Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Water Health ; 22(6): 1017-1032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38935453

RESUMEN

Microplastic has emerged as a global threat owing to its chronic ubiquity and persistence. Microplastics' small size expedites their ingestion at each trophic level causing biomagnification and bioaccumulation, which has raised public concerns. The present study isolated, quantified and characterized the abundance, shape, size, color, and chemical composition of the microplastics from water and sediments of the Hirakud Reservoir through a scanning electron microscope and FTIR. The ecological risk associated with the microplastics was assessed using the species sensitivity distribution (SSD) method to derive the Predicted No-Effect Concentration (PNEC) value and risk quotient (RQ). The abundance of microplastics in the surface water and sediments of the Hirakud Reservoir was estimated at 82-89 particles/L and 159-163 particles/kg, respectively. Fiber-shaped microplastics dominated both surface water (46.21%) and sediment samples (44.86%). Small-sized microplastics (53-300 µm) prevailed in all samples. Color delineation exhibited an abundance of transparent microplastics. Chemical characterization indicated the dominance of polypropylene (38%), followed by high-density polyethylene, low-density polyethylene, and polystyrene. The calculated PNEC value was 3,954 particles/m3, and the RQ was estimated to be 0.02073-0.04122 indicating negligible ecological risk to freshwater species in all the sampling sites.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Microplásticos/toxicidad , India , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Agua Dulce/química , Agua Dulce/análisis
2.
Subcell Biochem ; 106: 251-281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38159231

RESUMEN

RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Flavivirus , Virus del Nilo Occidental , Infección por el Virus Zika , Virus Zika , Niño , Humanos , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Virus del Nilo Occidental/fisiología , Barrera Hematoencefálica
3.
Indian J Microbiol ; 64(3): 1099-1109, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39282167

RESUMEN

Hot springs have tremendous significance due to their divulging physiochemical features. In the recent past, metagenomics has emerged as a unique methodology to explore microbiota as well as new biocatalysts possessing advantageous biochemical properties from hot springs. In the present study, metagenomics has been employed for microbial diversity exploration and identification of genes involved in various metabolic pathways among two hot springs, Manikaran and Tatapani, located in Himachal Pradesh, India. Taxonomic analysis of both metagenomes revealed the dominance of the Proteobacteria phylum. Genomic signatures of other bacterial phyla such as Chloroflexi, Actinobacteria, Bacteroidetes, Cyanobacteria, Planctomycetes, and Firmicutes were also found in significant abundance in both the metagenomes. The abundance of microorganisms belonging to genera, especially Nitrospira, Thauera, Meiothermus, Thiobacillus, Massilia, and Anaerolinea, was reported to be prevalent in the hot springs. A significant amount of metagenomic data remained taxonomically unclassified, which indeed emphasizes the scientific importance of these thermoaquatic niches. The functional potential analysis of both metagenomes revealed pathways related to carbohydrate metabolism, followed by amino acid metabolism, energy metabolism, genetic information processing, metabolism of cofactors and vitamins, membrane transporter, and signal transduction. Exploration of biomass-modifying biocatalysts enumerated the presence of glycoside hydrolases, glycosyl transferases, polysaccharide lyases, and carbohydrate esterases in the metagenomic data. Together, these findings offer an in-depth understanding of the microbial inhabitants in North-Western Himalayan hot springs and their underlying potential for various biotechnological and industrial applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01248-z.

4.
Environ Res ; 204(Pt B): 112137, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34592254

RESUMEN

Microalgae have garnered much contemplation as candidates to fix CO2 into valuable compounds. Although microalgae have been studied to produce various metabolites, they have not yet proved successful for commercialization. Since, handling such problems practically requires satisfying multiple parameters simultaneously, we put forth a multi-parameter optimization strategy to manipulate the carbon metabolism of Scenedesmus sp. to improve biomass production and enhance CO2 fixation to increase the production of fuel-related metabolites. The Box-Behnken design method was applied with CO2 concentration, CO2 sparging time and glucose concentration as independent variables; biomass and total fatty acid methyl ester (total FAME) content were analyzed as response variables. The strain is supplemented with both CO2 and glucose with an aim to enhance carbon flux and rechannel it towards carbon fixation. As per the results obtained in this study, Scenedesmus sp. could effectively exploit high CO2 concentration (15%) for longer duration under high concentration of glucose supplementation (9 g/L) producing a biomass of 635.24 ± 39.9 µg/mL with a high total fatty acid methyl ester (FAME) content of 71.29 ± 4.2 µg/mg, significant acetyl-CoA carboxylase enzyme activity and a favorable fatty acid profile: 35.8% palmitic acid, 10.5% linoleic acid and 30.6% linolenic acid. The carbohydrate content was maximum at 10% CO2 sparged for the longest duration of 90 min under glucose concentration of 9 g/L. This study puts forth an optimal design that can provide evidence on comprehending the carbon assimilation mechanism to enhance production of biomass and biofuels and provide conditions to microalgal species to tolerate CO2 rich flue gas.


Asunto(s)
Microalgas , Scenedesmus , Biomasa , Carbono , Dióxido de Carbono
5.
J Gen Virol ; 102(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33095129

RESUMEN

Microtubule-associated protein 1 light chain 3 (MAP1LC3) is a protein with a well-defined function in autophagy, but still incompletely understood roles in several other autophagy-independent processess. Studies have shown MAP1LC3 is a host-dependency factor for the replication of several viruses. Japanese encephalitis virus (JEV), a neurotropic flavivirus, replicates on ER-derived membranes that are marked by autophagosome-negative non-lipidated MAP1LC3 (LC3-I). Depletion of LC3 exerts a profound inhibition on virus replication and egress. Here, we further characterize the role of LC3 in JEV replication, and through immunofluorescence and immunoprecipitation show that LC3-I interacts with the virus capsid protein in infected cells. This association was observed on capsid localized to both the replication complex and lipid droplets (LDs). JEV infection decreased the number of LDs per cell indicating a link between lipid metabolism and virus replication. This capsid-LC3 interaction was independent of the autophagy adaptor protein p62/Sequestosome 1 (SQSTM1). Further, no association of capsid was seen with the Gamma-aminobutyric acid receptor-associated protein family, suggesting that this interaction was specific for LC3. High-resolution protein-protein docking studies identified a putative LC3-interacting region in capsid, 56FTAL59, and other key residues that could mediate a direct interaction between the two proteins.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus de la Encefalitis Japonesa (Especie)/fisiología , Gotas Lipídicas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Compartimentos de Replicación Viral/metabolismo , Secuencia de Aminoácidos , Animales , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Línea Celular , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Interacciones Huésped-Patógeno , Humanos , Ratones , Simulación del Acoplamiento Molecular , Dominios y Motivos de Interacción de Proteínas , Replicación Viral
6.
J Gen Virol ; 102(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34546869

RESUMEN

Advances in proteomics have enabled a comprehensive understanding of host-pathogen interactions. Here we have characterized Japanese encephalitis virus (JEV) infection-driven changes in the mouse embryonic fibroblast (MEF) proteome. Through tandem mass tagging (TMT)-based mass spectrometry, we describe changes in 7.85 % of the identified proteome due to JEV infection. Pathway enrichment analysis showed that proteins involved in innate immune sensing, interferon responses and inflammation were the major upregulated group, along with the immunoproteasome and poly ADP-ribosylation proteins. Functional validation of several upregulated anti-viral innate immune proteins, including an active cGAS-STING axis, was performed. Through siRNA depletion, we describe a crucial role of the DNA sensor cGAS in restricting JEV replication. Further, many interferon-stimulated genes (ISGs) were observed to be induced in infected cells. We also observed activation of TLR2 and inhibition of TLR2 signalling using TLR1/2 inhibitor CU-CPT22-blocked production of inflammatory cytokines IL6 and TNF-α from virus-infected N9 microglial cells. The major proteins that were downregulated by infection were involved in cell adhesion (collagens), transport (solute carrier and ATP-binding cassette transporters), sterol and lipid biosynthesis. Several collagens were found to be transcriptionally downregulated in infected MEFs and mouse brain. Collectively, our data provide a bird's-eye view into how fibroblast protein composition is rewired following JEV infection.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/metabolismo , Encefalitis Japonesa/virología , Fibroblastos/metabolismo , Fibroblastos/virología , Proteoma , Animales , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Colágeno/genética , Citocinas/genética , Citocinas/metabolismo , Regulación hacia Abajo , Encefalitis Japonesa/genética , Encefalitis Japonesa/inmunología , Fibroblastos/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata/genética , Inflamación , Interferones/inmunología , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proteínas/metabolismo , Proteómica , Transducción de Señal , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Regulación hacia Arriba
7.
J Environ Manage ; 293: 112864, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34049157

RESUMEN

In today's era, we need to replace chemical or physical processes of nanoparticle synthesis with biosynthesis processes to avoid environmental damage. These bioderived nanoparticles can help in addressing the problems of wastewater treatment and biofuels production. This review gives an insight into solving multiple problems using a nano-biorefinery approach in conjugation with wastewater treatment. The major advantage of using a bio-derivative method in nanoparticle synthesis is its low toxicity towards the environment. The current review discusses the development of nanoscience and its biogenic importance. It covers the usage of microalgae for (A) Nanoparticle's biosynthesis (B) Mechanism of nanoparticle biosynthesis (C) Nanoparticles in bio-refinery processes (D) Wastewater treatment with microalgae and bio-derived nanoparticles (E) A hypothetical mechanistic approach, which utilizes the photothermal effect of metallic nanoparticles to extract lipids from the cells without cell damage. The term "cell milking" has been around for quite some time, and the hypothesis discussed in the present study can help in this context. The current hypothesized process can pave ways for futuristic endeavors to conjugate nanoparticles and microalgae for viable and commercial production of biofuel, nanoparticles, and many other molecules.


Asunto(s)
Microalgas , Purificación del Agua , Biocombustibles/análisis , Biomasa , Fenómenos Físicos , Aguas Residuales
8.
J Food Sci Technol ; 58(5): 1927-1936, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33897029

RESUMEN

In the present study, solid-state fermentation (SSF) of four fenugreek cultivars viz. HM-57, AFG-2, RMT-1 and RMT-303 were carried out using Aspergillus awamori and its effect on antioxidant properties, phenolic content and bioactive compounds were studied. Macro (Ca, K, and Na) as well as micro (Fe, Zn, and Cu) elements and in vitro bioavailability of the unfermented fenugreek (UFF) and Aspergillus-fermented fenugreek (AFF) samples were assessed with standard methods. On 5th day, total phenolic and condensed tannin contents showed significant (p ≤ 0.05) increase for all cultivars. Further, HPLC analysis confirmed formation of some new bioactive (vanillin, benzoic acid and catechin) compounds. Similarly, extracts from all AFF also showed an increase in the antioxidant potential such as inhibition of DPPH, hydroxyl free radical scavenging, reducing power, and total antioxidant capacity up to 5th day of SSF. Mineral in AFF were found with enhanced values when compared with respective UFF. In vitro bioavailability of Fe, Zn and Ca was also improved during SSF. Results from the present study may be helpful to food industry in developing new health foods and may provide a rational for development of functional ingredient in preparation of novel nutraceuticals.

9.
Biochem Biophys Res Commun ; 502(2): 232-237, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29792860

RESUMEN

Diphenyleneiodonium (DPI) and N-acetyl-l-cysteine (NAC), two widely used anti-oxidants, were employed to evaluate the role of oxidative stress in Japanese encephalitis virus (JEV) induced autophagy, stress responses and replication. DPI and NAC exerted opposite effects on ROS levels in JEV infected mouse neuronal cells (Neuro2a), mouse embryonic fibroblasts (MEFs) and human epithelial cells (HeLa). While NAC effectively quenched ROS, DPI enhanced ROS levels, suggesting that DPI induces oxidative stress in JEV infected cells. DPI treatment of JEV infected Neuro2a cells further blocked autophagy induction and activation of all three arms of the ER stress pathway, and, inhibited virus particle release. Autophagy induction in JEV infection has been previously shown to be linked to the activation of XBP1 and ATF6 ER stress sensors. Our data suggests that DPI mediated block of autophagy is a result of inhibition of ER stress responses and is not associated with an anti-oxidative effect. Since DPI has a wide inhibitory potential for all Flavin dependent enzymes, it is likely that the signalling pathways for ER stress and autophagy during JEV infection are modulated by DPI sensitive enzymes.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Compuestos Onio/farmacología , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Células Cultivadas , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Virus de la Encefalitis Japonesa (Especie)/fisiología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HeLa , Humanos , Ratones , Estrés Oxidativo/efectos de los fármacos , Porcinos , Replicación Viral/efectos de los fármacos
10.
J Gen Virol ; 98(5): 1027-1039, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28535855

RESUMEN

Endoplasmic reticulum (ER) stress and autophagy are key cellular responses to RNA virus infection. Recent studies have shown that Japanese encephalitis virus (JEV)-induced autophagy negatively influences virus replication in mouse neuronal cells and embryonic fibroblasts, and delays virus-induced cell death. Here, we evaluated the role of ER stress pathways in inducing autophagy during JEV infection. We observed that JEV infection of neuronal cells led to activation of all three sensors of ER stress mediated by eIF2α/PERK, IRE1/XBP1 and ATF6. The kinetics of autophagy induction as monitored by levels of SQSTM1 and LC3-II paralleled activation of ER stress. Inhibition of the eIF2α/PERK pathway by siRNA-mediated depletion of proteins and by the PERK inhibitor had no effect on autophagy and JEV replication. However, depletion of XBP1 and ATF6, alone or in combination, prevented autophagy induction and significantly enhanced JEV-induced cell death. JEV-infected cells depleted of XBP1 or ATF6 showed reduced transcription of ER chaperones, ERAD components and autophagy genes, resulting in reduced protein levels of the crucial autophagy effectors ATG3 and BECLIN-1. Conversely, pharmacological induction of ER stress in JEV-infected cells further enhanced autophagy and reduced virus titres. Our study thus demonstrates that a crucial link exists between the ER stress pathways and autophagy in virus-infected cells, and that these processes are highly regulated during virus infection.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Autofagia , Virus de la Encefalitis Japonesa (Especie)/inmunología , Interacciones Huésped-Patógeno , Neuronas/fisiología , Neuronas/virología , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Línea Celular , Ratones , Replicación Viral
11.
Int J Phytoremediation ; 18(11): 1067-74, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27185214

RESUMEN

Various chemical and physical treatments have been applied to indigenously isolated cyanobacterial strain, Lyngbya putealis HH-15, to observe the effect on chromium removal capacity. Pretreatment with hydrochloric acid (99.1%) and nitric acid (98.5%) resulted in enhanced chromium removal as compared to untreated control biosorbent (98.1%). Pretreatment with acetic acid (97.9%), methanol (97.0%), calcium chloride (96.0%), hot water (95.2%), and sodium hydroxide (93.9%) did not improve the chromium removal capacity of biosorbent. Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM) analysis identified changes in biomass functionality and availability after physical and chemical modification-the results of which were in agreement with metal removal studies. In conclusion, this acid-treated biosorbent represents a suitable candidate to replace conventional removal technologies for metal-bearing wastewaters.


Asunto(s)
Cromo/metabolismo , Cianobacterias/metabolismo , Residuos Industriales/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Adsorción , Biodegradación Ambiental , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier
12.
J Polym Environ ; 31(7): 2741-2760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36811096

RESUMEN

The excessive usage of non-renewable resources to produce plastic commodities has incongruously influenced the environment's health. Especially in the times of COVID-19, the need for plastic-based health products has increased predominantly. Given the rise in global warming and greenhouse gas emissions, the lifecycle of plastic has been established to contribute to it significantly. Bioplastics such as polyhydroxy alkanoates, polylactic acid, etc. derived from renewable energy origin have been a magnificent alternative to conventional plastics and reconnoitered exclusively for combating the environmental footprint of petrochemical plastic. However, the economically reasonable and environmentally friendly procedure of microbial bioplastic production has been a hard nut to crack due to less scouted and inefficient process optimization and downstream processing methodologies. Thereby, meticulous employment of computational tools such as genome-scale metabolic modeling and flux balance analysis has been practiced in recent times to understand the effect of genomic and environmental perturbations on the phenotype of the microorganism. In-silico results not only aid us in determining the biorefinery abilities of the model microorganism but also curb our reliance on equipment, raw materials, and capital investment for optimizing the best conditions. Additionally, to accomplish sustainable large-scale production of microbial bioplastic in a circular bioeconomy, extraction, and refinement of bioplastic needs to be investigated extensively by practicing techno-economic analysis and life cycle assessment. This review put forth state-of-the-art know-how on the proficiency of these computational techniques in laying the foundation of an efficient bioplastic manufacturing blueprint, chiefly focusing on microbial polyhydroxy alkanoates (PHA) production and its efficacy in outplacing fossil based plastic products.

13.
J Cancer Res Ther ; 19(5): 1385-1391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37787313

RESUMEN

Background: One-third of all cancer deaths are preventable by alterations in diet. Methods: A case control study was conducted in a Regional Cancer Center in North India to evaluate the relationship of diet with selected gastrointestinal cancers. A total of 171 cases, 151 hospital controls, and 167 healthy controls were interviewed using food frequency questionnaire. Data was analyzed using odds ratio with 95% confidence interval and Chi-square test. Results: Two to three times increased risk of GI cancers was observed with hot and salted tea. Alcohol [OR 2.30 (1.32-4)] and smoking [OR (2.77 (1.77-4.33)] emerged as risk factors in healthy controls among whom freshly prepared food had significant protective effect [OR 0.57 (0.37-0.88)]. Sweet tea showed protective effect in hospital and healthy controls (OR 0.33 and 0.26, respectively). NSAIDS was associated with significantly higher risk of GI cancers. Consumption of dietary fibers decreased risk, which was significant for wheat and pulses but insignificant for rice. Vegetables and fruits showed significant protective effect ranging from 20 to 80% while intake of non-vegetarian foods showed significantly higher odds among controls (OR 2.37-13.4). Odds of GI cancer cases having consumed chutneys and pickles were significantly higher in comparison to healthy controls while consumption of dairy products showed protection. Low and medium intake of mixed spices inclusive of curcumin showed protection (OR 0.13 and 0.39, respectively) while intake of red chillies was associated with 2-30 times significantly higher odds. Conclusions: We have been able to generate baseline evidence of association between diet and selected GI cancers to encourage prevention and further research.


Asunto(s)
Dieta , Neoplasias Gastrointestinales , Humanos , Estudios de Casos y Controles , Dieta/efectos adversos , Factores de Riesgo , Neoplasias Gastrointestinales/epidemiología , Neoplasias Gastrointestinales/etiología , , Oportunidad Relativa
14.
Front Cell Infect Microbiol ; 12: 832057, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663470

RESUMEN

RNA virus infection triggers interferon (IFN) receptor signaling, leading to the activation of hundreds of interferon-stimulated genes (ISGs). Guanylate-binding proteins (GBPs) belong to one such IFN inducible subfamily of guanosine triphosphatases (GTPases) that have been reported to exert broad anti-microbial activity and regulate host defenses against several intracellular pathogens. Here, we investigated the role of human GBP1 (hGBP1) in Japanese encephalitis virus (JEV) infection of HeLa cells in both an IFNγ unprimed and primed environment. We observed enhanced expression of GBP1 both at transcript and protein levels upon JEV infection, and GBP1 association with the virus replication membranes. Depletion of hGBP1 through siRNA had no effect on JEV replication or virus induced cell death in the IFNγ unprimed environment. IFNγ stimulation provided robust protection against JEV infection. Knockdown of GBP1 in the primed environment upregulated expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1) and significantly reduced JEV replication. Depletion of GBP1 in an IFNγ primed environment also inhibited virus replication in human neuroblastoma SH-SH5Y cells. Our data suggests that in the presence of IFNγ, GBP1 displays a proviral role by inhibiting innate immune responses to JEV infection.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Células HeLa , Humanos , Interferón gamma/metabolismo , Interferones , Replicación Viral
15.
J Genet Eng Biotechnol ; 20(1): 132, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36083419

RESUMEN

BACKGROUND: Fermented foods are the results of metabolic activities of various microorganisms. People have traditionally known how to culture desirable microorganisms, primarily lactic acid bacteria, yeasts, and filamentous molds, for the manufacture of edible foods. Yeast isolated from home-made mango pickle from Hamirpur, Himachal Pradesh, was assessed for probiotic properties and their enzymatic profiling. RESULTS: Four yeast isolates were isolated out of which P. kudriavzevii Y33 was selected on the basis of high acid tolerance as well as broadest antimicrobial activity. The selected isolate was observed to have high acid tolerance at pH 2 and show strong antimicrobial activity against all the pathogens examined. P. kudriavzevii Y33 can also withstand high bile concentration and showed high viability index, i.e., 95% at concentration of 2% of bile. The isolate was able to demonstrate high cholesterol assimilation in medium containing ox bile and taurocholate, at 88.58 and 86.83%, respectively. The autoaggregation ability of isolate increases with increasing the time of incubation and showed 87% of autoaggregation after 24 h of incubation. P. kudriavzevii Y33 exhibited resistance towards different antibiotics, found to be positive for exopolysaccharide production and showed no hemolytic activity. The isolate was observed to produce several enzymes such as ß-galactosidase, protease, amylase, phytase, and lipase. CONCLUSIONS: The results of the current study revealed that P. kudriavzevii Y33 has various beneficial qualities that suggest it could be used as probiotics. Enzymes produced by yeast isolate help in improving flavor and mineral availability in the fermented products.

16.
Methods Mol Biol ; 2445: 183-203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34972993

RESUMEN

Maintenance of cellular homeostasis through regulated degradation of proteins and organelles is a defining feature of autophagy. This process itself is tightly regulated in a series of well-defined biochemical reactions governed largely by the highly conserved ATG protein family. Given its crucial role in regulating protein levels under both basal and stress conditions such as starvation and infection, genetic or pharmacological perturbation of autophagy results in massive changes in the cellular proteome and impacts nearly every biological process. Therefore, studying autophagy perturbations at a global scale assumes prime importance. In recent years, quantitative mass spectrometry (MS)-based proteomics has emerged as a powerful approach to explore biological processes through global proteome quantification analysis. Tandem mass tag (TMT)-based MS proteomics is one such robust quantitative technique that can examine relative protein abundances in multiple samples (parallel multiplexing). Investigating autophagy through TMT-based MS approach can give great insights into autophagy-regulated biological processes, protein-protein interaction networks, spatiotemporal protein dynamics, and identification of new autophagy substrates. This chapter provides a detailed protocol for studying the impact of a dysfunctional autophagy pathway on the cellular proteome and pathways in a healthy vs. disease (virus infection) condition using a 16-plex TMT-based quantitative proteomics approach. We also provide a pipeline on data processing and analysis using available web-based tools.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Autofagia , Proteoma/análisis , Proteómica/métodos , Proyectos de Investigación , Espectrometría de Masas en Tándem/métodos
17.
Mol Aspects Med ; 81: 100994, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34274157

RESUMEN

Japanese encephalitis virus (JEV) is a flavivirus, spread by the bite of carrier Culex mosquitoes. The subsequent disease caused is Japanese encephalitis (JE), which is the leading global cause of virus-induced encephalitis. The disease is predominant in the entire Asia-Pacific region with the potential of global spread. JEV is highly neuroinvasive with symptoms ranging from mild fever to severe encephalitis and death. One-third of JE infections are fatal, and half of the survivors develop permanent neurological sequelae. Disease prognosis is determined by a series of complex and intertwined signaling events dictated both by the virus and the host. All flaviviruses, including JEV replicate in close association with ER derived membranes by channelizing the protein and lipid components of the ER. This leads to activation of acute stress responses in the infected cell-oxidative stress, ER stress, and autophagy. The host innate immune and inflammatory responses also enter the fray, the components of which are inextricably linked to the cellular stress responses. These are especially crucial in the periphery for dendritic cell maturation and establishment of adaptive immunity. The pathogenesis of JEV is a combination of direct virus induced neuronal cell death and an uncontrolled neuroinflammatory response. Here we provide a comprehensive review of the JEV life cycle and how the cellular stress responses dictate the pathobiology and resulting immune response. We also deliberate on how modulation of these stress pathways could be a potential strategy to develop therapeutic interventions, and define the persisting challenges.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Inmunidad Adaptativa , Animales , Humanos , Inflamación
18.
mSystems ; 4(6)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31690592

RESUMEN

Basal autophagy is crucial for maintenance of cellular homeostasis. ATG5 is an essential protein for autophagosome formation, and its depletion has been extensively used as a tool to disrupt autophagy. Here, we characterize the impact of Atg5 deficiency on the cellular proteome of mouse embryonic fibroblasts (MEFs). Using a tandem mass tagging (TMT)-based quantitative proteomics analysis, we observe that 14% of identified proteins show dysregulated levels in atg5-/- MEFs. These proteins were distributed across diverse biological processes, such as cell adhesion, development, differentiation, transport, metabolism, and immune responses. Several of the upregulated proteins were receptors involved in transforming growth factor ß (TGF-ß) signaling, JAK-STAT signaling, junction adhesion, and interferon/cytokine-receptor interactions and were validated as autophagy substrates. Nearly equal numbers of proteins, including several lysosomal proteins and enzymes, were downregulated, suggesting a complex role of autophagy/ATG5 in regulating their levels. The atg5-/- MEFs had lower levels of key immune sensors and effectors, including Toll-like receptor 2 (TLR2), interferon regulatory factor 3 (IRF3), IRF7, MLKL, and STAT1/3/5/6, which were restored by reexpression of ATG5. While these cells could efficiently mount a type I interferon response to the double-stranded RNA (dsRNA) mimic poly(I·C), they were compromised in their inflammatory response to the bacterial pathogen-associated molecular patterns (PAMPs) lipopolysaccharide (LPS) and Pam3CSK4. Transcriptional activation and secretion of interleukin-6 (IL-6) in these cells could be recovered by ATG5 expression, supporting the role of autophagy in the TLR2-induced inflammatory response. This study provides a key resource for understanding the effect of autophagy/ATG5 deficiency on the fibroblast proteome.IMPORTANCE Autophagy performs housekeeping functions for cells and maintains a functional mode by degrading damaged proteins and organelles and providing energy under starvation conditions. The process is tightly regulated by the evolutionarily conserved Atg genes, of which Atg5 is one such crucial mediator. Here, we have done a comprehensive quantitative proteome analysis of mouse embryonic fibroblasts that lack a functional autophagy pathway (Atg5 knockout). We observe that 14% of the identified cellular proteome is remodeled, and several proteins distributed across diverse cellular processes with functions in signaling, cell adhesion, development, and immunity show either higher or lower levels under autophagy-deficient conditions. These cells have lower levels of crucial immune proteins that are required to mount a protective inflammatory response. This study will serve as a valuable resource to determine the role of autophagy in modulating specific protein levels in cells.

19.
J Environ Biol ; 29(2): 155-8, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18831365

RESUMEN

The present study reports on chromium (VI) tolerance of two cyanobacterial strains Nostoc linckia and Nostoc spongiaeforme isolated from salt affected soils using uni-algal and bi-algal systems. Besides distinct halophilism, the two strains exhibited remarkable tolerance to chromium (VI) and revealed 1.2 to 2.8 times more chlorophyll in the presence of the metal. While phycobilins and carotenoids also increased in Nostoc linckia with total dissolved salts (TDS) as well as metal, a decline was observed in Nostoc spongiaeforme in the presence of Cr (VI). Relative algal biomass (as % of control) showed significantly higher values (123-239) in Nostoc linckia in the presence of salt, metal and combination of the two. In Nostoc spongiaeforme it declined in the presence of metal (72-81) but increased in the presence of salts (143-249) and also in the binary systems (121-440). The bi-algal consortium showed relatively less tolerance to salt and metal stress. Nostoc linckia (20 day culture) showed upto 40% chromium removal whereas Nostoc spongiaeforme showed up to 12% removal, indicating greater suitability of the former for use in bioremediation studies.


Asunto(s)
Cromo/metabolismo , Cromo/farmacología , Residuos Industriales/prevención & control , Nostoc/efectos de los fármacos , Nostoc/metabolismo , Contaminantes del Suelo/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Biomasa , Cromo/aislamiento & purificación , Residuos Industriales/efectos adversos , Nostoc/crecimiento & desarrollo , Cloruro de Sodio/química , Contaminantes del Suelo/aislamiento & purificación , Factores de Tiempo , Contaminantes Químicos del Agua/aislamiento & purificación
20.
J Hazard Mater ; 141(3): 662-7, 2007 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-16956722

RESUMEN

Industrial wastewaters containing heavy metals along with high concentration of soluble salts pose a major environmental problem that needs to be remedied. The present study reports on biosorption of Cr(VI) by native isolate of Lyngbya putealis HH-15 in batch system under varying range of pH (2.0-10.0), initial metal ion concentration (10-100mg/l) and salt concentration (0-0.2%). Maximum metal removal (94.8%) took place at pH 3.0 with initial Cr concentration of 50mg/l, which got reduced (90.1%) in the presence of 0.2% salts. Adsorption equilibrium and kinetic behavior of Cr(VI) in solution was also examined. Both Langmuir and Freundlich models fitted well to explain the adsorption data (R(2)=0.90 and 0.87, respectively) at 0.2% salt concentration. Pseudo-second order kinetic model also fitted well to both the systems, viz. Cr(VI) and Cr(VI)+salt.


Asunto(s)
Cromo/química , Cianobacterias , Contaminantes Químicos del Agua/química , Adsorción , Cromo/análisis , Concentración de Iones de Hidrógeno , Cloruro de Potasio/química , Cloruro de Sodio/química , Sulfatos/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda