BET inhibitors developed smaller xenograft tumors from the ESCC cell lines. Xenograft tumors grew more slowly in mice given the combination of ARV-771 and romidepsin than mice given either agent alone. CONCLUSIONS: In epigenetic and transcriptional analyses of ESCC cell lines, we found the transcription factors TP63, SOX2, and KLF5 to be part of a core regulatory network that determines chromatin accessibility, epigenetic modifications, and gene expression patterns in these cells. A combination of epigenetic inhibitors slowed growth of xenograft tumors derived from ESCC cells in mice.


Asunto(s)
Epigénesis Genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción/genética , Transcripción Genética , Proteínas Supresoras de Tumor/genética , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Ensamble y Desensamble de Cromatina , Epigénesis Genética/efectos de los fármacos , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Transcriptoma , Carga Tumoral , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Biochem Biophys Res Commun ; 558: 189-195, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33940551

RESUMEN

In RNA field, the demarcation between coding and non-coding has been negotiated by the recent discovery of occasionally translated circular RNAs (circRNAs). Although absent of 5' cap structure, circRNAs can be translated cap-independently. Complementary intron-mediated overexpression is one of the most utilized methodologies for circRNA research but not without bearing echoing skepticism for its poorly defined mechanism and latent coexistent side products. In this study, leveraging such circRNA overexpression system, we have interrogated the protein-coding potential of 30 human circRNAs containing infinite open reading frames in HEK293T cells. Surprisingly, pervasive translation signals are detected by immunoblotting. However, intensive mutagenesis reveals that numerous translation signals are generated independently of circRNA synthesis. We have developed a dual tag strategy to isolate translation noise and directly demonstrate that the spurious translation signals originate from cryptically spliced linear transcripts. The concomitant linear RNA byproducts, presumably concatemers, can be translated to allow pseudo rolling circle translation signals, and can involve backsplicing junction (BSJ) to disqualify the BSJ-based evidence for circRNA translation. We also find non-AUG start codons may engage in the translation initiation of circRNAs. Taken together, our systematic evaluation sheds light on heterogeneous translational outputs from circRNA overexpression vector and comes with a caveat that ectopic overexpression technique necessitates extremely rigorous control setup in circRNA translation and functional investigation.


Asunto(s)
ARN Circular/genética , ARN Circular/metabolismo , Codón Iniciador , Células HEK293 , Humanos , Intrones , Modelos Genéticos , Mutagénesis , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Regulación hacia Arriba
3.
Nucleic Acids Res ; 47(3): 1255-1267, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30496486

RESUMEN

As the second most common malignant bone tumor in children and adolescents, Ewing sarcoma is initiated and exacerbated by a chimeric oncoprotein, most commonly, EWS-FLI1. In this study, we apply epigenomic analysis to characterize the transcription dysregulation in this cancer, focusing on the investigation of super-enhancer and its associated transcriptional regulatory mechanisms. We demonstrate that super-enhancer-associated transcripts are significantly enriched in EWS-FLI1 target genes, contribute to the aberrant transcriptional network of the disease, and mediate the exceptional sensitivity of Ewing sarcoma to transcriptional inhibition. Through integrative analysis, we identify MEIS1 as a super-enhancer-driven oncogene, which co-operates with EWS-FLI1 in transcriptional regulation, and plays a key pro-survival role in Ewing sarcoma. Moreover, APCDD1, another super-enhancer-associated gene, acting as a downstream target of both MEIS1 and EWS-FLI1, is also characterized as a novel tumor-promoting factor in this malignancy. These data delineate super-enhancer-mediated transcriptional deregulation in Ewing sarcoma, and uncover numerous candidate oncogenes which can be exploited for further understanding of the molecular pathogenesis for this disease.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Sarcoma de Ewing/genética , Transcripción Genética , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Humanos , Motivos de Nucleótidos/genética , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/patología , Transducción de Señal/genética
4.
Phys Rev Lett ; 124(6): 063002, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32109124

RESUMEN

We report the precision measurement of the absolute frequencies, hyperfine splitting, and 2P fine structure splitting in cold atoms of ^{6}Li. Using the stabilized optical frequency comb and developed heterodyne detection technique, the photon shot-noise limited optical spectroscopy is achieved. The measurement of absolute frequencies of D_{1} lines is reached with an uncertainty of about 1 kHz, which is 1 order of magnitude more accurate than previous measurements. The hyperfine splitting of the D_{1} line and 2P fine structure splitting of ^{6}Li are 26.103 1 (14) and 10 052.780 4 (18) MHz, respectively, in agreement with recent theoretical calculations. Our results could provide a benchmark to test the theory at the higher precision and help to resolve large discrepancies among previous experiments.

5.
EMBO Rep ; 19(1): 73-88, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29217659

RESUMEN

p63, more specifically its ΔNp63α isoform, plays essential roles in squamous cell carcinomas (SCCs), yet the mechanisms controlling its nuclear transport remain unknown. Nucleoporins (NUPs) are a family of proteins building nuclear pore complexes (NPC) and mediating nuclear transport across the nuclear envelope. Recent evidence suggests a cell type-specific function for certain NUPs; however, the significance of NUPs in SCC biology remains unknown. In this study, we show that nucleoporin 62 (NUP62) is highly expressed in stratified squamous epithelia and is further elevated in SCCs. Depletion of NUP62 inhibits proliferation and augments differentiation of SCC cells. The impaired ability to maintain the undifferentiated status is associated with defects in ΔNp63α nuclear transport. We further find that differentiation-inducible Rho kinase reduces the interaction between NUP62 and ΔNp63α by phosphorylation of phenylalanine-glycine regions of NUP62, attenuating ΔNp63α nuclear import. Our results characterize NUP62 as a gatekeeper for ΔNp63α and uncover its role in the control of cell fate through regulation of ΔNp63α nuclear transport in SCC.


Asunto(s)
Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de Complejo Poro Nuclear/genética , Neoplasias Cutáneas/genética , Neoplasias del Cuello Uterino/genética , Quinasas Asociadas a rho/genética , Transporte Activo de Núcleo Celular/genética , Secuencia de Aminoácidos , Atlas como Asunto , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Diferenciación Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Biología Computacional , Citosol/metabolismo , Femenino , Células HEK293 , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Fosforilación , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Quinasas Asociadas a rho/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(15): 3981-3986, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28356518

RESUMEN

ZBTB transcription factors orchestrate gene transcription during tissue development. However, their roles in glioblastoma (GBM) remain unexplored. Here, through a functional screening of ZBTB genes, we identify that BCL6 is required for GBM cell viability and that BCL6 overexpression is associated with worse prognosis. In a somatic transgenic mouse model, depletion of Bcl6 inhibits the progression of KrasG12V-driven high-grade glioma. Transcriptome analysis demonstrates the involvement of BCL6 in tumor protein p53 (TP53), erythroblastic leukemia viral oncogene homolog (ErbB), and MAPK signaling pathways. Indeed, BCL6 represses the expression of wild-type p53 and its target genes in GBM cells. Knockdown of BCL6 augments the activation of TP53 pathway in response to radiation. Importantly, we discover that receptor tyrosine kinase AXL is a transcriptional target of BCL6 in GBM and mediates partially the regulatory effects of BCL6 on both MEK-ERK (mitogen-activated protein/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase) and S6K-RPS6 (ribosomal protein S6 kinase-ribosomal protein S6) axes. Similar to BCL6 silencing, depletion of AXL profoundly attenuates GBM proliferation both in vitro and in vivo. Moreover, targeted inhibition of BCL6/nuclear receptor corepressor 1 (NCoR) complex by peptidomimetic inhibitor not only significantly decreases AXL expression and the activity of MEK-ERK and S6K-RPS6 cascades but also displays a potent antiproliferative effect against GBM cells. Together, these findings uncover a glioma-promoting role of BCL6 and provide the rationale of targeting BCL6 as a potential therapeutic approach.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Gefitinib , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones Mutantes , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-6/genética , Quinazolinas/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa del Receptor Axl
7.
Gastroenterology ; 154(8): 2137-2151.e1, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29454790

RESUMEN

BACKGROUND & AIMS: Long non-coding RNAs (lncRNAs) are expressed in tissue-specific pattern, but it is not clear how these are regulated. We aimed to identify squamous cell carcinoma (SCC)-specific lncRNAs and investigate mechanisms that control their expression and function. METHODS: We studied expression patterns and functions of 4 SCC-specific lncRNAs. We obtained 113 esophageal SCC (ESCC) and matched non-tumor esophageal tissues from a hospital in Shantou City, China, and performed quantitative reverse transcription polymerase chain reaction assays to measure expression levels of LINC01503. We collected clinical data from patients and compared expression levels with survival times. LINC01503 was knocked down using small interfering RNAs and oligonucleotides in TE7, TE5, and KYSE510 cell lines and overexpressed in KYSE30 cells. Cells were analyzed by chromatin immunoprecipitation sequencing, luciferase reporter assays, colony formation, migration and invasion, and mass spectrometry analyses. Cells were injected into nude mice and growth of xenograft tumors was measured. LINC01503 interaction with proteins was studied using fluorescence in situ hybridization, RNA pulldown, and RNA immunoprecipitation analyses. RESULTS: We identified a lncRNA, LINC01503, which is regulated by a super enhancer and is expressed at significantly higher levels in esophageal and head and neck SCCs than in non-tumor tissues. High levels in SCCs correlated with shorter survival times of patients. The transcription factor TP63 bound to the super enhancer at the LINC01503 locus and activated its transcription. Expression of LINC01503 in ESCC cell lines increased their proliferation, colony formation, migration, and invasion. Knockdown of LINC01503 in SCC cells reduced their proliferation, colony formation, migration, and invasion, and the growth of xenograft tumors in nude mice. Expression of LINC01503 in ESCC cell lines reduced ERK2 dephosphorylation by DUSP6, leading to activation of ERK signaling via MAPK. LINC01503 disrupted the interaction between EBP1 and the p85 subunit of PI3K, increasing AKT signaling. CONCLUSIONS: We identified an lncRNA, LINC01503, which is increased in SCC cells compared with non-tumor cells. Increased expression of LINC01503 promotes ESCC cell proliferation, migration, invasion, and growth of xenograft tumors. It might be developed as a biomarker of aggressive SCCs in patients.


Asunto(s)
Carcinogénesis/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , China , Elementos de Facilitación Genéticos/genética , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Interferencia de ARN , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Pathol ; 246(1): 89-102, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29926931

RESUMEN

Characterising the activated oncogenic signalling that leads to advanced breast cancer is of clinical importance. Here, we showed that SET domain, bifurcated 1 (SETDB1), a histone H3 lysine 9 methyltransferase, is aberrantly expressed and behaves as an oncogenic driver in breast cancer. SETDB1 enhances c-MYC and cyclin D1 expression by promoting the internal ribosome entry site (IRES)-mediated translation of MYC/CCND1 mRNA, resulting in prominent signalling of c-MYC to promote cell cycle progression, and provides a growth/self-renewal advantage to breast cancer cells. The activated c-MYC-BMI1 axis is essential for SETDB1-mediated breast tumourigenesis, because silencing of either c-MYC or BMI1 profoundly impairs the enhanced growth/colony formation conferred by SETDB1. Furthermore, c-MYC directly binds to the SETDB1 promoter region and enhances its transcription, suggesting a positive regulatory interplay between SETDB1 and c-MYC. In this study, we identified SETDB1 as a prominent oncogene and characterised the underlying mechanism whereby SETDB1 drives breast cancer, providing a therapeutic rationale for targeting SETDB1-BMI1 signalling in breast cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias de la Mama/enzimología , Carcinogénesis/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteína Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Ciclo Celular , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , N-Metiltransferasa de Histona-Lisina , Humanos , Células MCF-7 , Ratones , Oncogenes , Complejo Represivo Polycomb 1/genética , Proteína Metiltransferasas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Activación Transcripcional
9.
Gut ; 67(10): 1769-1779, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28860350

RESUMEN

OBJECTIVES: Oesophageal squamous cell carcinoma (OSCC) and adenocarcinoma (OAC) are distinct cancers in terms of a number of clinical and epidemiological characteristics, complicating the design of clinical trials and biomarker developments. We analysed 1048 oesophageal tumour-germline pairs from both subtypes, to characterise their genomic features, and biological and clinical significance. DESIGN: Previously exome-sequenced samples were re-analysed to identify significantly mutated genes (SMGs) and mutational signatures. The biological functions of novel SMGs were investigated using cell line and xenograft models. We further performed whole-genome bisulfite sequencing and chromatin immunoprecipitation (ChIP)-seq to characterise epigenetic alterations. RESULTS: OSCC and OAC displayed nearly mutually exclusive sets of driver genes, indicating that they follow independent developmental paths. The combined sample size allowed the statistical identification of a number of novel subtype-specific SMGs, mutational signatures and prognostic biomarkers. Particularly, we identified a novel mutational signature similar to Catalogue Of Somatic Mutations In Cancer (COSMIC)signature 16, which has prognostic value in OSCC. Two newly discovered SMGs, CUL3 and ZFP36L2, were validated as important tumour-suppressors specific to the OSCC subtype. We further identified their additional loss-of-function mechanisms. CUL3 was homozygously deleted specifically in OSCC and other squamous cell cancers (SCCs). Notably, ZFP36L2 is associated with super-enhancer in healthy oesophageal mucosa; DNA hypermethylation in its super-enhancer reduced active histone markers in squamous cancer cells, suggesting an epigenetic inactivation of a super-enhancer-associated SCC suppressor. CONCLUSIONS: These data comprehensively contrast differences between OSCC and OAC at both genomic and epigenomic levels, and reveal novel molecular features for further delineating the pathophysiological mechanisms and treatment strategies for these cancers.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Proteínas Cullin/genética , Neoplasias Esofágicas/genética , Factores de Transcripción/genética , Adenocarcinoma/patología , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Humanos , Mutación con Pérdida de Función , Pronóstico
10.
Opt Express ; 26(14): 18699-18707, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114043

RESUMEN

Laser light at 578 nm is frequency-stabilized to two independent 30-cm-long Fabry-Pérot cavities. To achieve a thermal-noise-limited cavity length stability, the geometry and support configuration of the Fabry-Pérot cavities are optimized. The fractional frequency instability of each cavity-stabilized laser system is 2 × 10-16 at 1 s averaging time, approaching to the thermal-noise-induced length instability of the reference cavity. The most probable linewidth of each laser system is about 0.2 Hz, and the laser frequency noise at Fourier frequency of 1 Hz is 0.1 Hz/√Hz.

11.
Gut ; 66(8): 1358-1368, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27196599

RESUMEN

OBJECTIVES: Oesophageal squamous cell carcinoma (OSCC) is an aggressive malignancy and the major histological subtype of oesophageal cancer. Although recent large-scale genomic analysis has improved the description of the genetic abnormalities of OSCC, few targetable genomic lesions have been identified, and no molecular therapy is available. This study aims to identify druggable candidates in this tumour. DESIGN: High-throughput small-molecule inhibitor screening was performed to identify potent anti-OSCC compounds. Whole-transcriptome sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) were conducted to decipher the mechanisms of action of CDK7 inhibition in OSCC. A variety of in vitro and in vivo cellular assays were performed to determine the effects of candidate genes on OSCC malignant phenotypes. RESULTS: The unbiased high-throughput small-molecule inhibitor screening led us to discover a highly potent anti-OSCC compound, THZ1, a specific CDK7 inhibitor. RNA-Seq revealed that low-dose THZ1 treatment caused selective inhibition of a number of oncogenic transcripts. Notably, further characterisation of the genomic features of these THZ1-sensitive transcripts demonstrated that they were frequently associated with super-enhancer (SE). Moreover, SE analysis alone uncovered many OSCC lineage-specific master regulators. Finally, integrative analysis of both THZ1-sensitive and SE-associated transcripts identified a number of novel OSCC oncogenes, including PAK4, RUNX1, DNAJB1, SREBF2 and YAP1, with PAK4 being a potential druggable kinase. CONCLUSIONS: Our integrative approaches led to a catalogue of SE-associated master regulators and oncogenic transcripts, which may significantly promote both the understanding of OSCC biology and the development of more innovative therapies.


Asunto(s)
Acrilamidas/farmacología , Aminopiridinas/farmacología , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Expresión Génica/efectos de los fármacos , Fenilendiaminas/farmacología , Pirimidinas/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Esofágicas/tratamiento farmacológico , Femenino , Perfilación de la Expresión Génica , Proteínas del Choque Térmico HSP40/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Trasplante de Neoplasias , Oncogenes/genética , Fosfoproteínas/genética , Análisis de Secuencia de ARN , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Factores de Transcripción , Transcriptoma , Proteínas Señalizadoras YAP , Quinasas p21 Activadas/genética , Quinasa Activadora de Quinasas Ciclina-Dependientes
12.
Opt Lett ; 41(18): 4368-71, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27628399

RESUMEN

We present a technique for the coherence transfer of laser light through a fiber link, where the optical phase noise induced by environmental perturbation via the fiber link is compensated by remote users. When compensating the fiber noise by remote users, the time base at the remote site independent from that at the local site does not destroy the performance of the fiber output light. Using this technique, we demonstrate the transfer of subhertz-linewidth laser light through a 25-km-long, lab-based spooled fiber. After being compensated, the relative linewidth between the fiber input and output light is 1 mHz, and the relative frequency instability is 4×10-17 at 1 s averaging time and scales down to 2×10-19 at 800 s averaging time. The frequency uncertainty of the light after transferring through the fiber relative to that of the input light is 3.0×10-19. This system is suitable for the simultaneous transfer of an optical signal to a number of end users within a city.

13.
Mol Carcinog ; 54(10): 1205-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044025

RESUMEN

DNAJB6 is a member of the heat shock protein 40 (Hsp40) family. We here investigated the clinical correlation and biological role of DNAJB6 overexpression in colorectal cancer (CRC). The expression of DNAJB6 protein was examined in 200 cases of colorectal adenocarcinomas by immunohistochemistry (IHC) technology. Gene transfection and RNA interference were performed to determine the effect of DNAJB6 expression on the invasion of CRC cells and to explore the underlying molecular mechanisms in vitro and in vivo. Overexpression of DNAJB6 was found in 39% (78/200) of the CRC tissues, especially in tumors at pT4 as compared with at pT1-3 (P = 0.02). A Kaplan-Meier survival analysis revealed a correlation between DNAJB6 expression and overall survival (OS) times (P = 0.003). Multivariate analysis confirmed that DNAJB6 overexpression was an independent prognostic factor for CRC (P = 0.002). RNA interference-mediated silencing of the DNAJB6 gene inhibited the invasion of CRC cells in vitro were accompanied by a significant reduction in the protein levels of IQ-domain GTPase-activating protein 1 (IQGAP1) and phosphorylated ERK (pERK). An in vivo assay showed that inhibition of DNAJB6 expression decreased the lung metastases of CRC cells. IHC analysis of serial sections showed that there was a positive correlation between DNAJB6 and IQGAP1 expression in primary CRC tissues (P = 0.013). The data suggest that DNAJB6 plays an important oncogenic role in CRC cell invasion by up-regulating IQGAP1 and activating the ERK signaling pathway and that DNAJB6 may be used as a prognostic marker for CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas del Choque Térmico HSP40/genética , Sistema de Señalización de MAP Quinasas/genética , Chaperonas Moleculares/genética , Invasividad Neoplásica/genética , Proteínas del Tejido Nervioso/genética , Transducción de Señal/genética , Proteínas Activadoras de ras GTPasa/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Invasividad Neoplásica/patología , Fosforilación/genética , Pronóstico , Interferencia de ARN/fisiología , Regulación hacia Arriba/genética
14.
Opt Express ; 23(4): 5134-46, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836547

RESUMEN

The temperature stability of optical reference cavities is significant in state-of-the-art ultra-stable narrow-linewidth laser systems. In this paper, the thermal time constant and thermal sensitivity of reference cavities are analyzed when reference cavities respond to environmental perturbations via heat transfer of thermal conduction and thermal radiation separately. The analysis as well as simulation results indicate that a reference cavity enclosed in multiple layers of thermal shields with larger mass, higher thermal capacity and lower emissivity is found to have a larger thermal time constant and thus a smaller sensitivity to environmental temperature perturbations. The design of thermal shields for reference cavities may vary according to experimentally achievable temperature stability and the coefficient of thermal expansion of reference cavities. A temperature fluctuation-induced length instability of reference cavities as low as 6 × 10(-16) on a day timescale can be achieved if a two-layer thermal shield is inserted between a cavity with the coefficient of thermal expansion of 1 × 10(-10) /K and an outer vacuum chamber with temperature fluctuation amplitude of 1 mK and period of 24 hours.

15.
Neuro Oncol ; 26(8): 1438-1452, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38554116

RESUMEN

BACKGROUND: The mesenchymal (MES) subtype of glioblastoma (GBM) is believed to be influenced by both cancer cell-intrinsic alterations and extrinsic cellular interactions, yet the underlying mechanisms remain unexplored. METHODS: Identification of microglial heterogeneity by bioinformatics analysis. Transwell migration, invasion assays, and tumor models were used to determine gene function and the role of small molecule inhibitors. RNA sequencing, chromatin immunoprecipitation, and dual-luciferase reporter assays were performed to explore the underlying regulatory mechanisms. RESULTS: We identified the inflammatory microglial subtype of tumor-associated microglia (TAM) and found that its specific gene integrin beta 2 (ITGB2) was highly expressed in TAM of MES GBM tissues. Mechanistically, the activation of ITGB2 in microglia promoted the interaction between the SH2 domain of STAT3 and the cytoplasmic domain of ITGB2, thereby stimulating the JAK1/STAT3/IL-6 signaling feedback to promote the MES transition of GBM cells. Additionally, microglia communicated with GBM cells through the interaction between the receptor ITGB2 on microglia and the ligand ICAM-1 on GBM cells, while an increased secretion of ICAM-1 was induced by the proinflammatory cytokine leukemia inhibitory factor (LIF). Further studies demonstrated that inhibition of cyclin-dependent kinase 7 substantially reduced the recruitment of SNW1 to the super-enhancer of LIF, resulting in transcriptional inhibition of LIF. We identified notoginsenoside R1 as a novel LIF inhibitor that exhibited synergistic effects in combination with temozolomide. CONCLUSIONS: Our research reveals that the epigenetic-mediated interaction of GBM cells with TAM drives the MES transition of GBM and provides a novel therapeutic avenue for patients with MES GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Factor Inhibidor de Leucemia , Microglía , Transducción de Señal , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Humanos , Microglía/metabolismo , Microglía/patología , Ratones , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Animales , Factor Inhibidor de Leucemia/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Factor de Transcripción STAT3/metabolismo , Movimiento Celular
16.
Nat Commun ; 15(1): 5631, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965210

RESUMEN

Transposable elements (TEs) contribute to gene expression regulation by acting as cis-regulatory elements that attract transcription factors and epigenetic regulators. This research aims to explore the functional and clinical implications of transposable element-related molecular events in hepatocellular carcinoma, focusing on the mechanism through which liver-specific accessible TEs (liver-TEs) regulate adjacent gene expression. Our findings reveal that the expression of HNF4A is inversely regulated by proximate liver-TEs, which facilitates liver cancer cell proliferation. Mechanistically, liver-TEs are predominantly occupied by the histone demethylase, KDM1A. KDM1A negatively influences the methylation of histone H3 Lys4 (H3K4) of liver-TEs, resulting in the epigenetic silencing of HNF4A expression. The suppression of HNF4A mediated by KDM1A promotes liver cancer cell proliferation. In conclusion, this study uncovers a liver-TE/KDM1A/HNF4A regulatory axis that promotes liver cancer growth and highlights KDM1A as a promising therapeutic target. Our findings provide insight into the transposable element-related molecular mechanisms underlying liver cancer progression.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Elementos Transponibles de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 4 del Hepatocito , Histona Demetilasas , Neoplasias Hepáticas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Proliferación Celular/genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Elementos Transponibles de ADN/genética , Animales , Línea Celular Tumoral , Ratones , Histonas/metabolismo , Histonas/genética , Silenciador del Gen , Masculino , Ratones Desnudos
17.
Front Immunol ; 15: 1330785, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440724

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is the main prevalent histological subtype and accounts for 85% of esophageal cancer cases worldwide. Traditional treatment for ESCC involves chemotherapy, radiotherapy, and surgery. However, the overall prognosis remains unfavorable. Recently, immune checkpoint blockade (ICB) therapy using anti-programmed cell death-1 (PD-1)/PD-1 ligand (PD-L1) antibodies have not only achieved remarkable benefits in the clinical management of ESCC but have also completely changed the treatment approach for this cancer. In just a few years, ICB therapy has rapidly advanced and been added to standard first-line treatment regimen in patients with ESCC. However, preoperative immunotherapy is yet to be approved. In this review, we summarize the ICB antibodies commonly used in clinical immunotherapy of ESCC, and discuss the advances of immunotherapy combined with chemotherapy and radiotherapy in the perioperative treatment of ESCC, aiming to provide reference for clinical management of ESCC patients across the whole course of treatment.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/terapia , Neoplasias Esofágicas/terapia , Receptor de Muerte Celular Programada 1 , Inmunoterapia , Radioinmunoterapia , Anticuerpos
18.
Transl Psychiatry ; 14(1): 229, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816410

RESUMEN

Depression is a prevalent mental disorder with a complex biological mechanism. Following the rapid development of systems biology technology, a growing number of studies have applied proteomics and metabolomics to explore the molecular profiles of depression. However, a standardized resource facilitating the identification and annotation of the available knowledge from these scattered studies associated with depression is currently lacking. This study presents ProMENDA, an upgraded resource that provides a platform for manual annotation of candidate proteins and metabolites linked to depression. Following the establishment of the protein dataset and the update of the metabolite dataset, the ProMENDA database was developed as a major extension of its initial release. A multi-faceted annotation scheme was employed to provide comprehensive knowledge of the molecules and studies. A new web interface was also developed to improve the user experience. The ProMENDA database now contains 43,366 molecular entries, comprising 20,847 protein entries and 22,519 metabolite entries, which were manually curated from 1370 human, rat, mouse, and non-human primate studies. This represents a significant increase (more than 7-fold) in molecular entries compared to the initial release. To demonstrate the usage of ProMENDA, a case study identifying consistently reported proteins and metabolites in the brains of animal models of depression was presented. Overall, ProMENDA is a comprehensive resource that offers a panoramic view of proteomic and metabolomic knowledge in depression. ProMENDA is freely available at https://menda.cqmu.edu.cn .


Asunto(s)
Depresión , Metabolómica , Proteómica , Animales , Humanos , Ratas , Ratones , Depresión/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Bases de Datos Factuales
19.
Acta Pharm Sin B ; 14(5): 2119-2136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799645

RESUMEN

Transcriptional dysregulation of genes is a hallmark of tumors and can serve as targets for cancer drug development. However, it is extremely challenging to develop small-molecule inhibitors to target abnormally expressed transcription factors (TFs) except for the nuclear receptor family of TFs. Little is known about the interaction between TFs and transcription cofactors in gastroesophageal adenocarcinoma (GEA) or the therapeutic effects of targeting TF and transcription cofactor complexes. In this study, we found that ETS homologous factor (EHF) expression is promoted by a core transcriptional regulatory circuitry (CRC), specifically ELF3-KLF5-GATA6, and interference with its expression suppressed the malignant biological behavior of GEA cells. Importantly, we identified Ajuba LIM protein (AJUBA) as a new coactivator of EHF that cooperatively orchestrates transcriptional network activity in GEA. Furthermore, we identified KRAS signaling as a common pathway downstream of EHF and AJUBA. Applicably, dual targeting of EHF and AJUBA by lipid nanoparticles cooperatively attenuated the malignant biological behaviors of GEA in vitro and in vivo. In conclusion, EHF is upregulated by the CRC and promotes GEA malignancy by interacting with AJUBA through the KRAS pathway. Targeting of both EHF and its coactivator AJUBA through lipid nanoparticles is a novel potential therapeutic strategy.

20.
Dis Model Mech ; 17(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38258518

RESUMEN

Organoid culture systems are very powerful models that recapitulate in vivo organ development and disease pathogenesis, offering great promise in basic research, drug screening and precision medicine. However, the application of organoids derived from patients with cancer to immunotherapeutic research is a relatively untapped area. Esophageal cancer is one of the most lethal malignancies worldwide, including two major pathological subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma. ESCC shares many biological and genomic features with oral squamous cell cancers. Herein, we provide a versatile protocol for the establishment and maintenance of oral and esophageal organoid cultures derived from both murine and human samples. We describe culture conditions for organoids derived from normal tongue, esophagus and gastroesophageal junction, esophageal cancer and Barrett's esophagus. In addition, we establish an ex vivo model by co-culturing patient tumor-derived organoids and autologous CD8+ T lymphocytes to assess CD8+ T cell-mediated tumor killing. Our protocol can also be modified for organoid establishment from other squamous epithelia and carcinomas. The co-culture model can serve as a template for studies of other tumor-immune cell interactions and the efficacy of immune checkpoint blockade therapy.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Animales , Ratones , Organoides
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda