RESUMEN
Therapeutic peptides act on the skeletal system, digestive system and blood system, have antibacterial properties and help relieve inflammation. In order to reduce the resource consumption of wet experiments for the identification of therapeutic peptides, many computational-based methods have been developed to solve the identification of therapeutic peptides. Due to the insufficiency of traditional machine learning methods in dealing with feature noise. We propose a novel therapeutic peptide identification method called Structured Sparse Regularized Takagi-Sugeno-Kang Fuzzy System on Within-Class Scatter (SSR-TSK-FS-WCS). Our method achieves good performance on multiple therapeutic peptides and UCI datasets.
Asunto(s)
Algoritmos , Lógica Difusa , Aprendizaje Automático , Péptidos/uso terapéuticoRESUMEN
Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved. Due to the poor contrast in grayscale images, the ambiguity and complexity of MR images, and individual variability, the performance of classic algorithms in medical image segmentation still needs improvement. In this paper, we introduce a distributed multitask fuzzy c-means (MT-FCM) clustering algorithm for MR brain image segmentation that can extract knowledge common among different clustering tasks. The proposed distributed MT-FCM algorithm can effectively exploit information common among different but related MR brain image segmentation tasks and can avoid the negative effects caused by noisy data that exist in some MR images. Experimental results on clinical MR brain images demonstrate that the distributed MT-FCM method demonstrates more desirable performance than the classic signal task method.
Asunto(s)
Encéfalo/diagnóstico por imagen , Lógica Difusa , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Humanos , Reproducibilidad de los ResultadosRESUMEN
We introduce a new, semi-supervised classification method that extensively exploits knowledge. The method has three steps. First, the manifold regularization mechanism, adapted from the Laplacian support vector machine (LapSVM), is adopted to mine the manifold structure embedded in all training data, especially in numerous label-unknown data. Meanwhile, by converting the labels into pairwise constraints, the pairwise constraint regularization formula (PCRF) is designed to compensate for the few but valuable labelled data. Second, by further combining the PCRF with the manifold regularization, the precise manifold and pairwise constraint jointly regularized formula (MPCJRF) is achieved. Third, by incorporating the MPCJRF into the framework of the conventional SVM, our approach, referred to as semi-supervised classification with extensive knowledge exploitation (SSC-EKE), is developed. The significance of our research is fourfold: 1) The MPCJRF is an underlying adjustment, with respect to the pairwise constraints, to the graph Laplacian enlisted for approximating the potential data manifold. This type of adjustment plays the correction role, as an unbiased estimation of the data manifold is difficult to obtain, whereas the pairwise constraints, converted from the given labels, have an overall high confidence level. 2) By transforming the values of the two terms in the MPCJRF such that they have the same range, with a trade-off factor varying within the invariant interval [0, 1), the appropriate impact of the pairwise constraints to the graph Laplacian can be self-adaptively determined. 3) The implication regarding extensive knowledge exploitation is embodied in SSC-EKE. That is, the labelled examples are used not only to control the empirical risk but also to constitute the MPCJRF. Moreover, all data, both labelled and unlabelled, are recruited for the model smoothness and manifold regularization. 4) The complete framework of SSC-EKE organically incorporates multiple theories, such as joint manifold and pairwise constraint-based regularization, smoothness in the reproducing kernel Hilbert space, empirical risk minimization, and spectral methods, which facilitates the preferable classification accuracy as well as the generalizability of SSC-EKE.
RESUMEN
We study a novel fuzzy clustering method to improve the segmentation performance on the target texture image by leveraging the knowledge from a prior texture image. Two knowledge transfer mechanisms, i.e. knowledge-leveraged prototype transfer (KL-PT) and knowledge-leveraged prototype matching (KL-PM) are first introduced as the bases. Applying them, the knowledge-leveraged transfer fuzzy C-means (KL-TFCM) method and its three-stage-interlinked framework, including knowledge extraction, knowledge matching, and knowledge utilization, are developed. There are two specific versions: KL-TFCM-c and KL-TFCM-f, i.e. the so-called crisp and flexible forms, which use the strategies of maximum matching degree and weighted sum, respectively. The significance of our work is fourfold: 1) Owing to the adjustability of referable degree between the source and target domains, KL-PT is capable of appropriately learning the insightful knowledge, i.e. the cluster prototypes, from the source domain; 2) KL-PM is able to self-adaptively determine the reasonable pairwise relationships of cluster prototypes between the source and target domains, even if the numbers of clusters differ in the two domains; 3) The joint action of KL-PM and KL-PT can effectively resolve the data inconsistency and heterogeneity between the source and target domains, e.g. the data distribution diversity and cluster number difference. Thus, using the three-stage-based knowledge transfer, the beneficial knowledge from the source domain can be extensively, self-adaptively leveraged in the target domain. As evidence of this, both KL-TFCM-c and KL-TFCM-f surpass many existing clustering methods in texture image segmentation; and 4) In the case of different cluster numbers between the source and target domains, KL-TFCM-f proves higher clustering effectiveness and segmentation performance than does KL-TFCM-c.
RESUMEN
Conventional, soft-partition clustering approaches, such as fuzzy c-means (FCM), maximum entropy clustering (MEC) and fuzzy clustering by quadratic regularization (FC-QR), are usually incompetent in those situations where the data are quite insufficient or much polluted by underlying noise or outliers. In order to address this challenge, the quadratic weights and Gini-Simpson diversity based fuzzy clustering model (QWGSD-FC), is first proposed as a basis of our work. Based on QWGSD-FC and inspired by transfer learning, two types of cross-domain, soft-partition clustering frameworks and their corresponding algorithms, referred to as type-I/type-II knowledge-transfer-oriented c-means (TI-KT-CM and TII-KT-CM), are subsequently presented, respectively. The primary contributions of our work are four-fold: (1) The delicate QWGSD-FC model inherits the most merits of FCM, MEC and FC-QR. With the weight factors in the form of quadratic memberships, similar to FCM, it can more effectively calculate the total intra-cluster deviation than the linear form recruited in MEC and FC-QR. Meanwhile, via Gini-Simpson diversity index, like Shannon entropy in MEC, and equivalent to the quadratic regularization in FC-QR, QWGSD-FC is prone to achieving the unbiased probability assignments, (2) owing to the reference knowledge from the source domain, both TI-KT-CM and TII-KT-CM demonstrate high clustering effectiveness as well as strong parameter robustness in the target domain, (3) TI-KT-CM refers merely to the historical cluster centroids, whereas TII-KT-CM simultaneously uses the historical cluster centroids and their associated fuzzy memberships as the reference. This indicates that TII-KT-CM features more comprehensive knowledge learning capability than TI-KT-CM and TII-KT-CM consequently exhibits more perfect cross-domain clustering performance and (4) neither the historical cluster centroids nor the historical cluster centroid based fuzzy memberships involved in TI-KT-CM or TII-KT-CM can be inversely mapped into the raw data. This means that both TI-KT-CM and TII-KT-CM can work without disclosing the original data in the source domain, i.e. they are of good privacy protection for the source domain. In addition, the convergence analyses regarding both TI-KT-CM and TII-KT-CM are conducted in our research. The experimental studies thoroughly evaluated and demonstrated our contributions on both synthetic and real-life data scenarios.
RESUMEN
The abdomen houses multiple vital organs, which are associated with various diseases posing significant risks to human health. Early detection of abdominal organ conditions allows for timely intervention and treatment, preventing deterioration of patients' health. Segmenting abdominal organs aids physicians in more accurately diagnosing organ lesions. However, the anatomical structures of abdominal organs are relatively complex, with organs overlapping each other, sharing similar features, thereby presenting challenges for segmentation tasks. In real medical scenarios, models must demonstrate real-time and low-latency features, necessitating an improvement in segmentation accuracy while minimizing the number of parameters. Researchers have developed various methods for abdominal organ segmentation, ranging from convolutional neural networks (CNNs) to Transformers. However, these methods often encounter difficulties in accurately identifying organ segmentation boundaries. MetaFormer abstracts the framework of Transformers, excluding the multi-head Self-Attention, offering a new perspective for solving computer vision problems and overcoming the limitations of Vision Transformers and CNN backbone networks. To further enhance segmentation effectiveness, we propose a U-shaped network, integrating SEFormer and depthwise cascaded upsampling (dCUP) as the encoder and decoder, respectively, into the UNet structure, named SEF-UNet. SEFormer combines Squeeze-and-Excitation modules with depthwise separable convolutions, instantiating the MetaFormer framework, enhancing the capture of local details and texture information, thereby improving edge segmentation accuracy. dCUP further integrates shallow and deep information layers during the upsampling process. Our model significantly improves segmentation accuracy while reducing the parameter count and exhibits superior performance in segmenting organ edges that overlap each other, thereby offering potential deployment in real medical scenarios.
RESUMEN
Somatic tumors have a high-dimensional, sparse, and small sample size nature, making cancer subtype stratification based on somatic genomic data a challenge. Current methods for improving cancer clustering performance focus on dimension reduction, integrating multi-omics data, or generating realistic samples, yet ignore the associations between mutated genes within the patient-gene matrix. We refer to these associations as gene mutation structural information, which implicitly includes cancer subtype information and can enhance subtype clustering. We introduce a novel method for cancer subtype clustering called SIG(Structural Information within Graph). As cancer is driven by a combination of genes, we establish associations between mutated genes within the same patient sample, pair by pair, and use a graph to represent them. An association between two mutated genes corresponds to an edge in the graph. We then merge these associations among all mutated genes to obtain a structural information graph, which enriches the gene network and improves its relevance to cancer clustering. We integrate the somatic tumor genome with the enriched gene network and propagate it to cluster patients with mutations in similar network regions. Our method achieves superior clustering performance compared to SOTA methods, as demonstrated by clustering experiments on ovarian and LUAD datasets. The code is available at https://github.com/ChangSIG/SIG.git.
RESUMEN
Breast cancer is commonly diagnosed with mammography. Using image segmentation algorithms to separate lesion areas in mammography can facilitate diagnosis by doctors and reduce their workload, which has important clinical significance. Because large, accurately labeled medical image datasets are difficult to obtain, traditional clustering algorithms are widely used in medical image segmentation as an unsupervised model. Traditional unsupervised clustering algorithms have limited learning knowledge. Moreover, some semi-supervised fuzzy clustering algorithms cannot fully mine the information of labeled samples, which results in insufficient supervision. When faced with complex mammography images, the above algorithms cannot accurately segment lesion areas. To address this, a semi-supervised fuzzy clustering based on knowledge weighting and cluster center learning (WSFCM_V) is presented. According to prior knowledge, three learning modes are proposed: a knowledge weighting method for cluster centers, Euclidean distance weights for unlabeled samples, and learning from the cluster centers of labeled sample sets. These strategies improve the clustering performance. On real breast molybdenum target images, the WSFCM_V algorithm is compared with currently popular semi-supervised and unsupervised clustering algorithms. WSFCM_V has the best evaluation index values. Experimental results demonstrate that compared with the existing clustering algorithms, WSFCM_V has a higher segmentation accuracy than other clustering algorithms, both for larger lesion regions like tumor areas and for smaller lesion areas like calcification point areas.
Asunto(s)
Lógica Difusa , Molibdeno , Humanos , Mamografía , Algoritmos , Análisis por Conglomerados , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
Soft subspace clustering (SSC), which analyzes high-dimensional data and applies various weights to each cluster class to assess the membership degree of each cluster to the space, has shown promising results in recent years. This method of clustering assigns distinct weights to each cluster class. By introducing spatial information, enhanced SSC algorithms improve the degree to which intraclass compactness and interclass separation are achieved. However, these algorithms are sensitive to noisy data and have a tendency to fall into local optima. In addition, the segmentation accuracy is poor because of the influence of noisy data. In this study, an SSC approach that is based on particle swarm optimization is suggested with the intention of reducing the interference caused by noisy data. The particle swarm optimization method is used to locate the best possible clustering center. Second, increasing the amount of geographical membership makes it possible to utilize the spatial information to quantify the link between different clusters in a more precise manner. In conclusion, the extended noise clustering method is implemented in order to maximize the weight. Additionally, the constraint condition of the weight is changed from the equality constraint to the boundary constraint in order to reduce the impact of noise. The methodology presented in this research works to reduce the amount of sensitivity the SSC algorithm has to noisy data. It is possible to demonstrate the efficacy of this algorithm by using photos with noise already present or by introducing noise to existing photographs. The revised SSC approach based on particle swarm optimization (PSO) is demonstrated to have superior segmentation accuracy through a number of trials; as a result, this work gives a novel method for the segmentation of noisy images.
Asunto(s)
Algoritmos , Análisis por ConglomeradosRESUMEN
With the development of sensors, more and more multimodal data are accumulated, especially in biomedical and bioinformatics fields. Therefore, multimodal data analysis becomes very important and urgent. In this study, we combine multi-kernel learning and transfer learning, and propose a feature-level multi-modality fusion model with insufficient training samples. To be specific, we firstly extend kernel Ridge regression to its multi-kernel version under the lp-norm constraint to explore complementary patterns contained in multimodal data. Then we use marginal probability distribution adaption to minimize the distribution differences between the source domain and the target domain to solve the problem of insufficient training samples. Based on epilepsy EEG data provided by the University of Bonn, we construct 12 multi-modality & transfer scenarios to evaluate our model. Experimental results show that compared with baselines, our model performs better on most scenarios.
RESUMEN
In the past, the possibilistic C-means clustering algorithm (PCM) has proven its superiority on various medical datasets by overcoming the unstable clustering effect caused by both the hard division of traditional hard clustering models and the susceptibility of fuzzy C-means clustering algorithm (FCM) to noise. However, with the deep integration and development of the Internet of Things (IoT) as well as big data with the medical field, the width and height of medical datasets are growing bigger and bigger. In the face of high-dimensional and giant complex datasets, it is challenging for the PCM algorithm based on machine learning to extract valuable features from thousands of dimensions, which increases the computational complexity and useless time consumption and makes it difficult to avoid the quality problem of clustering. To this end, this paper proposes a deep possibilistic C-mean clustering algorithm (DPCM) that combines the traditional PCM algorithm with a special deep network called autoencoder. Taking advantage of the fact that the autoencoder can minimize the reconstruction loss and the PCM uses soft affiliation to facilitate gradient descent, DPCM allows deep neural networks and PCM's clustering centers to be optimized at the same time, so that it effectively improves the clustering efficiency and accuracy. Experiments on medical datasets with various dimensions demonstrate that this method has a better effect than traditional clustering methods, besides being able to overcome the interference of noise better.
Asunto(s)
Algoritmos , Lógica Difusa , Análisis por Conglomerados , Humanos , Aprendizaje Automático , Redes Neurales de la ComputaciónRESUMEN
Knee osteoarthritis (OA) is a deliberating joint disorder characterized by cartilage loss that can be captured by imaging modalities and translated into imaging features. Observing imaging features is a well-known objective assessment for knee OA disorder. However, the variety of imaging features is rarely discussed. This study reviews knee OA imaging features with respect to different imaging modalities for traditional OA diagnosis and updates recent image-based machine learning approaches for knee OA diagnosis and prognosis. Although most studies recognized X-ray as standard imaging option for knee OA diagnosis, the imaging features are limited to bony changes and less sensitive to short-term OA changes. Researchers have recommended the usage of MRI to study the hidden OA-related radiomic features in soft tissues and bony structures. Furthermore, ultrasound imaging features should be explored to make it more feasible for point-of-care diagnosis. Traditional knee OA diagnosis mainly relies on manual interpretation of medical images based on the Kellgren-Lawrence (KL) grading scheme, but this approach is consistently prone to human resource and time constraints and less effective for OA prevention. Recent studies revealed the capability of machine learning approaches in automating knee OA diagnosis and prognosis, through three major tasks: knee joint localization (detection and segmentation), classification of OA severity, and prediction of disease progression. AI-aided diagnostic models improved the quality of knee OA diagnosis significantly in terms of time taken, reproducibility, and accuracy. Prognostic ability was demonstrated by several prediction models in terms of estimating possible OA onset, OA deterioration, progressive pain, progressive structural change, progressive structural change with pain, and time to total knee replacement (TKR) incidence. Despite research gaps, machine learning techniques still manifest huge potential to work on demanding tasks such as early knee OA detection and estimation of future disease events, as well as fundamental tasks such as discovering the new imaging features and establishment of novel OA status measure. Continuous machine learning model enhancement may favour the discovery of new OA treatment in future.
Asunto(s)
Osteoartritis de la Rodilla , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Aprendizaje Automático , Imagen por Resonancia Magnética , Osteoartritis de la Rodilla/diagnóstico por imagen , Dolor , Reproducibilidad de los ResultadosRESUMEN
In this review, current studies on hospital readmission due to infection of COVID-19 were discussed, compared, and further evaluated in order to understand the current trends and progress in mitigation of hospital readmissions due to COVID-19. Boolean expression of ("COVID-19" OR "covid19" OR "covid" OR "coronavirus" OR "Sars-CoV-2") AND ("readmission" OR "re-admission" OR "rehospitalization" OR "rehospitalization") were used in five databases, namely Web of Science, Medline, Science Direct, Google Scholar and Scopus. From the search, a total of 253 articles were screened down to 26 articles. In overall, most of the research focus on readmission rates than mortality rate. On the readmission rate, the lowest is 4.2% by Ramos-Martínez et al. from Spain, and the highest is 19.9% by Donnelly et al. from the United States. Most of the research (n = 13) uses an inferential statistical approach in their studies, while only one uses a machine learning approach. The data size ranges from 79 to 126,137. However, there is no specific guide to set the most suitable data size for one research, and all results cannot be compared in terms of accuracy, as all research is regional studies and do not involve data from the multi region. The logistic regression is prevalent in the research on risk factors of readmission post-COVID-19 admission, despite each of the research coming out with different outcomes. From the word cloud, age is the most dominant risk factor of readmission, followed by diabetes, high length of stay, COPD, CKD, liver disease, metastatic disease, and CAD. A few future research directions has been proposed, including the utilization of machine learning in statistical analysis, investigation on dominant risk factors, experimental design on interventions to curb dominant risk factors and increase the scale of data collection from single centered to multi centered.
Asunto(s)
COVID-19 , Readmisión del Paciente , COVID-19/epidemiología , Humanos , Modelos Logísticos , Aprendizaje Automático , Factores de Riesgo , Estados UnidosRESUMEN
In the late December of 2019, a novel coronavirus was discovered in Wuhan, China. In March 2020, WHO announced this epidemic had become a global pandemic and that the novel coronavirus may be mild to most people. However, some people may experience a severe illness that results in hospitalization or maybe death. COVID-19 classification remains challenging due to the ambiguity and similarity with other known respiratory diseases such as SARS, MERS, and other viral pneumonia. The typical symptoms of COVID-19 are fever, cough, chills, shortness of breath, loss of smell and taste, headache, sore throat, chest pains, confusion, and diarrhoea. This research paper suggests the concept of transfer learning using the deterministic algorithm in all binary classification models and evaluates the performance of various CNN architectures. The datasets of 746 CT images of COVID-19 and non-COVID-19 were divided for training, validation, and testing. Various augmentation techniques were applied to increase the number of datasets except for testing images. The images were then pretrained using CNN to obtain a binary class. ResNeXt101 and ResNet152 have the best F1 score of 0.978 and 0.938, whereas GoogleNet has an F1 score of 0.762. ResNeXt101 and ResNet152 have an accuracy of 97.81% and 93.80%. ResNeXt101, DenseNet201, and ResNet152 have 95.71%, 93.81%, and 90% sensitivity, whereas ResNeXt101, ResNet101, and ResNet152 have 100%, 99.58%, and 98.33 specificity, respectively.
Asunto(s)
COVID-19 , COVID-19/diagnóstico por imagen , Humanos , Redes Neurales de la Computación , Pandemias , SARS-CoV-2 , Tomografía Computarizada por Rayos XRESUMEN
Stock price prediction is important in both financial and commercial domains, and using neural networks to forecast stock prices has been a topic of ongoing research and development. Traditional prediction models are often based on a single type of data and do not account for the interplay of many variables. This study covers a radial basis neural network modeling technique with multiview collaborative learning capabilities for incorporating the impacts of numerous elements into the prediction model. This research offers a multiview RBF neural network prediction model based on the classic RBF network by integrating a collaborative learning item with multiview learning capabilities (MV-RBF). MV-RBF can make full use of both the internal information provided by the correlation between each view and the distinct characteristics of each view to form independent sample information. By using two separate stock qualities as input feature information for trials, this study proves the viability of the multiview RBF neural network prediction model on a real data set.
Asunto(s)
Aprendizaje , Redes Neurales de la Computación , PredicciónRESUMEN
Academic emotions can have different influences on learning effects, but these have not been systematically studied. In this paper, we objectively evaluate the influence of various academic emotions on learning effects and studied the relationship between positive and negative academic emotions and learning effects by using five electronic databases, including WOS, EMBASE, PubMed, PsycINFO, and Google Scholar. According to established standards, a total of 14 articles from 506 articles were included in the analysis. We divided the 14 studies into nine intervention studies and five observational studies; five of the nine intervention studies found that students who used active learning materials performed better and had higher mental loads than those who used neutral learning materials. Positive academic emotions promoted the learning effect. Four of the five observational studies with high school, college, and postgraduate participants reported that regulating academic emotions can improve learning effects. In conclusion, this paper holds that positive academic emotions are better than negative academic emotions at improving academic performance. In future research, a new method combining multichannel video observation, physiological data, and facial expression data is proposed to capture learners' learning behavior in various learning environments.
Asunto(s)
Rendimiento Académico , Emociones , Humanos , Instituciones Académicas , Estudiantes , UniversidadesRESUMEN
Traditional clustering algorithms for medical image segmentation can only achieve satisfactory clustering performance under relatively ideal conditions, in which there is adequate data from the same distribution, and the data is rarely disturbed by noise or outliers. However, a sufficient amount of medical images with representative manual labels are often not available, because medical images are frequently acquired with different scanners (or different scan protocols) or polluted by various noises. Transfer learning improves learning in the target domain by leveraging knowledge from related domains. Given some target data, the performance of transfer learning is determined by the degree of relevance between the source and target domains. To achieve positive transfer and avoid negative transfer, a negative-transfer-resistant mechanism is proposed by computing the weight of transferred knowledge. Extracting a negative-transfer-resistant fuzzy clustering model with a shared cross-domain transfer latent space (called NTR-FC-SCT) is proposed by integrating negative-transfer-resistant and maximum mean discrepancy (MMD) into the framework of fuzzy c-means clustering. Experimental results show that the proposed NTR-FC-SCT model outperformed several traditional non-transfer and related transfer clustering algorithms.
Asunto(s)
Encéfalo/diagnóstico por imagen , Análisis por Conglomerados , Lógica Difusa , Interpretación de Imagen Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Aprendizaje AutomáticoRESUMEN
We propose a new method for generating synthetic CT images from modified Dixon (mDixon) MR data. The synthetic CT is used for attenuation correction (AC) when reconstructing PET data on abdomen and pelvis. While MR does not intrinsically contain any information about photon attenuation, AC is needed in PET/MR systems in order to be quantitatively accurate and to meet qualification standards required for use in many multi-center trials. Existing MR-based synthetic CT generation methods either use advanced MR sequences that have long acquisition time and limited clinical availability or use matching of the MR images from a newly scanned subject to images in a library of MR-CT pairs which has difficulty in accounting for the diversity of human anatomy especially in patients that have pathologies. To address these deficiencies, we present a five-phase interlinked method that uses mDixon MR acquisition and advanced machine learning methods for synthetic CT generation. Both transfer fuzzy clustering and active learning-based classification (TFC-ALC) are used. The significance of our efforts is fourfold: 1) TFC-ALC is capable of better synthetic CT generation than methods currently in use on the challenging abdomen using only common Dixon-based scanning. 2) TFC partitions MR voxels initially into the four groups regarding fat, bone, air, and soft tissue via transfer learning; ALC can learn insightful classifiers, using as few but informative labeled examples as possible to precisely distinguish bone, air, and soft tissue. Combining them, the TFC-ALC method successfully overcomes the inherent imperfection and potential uncertainty regarding the co-registration between CT and MR images. 3) Compared with existing methods, TFC-ALC features not only preferable synthetic CT generation but also improved parameter robustness, which facilitates its clinical practicability. Applying the proposed approach on mDixon-MR data from ten subjects, the average score of the mean absolute prediction deviation (MAPD) was 89.78±8.76 which is significantly better than the 133.17±9.67 obtained using the all-water (AW) method (p=4.11E-9) and the 104.97±10.03 obtained using the four-cluster-partitioning (FCP, i.e., external-air, internal-air, fat, and soft tissue) method (p=0.002). 4) Experiments in the PET SUV errors of these approaches show that TFC-ALC achieves the highest SUV accuracy and can generally reduce the SUV errors to 5% or less. These experimental results distinctively demonstrate the effectiveness of our proposed TFCALC method for the synthetic CT generation on abdomen and pelvis using only the commonly-available Dixon pulse sequence.
Asunto(s)
Abdomen/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Pelvis/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Máquina de Vectores de Soporte , Análisis por Conglomerados , Lógica Difusa , Humanos , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos XRESUMEN
As a dedicated countermeasure for heterogeneous multi-view data, multi-view clustering is currently a hot topic in machine learning. However, many existing methods either neglect the effective collaborations among views during clustering or do not distinguish the respective importance of attributes in views, instead treating them equivalently. Motivated by such challenges, based on maximum entropy clustering (MEC), two specialized criteria-inter-view collaborative learning (IEVCL) and intra-view-weighted attributes (IAVWA)-are first devised as the bases. Then, by organically incorporating IEVCL and IAVWA into the formulation of classic MEC, a novel, collaborative multi-view clustering model and the matching algorithm referred to as the view-collaborative, attribute-weighted MEC (VC-AW-MEC) are proposed. The significance of our efforts is three-fold: 1) both IEVCL and IAVWA are dedicatedly devised based on MEC so that the proposed VC-AW-MEC is qualified to effectively handle as many multi-view data scenes as possible; 2) IEVCL is competent in seeking the consensus across all involved views throughout clustering, whereas IAVWA is capable of adaptively discriminating the individual impact regarding the attributes within each view; and 3) benefiting from jointly leveraging IEVCL and IAVWA, compared with some existing state-of-the-art approaches, the proposed VC-AW-MEC algorithm generally exhibits preferable clustering effectiveness and stability on heterogeneous multi-view data. Our efforts have been verified in many synthetic or real-world multi-view data scenes.
RESUMEN
The existing, semisupervised, spectral clustering approaches have two major drawbacks, i.e., either they cannot cope with multiple categories of supervision or they sometimes exhibit unstable effectiveness. To address these issues, two normalized affinity and penalty jointly constrained spectral clustering frameworks as well as their corresponding algorithms, referred to as type-I affinity and penalty jointly constrained spectral clustering (TI-APJCSC) and type-II affinity and penalty jointly constrained spectral clustering (TII-APJCSC), respectively, are proposed in this paper. TI refers to type-I and TII to type-II. The significance of this paper is fourfold. First, benefiting from the distinctive affinity and penalty jointly constrained strategies, both TI-APJCSC and TII-APJCSC are substantially more effective than the existing methods. Second, both TI-APJCSC and TII-APJCSC are fully compatible with the three well-known categories of supervision, i.e., class labels, pairwise constraints, and grouping information. Third, owing to the delicate framework normalization, both TI-APJCSC and TII-APJCSC are quite flexible. With a simple tradeoff factor varying in the small fixed interval (0, 1], they can self-adapt to any semisupervised scenario. Finally, both TI-APJCSC and TII-APJCSC demonstrate strong robustness, not only to the number of pairwise constraints but also to the parameter for affinity measurement. As such, the novel TI-APJCSC and TII-APJCSC algorithms are very practical for medium- and small-scale semisupervised data sets. The experimental studies thoroughly evaluated and demonstrated these advantages on both synthetic and real-life semisupervised data sets.