Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.215
Filtrar
Más filtros

Colección SES
Publication year range
1.
EMBO Rep ; 25(8): 3627-3650, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38982191

RESUMEN

Skeletal muscle regeneration involves a signaling network that regulates the proliferation, differentiation, and fusion of muscle precursor cells to injured myofibers. IRE1α, one of the arms of the unfolded protein response, regulates cellular proteostasis in response to ER stress. Here, we demonstrate that inducible deletion of IRE1α in satellite cells of mice impairs skeletal muscle regeneration through inhibiting myoblast fusion. Knockdown of IRE1α or its downstream target, X-box protein 1 (XBP1), also inhibits myoblast fusion during myogenesis. Transcriptome analysis revealed that knockdown of IRE1α or XBP1 dysregulates the gene expression of molecules involved in myoblast fusion. The IRE1α-XBP1 axis mediates the gene expression of multiple profusion molecules, including myomaker (Mymk). Spliced XBP1 (sXBP1) transcription factor binds to the promoter of Mymk gene during myogenesis. Overexpression of myomaker in IRE1α-knockdown cultures rescues fusion defects. Inducible deletion of IRE1α in satellite cells also inhibits myoblast fusion and myofiber hypertrophy in response to functional overload. Collectively, our study demonstrates that IRE1α promotes myoblast fusion through sXBP1-mediated up-regulation of the gene expression of multiple profusion molecules, including myomaker.


Asunto(s)
Fusión Celular , Endorribonucleasas , Desarrollo de Músculos , Músculo Esquelético , Mioblastos , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteína 1 de Unión a la X-Box , Animales , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Mioblastos/metabolismo , Mioblastos/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Desarrollo de Músculos/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Células Satélite del Músculo Esquelético/metabolismo , Regeneración/genética , Diferenciación Celular/genética , Regulación de la Expresión Génica , Proteínas de la Membrana , Proteínas Musculares
2.
J Immunol ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39413004

RESUMEN

AMP-activated protein kinase (AMPK) plays a crucial role in governing essential cellular functions such as growth, proliferation, and survival. Previously, we observed increased vulnerability to bacterial (Staphylococcus aureus) endophthalmitis in global AMPKα1 knockout mice. In this study, we investigated the specific involvement of AMPKα1 in myeloid cells using LysMCre;AMPKα1fl mice. Our findings revealed that whereas endophthalmitis resolved in wild-type C57BL/6 mice, the severity of the disease progressively worsened in AMPKα1-deficient mice over time. Moreover, the intraocular bacterial load and inflammatory mediators (e.g., IL-1ß, TNF-α, IL-6, and CXCL2) were markedly elevated in the LysMCre;AMPKα1fl mice. Mechanistically, the deletion of AMPKα1 in myeloid cells skewed macrophage polarization toward the inflammatory M1 phenotype and impaired the phagocytic clearance of S. aureus by macrophages. Notably, transferring AMPK-competent bone marrow from wild-type mice to AMPKα1 knockout mice preserved retinal function and mitigated the severity of endophthalmitis. Overall, our study underscores the role of myeloid-specific AMPKα1 in promoting the resolution of inflammation in the eye during bacterial infection. Hence, therapeutic strategies aimed at restoring or enhancing AMPKα1 activity could improve visual outcomes in endophthalmitis and other ocular infections.

3.
PLoS Pathog ; 19(1): e1011063, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634048

RESUMEN

The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases.


Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2 , Pulmón , Reacciones Cruzadas
4.
PLoS Biol ; 20(11): e3001851, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36346780

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19-associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin, a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vía de Señalización Hippo , Antivirales/farmacología
5.
Bioessays ; 45(4): e2300003, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36789559

RESUMEN

Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-ß-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Músculo Esquelético , Humanos , Hipertrofia , Quinasas Quinasa Quinasa PAM/metabolismo , Transducción de Señal/fisiología
6.
Proc Natl Acad Sci U S A ; 119(25): e2123265119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35700359

RESUMEN

Metabolic aberrations impact the pathogenesis of multiple sclerosis (MS) and possibly can provide clues for new treatment strategies. Using untargeted metabolomics, we measured serum metabolites from 35 patients with relapsing-remitting multiple sclerosis (RRMS) and 14 healthy age-matched controls. Of 632 known metabolites detected, 60 were significantly altered in RRMS. Bioinformatics analysis identified an altered metabotype in patients with RRMS, represented by four changed metabolic pathways of glycerophospholipid, citrate cycle, sphingolipid, and pyruvate metabolism. Interestingly, the common upstream metabolic pathway feeding these four pathways is the glycolysis pathway. Real-time bioenergetic analysis of the patient-derived peripheral blood mononuclear cells showed enhanced glycolysis, supporting the altered metabolic state of immune cells. Experimental autoimmune encephalomyelitis mice treated with the glycolytic inhibitor 2-deoxy-D-glucose ameliorated the disease progression and inhibited the disease pathology significantly by promoting the antiinflammatory phenotype of monocytes/macrophage in the central nervous system. Our study provided a proof of principle for how a blood-based metabolomic approach using patient samples could lead to the identification of a therapeutic target for developing potential therapy.


Asunto(s)
Desarrollo de Medicamentos , Glucólisis , Metabolómica , Esclerosis Múltiple Recurrente-Remitente , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antimetabolitos/farmacología , Antimetabolitos/uso terapéutico , Desoxiglucosa/farmacología , Desoxiglucosa/uso terapéutico , Desarrollo de Medicamentos/métodos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/metabolismo
7.
Am J Respir Cell Mol Biol ; 71(2): 169-181, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593442

RESUMEN

Heightened unfolded protein responses (UPRs) are associated with the risk for asthma, including severe asthma. Treatment-refractory severe asthma manifests a neutrophilic phenotype with T helper (Th)17 responses. However, how UPRs participate in the deregulation of Th17 cells leading to neutrophilic asthma remains elusive. This study found that the UPR sensor IRE1 is induced in the murine lung with fungal asthma and is highly expressed in Th17 cells relative to naive CD4+ T cells. Cytokine (e.g., IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by both human and mouse Th17 cells. Ern1 (encoding IRE1) deficiency decreases the expression of endoplasmic reticulum stress factors and impairs the differentiation and cytokine secretion of Th17 cells. Genetic ablation of Ern1 leads to alleviated Th17 responses and airway neutrophilia in a fungal airway inflammation model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances Th17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPR-mediated secretory function of Th17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in Th17-biased TH2-low asthma.


Asunto(s)
Asma , Endorribonucleasas , Neutrófilos , Proteínas Serina-Treonina Quinasas , Células Th17 , Animales , Células Th17/inmunología , Células Th17/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Neutrófilos/inmunología , Neutrófilos/metabolismo , Humanos , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Asma/inmunología , Asma/patología , Asma/metabolismo , Respuesta de Proteína Desplegada , Ratones , Ratones Endogámicos C57BL , Interleucina-23/metabolismo , Interleucina-23/inmunología , Estrés del Retículo Endoplásmico/inmunología , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Transducción de Señal , Ratones Noqueados , Pulmón/inmunología , Pulmón/patología , Pulmón/metabolismo
8.
BMC Genomics ; 25(1): 760, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103778

RESUMEN

BACKGROUND: In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS). RESULTS: GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined. Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated with genes: bzip23, NAGS1, CDPK7, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens. Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis revealed the association of 13 common significant haplotypes at Bonferroni ≤ 0.05. The phenotypic variance explained by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE). CONCLUSION: The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.


Asunto(s)
Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Zea mays , Zea mays/genética , Zea mays/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , India , Haplotipos , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Sitios de Carácter Cuantitativo , Fenotipo
9.
Am J Physiol Renal Physiol ; 327(1): F137-F145, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779756

RESUMEN

Polymyxins are a last-resort treatment option for multidrug-resistant gram-negative bacterial infections, but they are associated with nephrotoxicity. Gelofusine was previously shown to reduce polymyxin-associated kidney injury in an animal model. However, the mechanism(s) of renal protection has not been fully elucidated. Here, we report the use of a cell culture model to provide insights into the mechanisms of renal protection. Murine epithelial proximal tubular cells were exposed to polymyxin B. Cell viability, lactate dehydrogenase (LDH) release, polymyxin B uptake, mitochondrial superoxide production, nuclear morphology, and apoptosis activation were evaluated with or without concomitant gelofusine. A megalin knockout cell line was used as an uptake inhibition control. Methionine was included in selected experiments as an antioxidant control. A polymyxin B concentration-dependent reduction in cell viability was observed. Increased viability was observed in megalin knockout cells following comparable polymyxin B exposures. Compared with polymyxin B exposure alone, concomitant gelofusine significantly increased cell viability as well as reduced LDH release, polymyxin B uptake, mitochondrial superoxide, and apoptosis. Gelofusine and methionine were more effective at reducing renal cell injury in combination than either agent alone. In conclusion, the mechanisms of renal protection by gelofusine involve decreasing cellular drug uptake, reducing subsequent oxidative stress and apoptosis activation. These findings would be valuable for translational research into clinical strategies to attenuate drug-associated acute kidney injury.NEW & NOTEWORTHY Gelofusine is a gelatinous saline solution with the potential to attenuate polymyxin-associated nephrotoxicity. We demonstrated that the mechanisms of gelofusine renal protection involve reducing polymyxin B uptake by proximal tubule cells, limiting subsequent oxidative stress and apoptosis activation. In addition, gelofusine was more effective at reducing cellular injury than a known antioxidant control, methionine, and a megalin knockout cell line, indicating that gelofusine likely has additional pharmacological properties besides only megalin inhibition.


Asunto(s)
Antibacterianos , Apoptosis , Polimixina B , Animales , Polimixina B/farmacología , Ratones , Apoptosis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/toxicidad , Supervivencia Celular/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , Línea Celular , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo
10.
Mol Cancer ; 23(1): 50, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461268

RESUMEN

Despite advancements in treatment protocols, cancer is one of the leading cause of deaths worldwide. Therefore, there is a need to identify newer and personalized therapeutic targets along with screening technologies to combat cancer. With the advent of pan-omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, and lipidomics, the scientific community has witnessed an improved molecular and metabolomic understanding of various diseases, including cancer. In addition, three-dimensional (3-D) disease models have been efficiently utilized for understanding disease pathophysiology and as screening tools in drug discovery. An integrated approach utilizing pan-omics technologies and 3-D in vitro tumor models has led to improved understanding of the intricate network encompassing various signalling pathways and molecular cross-talk in solid tumors. In the present review, we underscore the current trends in omics technologies and highlight their role in understanding genotypic-phenotypic co-relation in cancer with respect to 3-D in vitro tumor models. We further discuss the challenges associated with omics technologies and provide our outlook on the future applications of these technologies in drug discovery and precision medicine for improved management of cancer.


Asunto(s)
Multiómica , Neoplasias , Humanos , Medicina de Precisión/métodos , Genómica/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/diagnóstico , Metabolómica/métodos , Descubrimiento de Drogas
11.
Cancer ; 130(5): 770-780, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37877788

RESUMEN

BACKGROUND: Recent therapeutic advances and screening technologies have improved survival among patients with lung cancer, who are now at high risk of developing second primary lung cancer (SPLC). Recently, an SPLC risk-prediction model (called SPLC-RAT) was developed and validated using data from population-based epidemiological cohorts and clinical trials, but real-world validation has been lacking. The predictive performance of SPLC-RAT was evaluated in a hospital-based cohort of lung cancer survivors. METHODS: The authors analyzed data from 8448 ever-smoking patients diagnosed with initial primary lung cancer (IPLC) in 1997-2006 at Mayo Clinic, with each patient followed for SPLC through 2018. The predictive performance of SPLC-RAT and further explored the potential of improving SPLC detection through risk model-based surveillance using SPLC-RAT versus existing clinical surveillance guidelines. RESULTS: Of 8448 IPLC patients, 483 (5.7%) developed SPLC over 26,470 person-years. The application of SPLC-RAT showed high discrimination area under the receiver operating characteristics curve: 0.81). When the cohort was stratified by a 10-year risk threshold of ≥5.6% (i.e., 80th percentile from the SPLC-RAT development cohort), the observed SPLC incidence was significantly elevated in the high-risk versus low-risk subgroup (13.1% vs. 1.1%, p < 1 × 10-6 ). The risk-based surveillance through SPLC-RAT (≥5.6% threshold) outperformed the National Comprehensive Cancer Network guidelines with higher sensitivity (86.4% vs. 79.4%) and specificity (38.9% vs. 30.4%) and required 20% fewer computed tomography follow-ups needed to detect one SPLC (162 vs. 202). CONCLUSION: In a large, hospital-based cohort, the authors validated the predictive performance of SPLC-RAT in identifying high-risk survivors of SPLC and showed its potential to improve SPLC detection through risk-based surveillance. PLAIN LANGUAGE SUMMARY: Lung cancer survivors have a high risk of developing second primary lung cancer (SPLC). However, no evidence-based guidelines for SPLC surveillance are available for lung cancer survivors. Recently, an SPLC risk-prediction model was developed and validated using data from population-based epidemiological cohorts and clinical trials, but real-world validation has been lacking. Using a large, real-world cohort of lung cancer survivors, we showed the high predictive accuracy and risk-stratification ability of the SPLC risk-prediction model. Furthermore, we demonstrated the potential to enhance efficiency in detecting SPLC using risk model-based surveillance strategies compared to the existing consensus-based clinical guidelines, including the National Comprehensive Cancer Network.


Asunto(s)
Supervivientes de Cáncer , Neoplasias Pulmonares , Neoplasias Primarias Secundarias , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/terapia , Riesgo , Fumar , Pulmón
12.
Biochem Biophys Res Commun ; 694: 149382, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38128382

RESUMEN

Glycolysis is the fundamental cellular process that permits cancer cells to convert energy and grow anaerobically. Recent developments in molecular biology have made it evident that mitochondrial respiration is critical to tumor growth and treatment response. As the principal organelle of cellular energy conversion, mitochondria can rapidly alter cellular metabolic processes, thereby fueling malignancies and contributing to treatment resistance. This review emphasizes the significance of mitochondrial biogenesis, turnover, DNA copy number, and mutations in bioenergetic system regulation. Tumorigenesis requires an intricate cascade of metabolic pathways that includes rewiring of the tricarboxylic acid (TCA) cycle, electron transport chain and oxidative phosphorylation, supply of intermediate metabolites of the TCA cycle through amino acids, and the interaction between mitochondria and lipid metabolism. Cancer recurrence or resistance to therapy often results from the cooperation of several cellular defense mechanisms, most of which are connected to mitochondria. Many clinical trials are underway to assess the effectiveness of inhibiting mitochondrial respiration as a potential cancer therapeutic. We aim to summarize innovative strategies and therapeutic targets by conducting a comprehensive review of recent studies on the relationship between mitochondrial metabolism, tumor development and therapeutic resistance.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Resistencia a Antineoplásicos , Recurrencia Local de Neoplasia/metabolismo , Mitocondrias/metabolismo , Metabolismo Energético , Fosforilación Oxidativa , Ciclo del Ácido Cítrico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo
13.
BMC Cancer ; 24(1): 323, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459456

RESUMEN

BACKGROUND: Increased mitochondrial activities contributing to cancer cell proliferation, invasion, and metastasis have been reported in different cancers; however, studies on the therapeutic targeting of mitochondria in regulating cell proliferation and invasiveness are limited. Because mitochondria are believed to have evolved through bacterial invasion in mammalian cells, antibiotics could provide an alternative approach to target mitochondria, especially in cancers with increased mitochondrial activities. In this study, we investigated the therapeutic potential of bacteriostatic antibiotics in regulating the growth potential of colorectal cancer (CRC) cells, which differ in their metastatic potential and mitochondrial functions. METHODS: A combination of viability, cell migration, and spheroid formation assays was used to measure the effect on metastatic potential. The effect on mitochondrial mechanisms was investigated by measuring mitochondrial DNA copy number by qPCR, biogenesis (by qPCR and immunoblotting), and functions by measuring reactive oxygen species, membrane potential, and ATP using standard methods. In addition, the effect on assembly and activities of respiratory chain (RC) complexes was determined using blue native gel electrophoresis and in-gel assays, respectively). Changes in metastatic and cell death signaling were measured by immunoblotting with specific marker proteins and compared between CRC cells. RESULTS: Both tigecycline and tetracycline effectively reduced the viability, migration, and spheroid-forming capacity of highly metastatic CRC cells. This increased sensitivity was attributed to reduced mtDNA content, mitochondrial biogenesis, ATP content, membrane potential, and increased oxidative stress. Specifically, complex I assembly and activity were significantly inhibited by these antibiotics in high-metastatic cells. Significant down-regulation in the expression of mitochondrial-mediated survival pathways, such as phospho-AKT, cMYC, phospho-SRC, and phospho-FAK, and upregulation in cell death (apoptosis and autophagy) were observed, which contributed to the enhanced sensitivity of highly metastatic CRC cells toward these antibiotics. In addition, the combined treatment of the CRC chemotherapeutic agent oxaliplatin with tigecycline/tetracycline at physiological concentrations effectively sensitized these cells at early time points. CONCLUSION: Altogether, our study reports that bacterial antibiotics, such as tigecycline and tetracycline, target mitochondrial functions specifically mitochondrial complex I architecture and activity and would be useful in combination with cancer chemotherapeutics for high metastatic conditions.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Animales , Humanos , Tigeciclina/metabolismo , Tigeciclina/farmacología , Reposicionamiento de Medicamentos , Línea Celular Tumoral , Mitocondrias/metabolismo , Antibacterianos/farmacología , Neoplasias del Colon/metabolismo , Proliferación Celular , Apoptosis , Adenosina Trifosfato/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Mamíferos/metabolismo
14.
FASEB J ; 37(2): e22727, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583689

RESUMEN

Transcriptional determinants in the skeletal muscle that govern exercise capacity, while poorly defined, could provide molecular insights into how exercise improves fitness. Here, we have elucidated the role of nuclear receptors, estrogen-related receptor alpha and gamma (ERRα/γ) in regulating myofibrillar composition, contractility, and exercise capacity in skeletal muscle. We used muscle-specific single or double (DKO) ERRα/γ knockout mice to investigate the effect of ERRα/γ deletion on muscle and exercise parameters. Individual knockout of ERRα/γ did not have a significant impact on the skeletal muscle. On the other hand, DKO mice exhibit pale muscles compared to wild-type (WT) littermates. RNA-seq analysis revealed a predominant decrease in expression of genes linked to mitochondrial and oxidative metabolism in DKO versus WT muscles. DKO muscles exhibit marked repression of oxidative enzymatic capacity, as well as mitochondrial number and size compared to WT muscles. Mitochondrial function is also impaired in single myofibers isolated from DKO versus WT muscles. In addition, mutant muscles exhibit reduced angiogenic gene expression and decreased capillarity. Consequently, DKO mice have a significantly reduced exercise capacity, further reflected in poor fatigue resistance of DKO mice in in vivo contraction assays. These results show that ERRα and ERRγ together are a critical link between muscle aerobic capacity and exercise tolerance. The ERRα/γ mutant mice could be valuable for understanding the long-term impact of impaired mitochondria and vascular supply on the pathogenesis of muscle-linked disorders.


Asunto(s)
Mitocondrias , Músculo Esquelético , Ratones , Animales , Músculo Esquelético/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Oxidación-Reducción , Estrógenos/metabolismo
15.
Prostaglandins Other Lipid Mediat ; 171: 106806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185280

RESUMEN

Bacterial endophthalmitis is a blinding infectious disease typically acquired during ocular surgery. We previously reported significant alterations in retinal metabolism during Staphylococcus (S) aureus endophthalmitis. However, the changes in retinal lipid composition during endophthalmitis are unknown. Here, using a mouse model of S. aureus endophthalmitis and an untargeted lipidomic approach, we comprehensively analyzed temporal alterations in total lipids and oxylipin in retina. Our data showed a time-dependent increase in the levels of lipid classes, sphingolipids, glycerolipids, sterols, and non-esterified fatty acids, whereas levels of phospholipids decreased. Among lipid subclasses, phosphatidylcholine decreased over time. The oxylipin analysis revealed increased prostaglandin-E2, hydroxyeicosatetraenoic acids, docosahexaenoic acid, eicosapentaenoic acid, and α-linolenic acid. In-vitro studies using mouse bone marrow-derived macrophages showed increased lipid droplets and lipid-peroxide formation in response to S. aureus infection. Collectively, these findings suggest that S. aureus-infection alters the retinal lipid profile, which may contribute to the pathogenesis of bacterial endophthalmitis.


Asunto(s)
Endoftalmitis , Staphylococcus aureus , Humanos , Staphylococcus aureus/fisiología , Lipidómica , Oxilipinas , Endoftalmitis/microbiología , Endoftalmitis/patología , Retina/patología
16.
Inorg Chem ; 63(29): 13724-13737, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38970493

RESUMEN

The structure-property relationship considering isomerism-tuned photoluminescence and efficient catalytic activity of silver nanoclusters (NCs) is exclusive. Asymmetrical dithiophosphonate NH4[S2P(OR)(p-C6H4OCH3)] ligated first atomically precise silver NCs [Ag21{S2P(OR)(p-C6H4OCH3)}12]PF6 {where, R = nPr (1), Et (2)} were established by single-crystal X-ray diffraction and characterized by electrospray ionization mass spectrometry, NMR (31P, 1H, 2H), X-ray photoelectron spectroscopy, UV-visible, energy-dispersive X-ray spectroscopy, Fourier transforms infrared, thermogravimetric analysis, etc. NCs 1 and 2 consist of eight silver atoms in a cubic framework and enclose an Ag@Ag12-centered icosahedron to constitute an Ag21 core of Th symmetry, which is concentrically inscribed within the S24 snub-cube, P12 cuboctahedron, and the O12 truncated tetrahedron formed by 12 dithiophosphonate ligands. These NCs facilitate to be an eight-electron superatom (1S21P6), in which eight capping Ag atoms exhibit structural isomerism with documented isoelectronic [Ag21{S2P(OiPr)2}12]PF6, 3. In contrast to 3, the stapling of dithiophosphonates in 1 and 2 triggered bluish emission within the 400 to 500 nm region at room temperature. The density functional theory study rationalized isomerization and optical properties of 1, 2, and 3. Both (1, and 2) clusters catalyzed a decarboxylative acylarylation reaction for rapid oxindole synthesis in 99% yield under ambient conditions and proposed a multistep reaction pathway. Ultimately, this study links nanostructures to their physical and catalytic properties.

17.
Nanotechnology ; 35(36)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38838648

RESUMEN

Ascorbic acid (AA), known as vitamin C, is a vital bioactive compound that plays a crucial role in several metabolic processes, including the synthesis of collagen and neurotransmitters, the removal of harmful free radicals, and the uptake of iron by cells in the human intestines. As a result, there is an absolute need for a highly selective, sensitive, and economically viable sensing platform for AA detection. Herein, we demonstrate a Pt-decorated MoS2for efficient detection of an AA biosensor. MoS2hollow rectangular structures were synthesized using an easy and inexpensive chemical vapor deposition approach to meet the increasing need for a reliable detection platform. The synthesized MoS2hollow rectangular structures are characterized through field effect scanning electron microscopy (FESEM), energy-dispersive spectroscopy elemental mapping, Raman spectroscopy, and x-ray photoelectron spectroscopy. We fabricate a chemiresistive biosensor based on Pt-decorated MoS2that measures AA with great precision and high sensitivity. The experiments were designed to evaluate the response of the Pt-decorated MoS2biosensor in the presence and absence of AA, and selectivity was evaluated for a variety of biomolecules, and it was observed to be very selective towards AA. The Pt-MoS2device had a higher response of 125% against 1 mM concentration of AA biomolecules, when compared to that of all other devices and 2.2 times higher than that of the pristine MoS2device. The outcomes of this study demonstrate the efficacy of Pt-decorated MoS2as a promising material for AA detection. This research contributes to the ongoing efforts to enhance our capabilities in monitoring and detecting AA, fostering advancements in environmental, biomedical, and industrial applications.


Asunto(s)
Ácido Ascórbico , Técnicas Biosensibles , Disulfuros , Molibdeno , Platino (Metal) , Ácido Ascórbico/análisis , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Disulfuros/química , Molibdeno/química , Platino (Metal)/química , Humanos , Espectrometría Raman/métodos
18.
Epilepsy Behav ; 151: 109608, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183927

RESUMEN

BACKGROUND: Patients with epilepsy suffer from depression and anxiety that reduces quality of life. Cognitive behavioral therapy (CBT) among various non pharmacological treatment recommended for depression and anxiety. Since there are several articles reporting CBT treatment for depression in patients with epilepsy, we conduct a meta-analysis to evaluate the effectiveness of CBT for adult patients with epilepsy. METHODS: Four electronic databases PubMed, Scopus, Embase, and the Cochrane library searched for relevant studies. A detailed "RISK of bias" assessment has been done for included studies. Funnel plot was used for assessing publication Bias. R Software- RStudio 2022 was used to calculate standard mean difference (SMD). The study has been registered in PROSPERO (CRD42023447655). RESULTS: Eventually, a Total 13 studies involving 1222 patients met the eligibility criteria. There was decline in the Patient Health Questionnaire (PHQ) [SMD = -0.42, 95 % CI = -0.63 to -0.22], Neurologic Disorder Depression Inventory-Epilepsy (NDDI-E) [SMD = -0.53, 95 % CI = -0.75 to -0.31], Beck depression Inventory (BDI) [SMD = -0.69, 95 % CI = -1.08 to -0.30], Hospital Anxiety and Depression Scale-Depression (HADS-D) [SMD = -0.73 , 95 % CI = -0.94 to -0.52] and Hospital Anxiety and Depression Scale Anxiety subscale (HADS-A) [SMD = -0.66, 95 % CI = -0.87 to -0.45] score of the CBT group than that of the control group at post-intervention. The results showed that the improvement in QOLIE-31 score of the CBT group than that of the control group [SMD = 0.67, 95 % CI = 1.33] at post-intervention. CONCLUSION: The result of our study showed that Cognitive behavioral therapy is a superior therapy for treating anxiety and depression in epilepsy patients. CBT was effective in improving Quality of life in patients with epilepsy. However, the sample size varied across the trials, additional high-quality studies are needed in the future.


Asunto(s)
Ansiedad , Terapia Cognitivo-Conductual , Depresión , Epilepsia , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Terapia Cognitivo-Conductual/métodos , Epilepsia/psicología , Epilepsia/terapia , Epilepsia/complicaciones , Depresión/terapia , Depresión/etiología , Ansiedad/terapia , Ansiedad/etiología , Resultado del Tratamiento
19.
Phys Chem Chem Phys ; 26(42): 27163-27175, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39434690

RESUMEN

Today, there is a huge need for highly efficient and sustainable energy resources to tackle environmental degradation and energy crisis. We have analyzed the electronic, mechanical and thermoelectric (TE) characteristics of two-dimensional (2D) BiSbTeX2 (X = S, Se and Te) and Janus BiSbTeXY (X/Y = S, Se and Te) monolayers by implementing first principles simulations. These monolayers' dynamic stability and thermal stability have been demonstrated through phonon dispersion spectra and ab initio molecular dynamics (AIMD) simulations, respectively. The band structure of these monolayers can be tuned by applying uniaxial and biaxial strains. The investigated lattice thermal conductivity (κl) for these monolayers lies between 0.23 and 0.37 W m-1 K-1 at 300 K. For a more precise calculation of the scattering rate, we implemented electron-phonon coupling (EPC) and spin-orbit coupling effects to calculate the transport properties. For p(n)-type carriers, the power factor of these monolayers is predicted to be as high as 2.08 × 10-3 W m-1 K-2 and (0.47 × 10-3 W m-1 K-2) at 300 K. The higher thermoelectric figure of merit (ZT) of p-type carriers at 300 K is obtained because of their very low value of κl and high power factor. Our theoretical investigation predicts that these monolayers can be potential candidates for fabricating highly efficient thermoelectric power generators.

20.
J Asthma ; 61(1): 48-57, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548422

RESUMEN

INTRODUCTION: Interleukins play a very important role in the pathophysiology of asthma. Interleukin-33 (IL-33) is a partially explored cytokine in asthma. It binds with a specific receptor called suppression of tumorigenicity 2 (ST2). The study aims to evaluate the serum levels of IL-33, sST2 and IgE in asthmatic patients and healthy controls and its further association with the forced expiratory volume in one second (FEV 1%) and absolute eosinophil count. MATERIALS AND METHODS: We enrolled 100 asthmatic patients and 57 healthy subjects for the study. We measured serum levels of IgE, IL-33, and sST2. Based on serum IgE levels, patients were divided into allergic and non-allergic groups. Statistical analysis was done by using Graph pad prism software 8. RESULTS: We found significantly elevated levels of IL-33 and IgE in asthmatic patients as compared to healthy subjects. However, sST2 levels were significantly lower in asthmatic patients than in healthy subjects. FEV1% values were decreased in uncontrolled asthmatic patients. In addition, serum levels of IL-33 were significantly correlated with the IgE. Furthermore, we found a significant correlation between IL-33 and AEC in allergic asthmatic patients. CONCLUSION: In this study, we reported elevated IL-33 and IgE levels and decreased sST2 levels in asthmatic patients compared to healthy controls. IL-33 and sST2 may act as inflammatory biomarkers for allergic diseases such as asthma.


Asunto(s)
Asma , Interleucina-33 , Humanos , Proteína 1 Similar al Receptor de Interleucina-1 , Estudios de Casos y Controles , Inmunoglobulina E
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda