Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
J Virol ; 97(4): e0182922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36943056

RESUMEN

Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.


Asunto(s)
Modelos Moleculares , Rhabdoviridae , Ribonucleoproteínas , Proteínas Virales , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Rhabdoviridae/química , Rhabdoviridae/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/metabolismo , Estructura Cuaternaria de Proteína , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Microscopía por Crioelectrón , Suramina/farmacología
2.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37369035

RESUMEN

MOTIVATION: In recent years, high-throughput sequencing technologies have made large-scale protein sequences accessible. However, their functional annotations usually rely on low-throughput and pricey experimental studies. Computational prediction models offer a promising alternative to accelerate this process. Graph neural networks have shown significant progress in protein research, but capturing long-distance structural correlations and identifying key residues in protein graphs remains challenging. RESULTS: In the present study, we propose a novel deep learning model named Hierarchical graph transformEr with contrAstive Learning (HEAL) for protein function prediction. The core feature of HEAL is its ability to capture structural semantics using a hierarchical graph Transformer, which introduces a range of super-nodes mimicking functional motifs to interact with nodes in the protein graph. These semantic-aware super-node embeddings are then aggregated with varying emphasis to produce a graph representation. To optimize the network, we utilized graph contrastive learning as a regularization technique to maximize the similarity between different views of the graph representation. Evaluation of the PDBch test set shows that HEAL-PDB, trained on fewer data, achieves comparable performance to the recent state-of-the-art methods, such as DeepFRI. Moreover, HEAL, with the added benefit of unresolved protein structures predicted by AlphaFold2, outperforms DeepFRI by a significant margin on Fmax, AUPR, and Smin metrics on PDBch test set. Additionally, when there are no experimentally resolved structures available for the proteins of interest, HEAL can still achieve better performance on AFch test set than DeepFRI and DeepGOPlus by taking advantage of AlphaFold2 predicted structures. Finally, HEAL is capable of finding functional sites through class activation mapping. AVAILABILITY AND IMPLEMENTATION: Implementations of our HEAL can be found at https://github.com/ZhonghuiGu/HEAL.


Asunto(s)
Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento , Secuencia de Aminoácidos , Redes Neurales de la Computación , Semántica
3.
Bioorg Med Chem Lett ; 97: 129547, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944867

RESUMEN

The COVID-19 caused by SARS-CoV-2 has led to a global pandemic that continues to impact societies and economies worldwide. The main protease (Mpro) plays a crucial role in SARS-CoV-2 replication and is an attractive target for anti-SARS-CoV-2 drug discovery. Herein, we report a series of 3-oxo-1,2,3,4-tetrahydropyrido[1,2-a]pyrazin derivatives as non-peptidomimetic inhibitors targeting SARS-CoV-2 Mpro through structure-based virtual screening and biological evaluation. Further similarity search and structure-activity relationship study led to the identification of compound M56-S2 with the enzymatic IC50 value of 4.0 µM. Moreover, the molecular simulation and predicted ADMET properties, indicated that non-peptidomimetic inhibitor M56-S2 might serve as a useful starting point for the further discovery of highly potent inhibitors targeting SARS-CoV-2 Mpro.


Asunto(s)
COVID-19 , Pirazinas , SARS-CoV-2 , Humanos , Antivirales/farmacología , COVID-19/prevención & control , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales , Pirazinas/química , Pirazinas/farmacología , Tratamiento Farmacológico de COVID-19
4.
J Chem Inf Model ; 64(14): 5470-5479, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38940765

RESUMEN

Computer-assisted synthesis planning has become increasingly important in drug discovery. While deep-learning models have shown remarkable progress in achieving high accuracies for single-step retrosynthetic predictions, their performances in retrosynthetic route planning need to be checked. This study compares the intricate single-step models with a straightforward template enumeration approach for retrosynthetic route planning on a real-world drug molecule data set. Despite the superior single-step accuracy of advanced models, the template enumeration method with a heuristic-based retrosynthesis knowledge score was found to surpass them in efficiency in searching the reaction space, achieving a higher or comparable solve rate within the same time frame. This counterintuitive result underscores the importance of efficiency and retrosynthesis knowledge in retrosynthesis route planning and suggests that future research should incorporate a simple template enumeration as a benchmark. It also suggests that this simple yet effective strategy should be considered alongside more complex models to better cater to the practical needs of computer-assisted synthesis planning in drug discovery.


Asunto(s)
Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Aprendizaje Profundo , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química
5.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34081143

RESUMEN

The COVID-19 pandemic calls for rapid development of effective treatments. Although various drug repurpose approaches have been used to screen the FDA-approved drugs and drug candidates in clinical phases against SARS-CoV-2, the coronavirus that causes this disease, no magic bullets have been found until now. In this study, we used directed message passing neural network to first build a broad-spectrum anti-beta-coronavirus compound prediction model, which gave satisfactory predictions on newly reported active compounds against SARS-CoV-2. Then, we applied transfer learning to fine-tune the model with the recently reported anti-SARS-CoV-2 compounds and derived a SARS-CoV-2 specific prediction model COVIDVS-3. We used COVIDVS-3 to screen a large compound library with 4.9 million drug-like molecules from ZINC15 database and recommended a list of potential anti-SARS-CoV-2 compounds for further experimental testing. As a proof-of-concept, we experimentally tested seven high-scored compounds that also demonstrated good binding strength in docking studies against the 3C-like protease of SARS-CoV-2 and found one novel compound that can inhibit the enzyme. Our model is highly efficient and can be used to screen large compound databases with millions or more compounds to accelerate the drug discovery process for the treatment of COVID-19.


Asunto(s)
Antivirales/química , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , Antivirales/uso terapéutico , COVID-19/virología , Aprendizaje Profundo , Humanos , Simulación del Acoplamiento Molecular , Pandemias , SARS-CoV-2/química
6.
J Chem Phys ; 158(10): 105102, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36922138

RESUMEN

Allostery is an important regulatory mechanism of protein functions. Among allosteric proteins, certain protein structure types are more observed. However, how allosteric regulation depends on protein topology remains elusive. In this study, we extracted protein topology graphs at the fold level and found that known allosteric proteins mainly contain multiple domains or subunits and allosteric sites reside more often between two or more domains of the same fold type. Only a small fraction of fold-fold combinations are observed in allosteric proteins, and homo-fold-fold combinations dominate. These analyses imply that the locations of allosteric sites including cryptic ones depend on protein topology. We further developed TopoAlloSite, a novel method that uses the kernel support vector machine to predict the location of allosteric sites on the overall protein topology based on the subgraph-matching kernel. TopoAlloSite successfully predicted known cryptic allosteric sites in several allosteric proteins like phosphopantothenoylcysteine synthetase, spermidine synthase, and sirtuin 6, demonstrating its power in identifying cryptic allosteric sites without performing long molecular dynamics simulations or large-scale experimental screening. Our study demonstrates that protein topology largely determines how its function can be allosterically regulated, which can be used to find new druggable targets and locate potential binding sites for rational allosteric drug design.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Regulación Alostérica , Proteínas/química , Sitio Alostérico , Sitios de Unión , Unión Proteica
7.
Acta Biochim Biophys Sin (Shanghai) ; 55(7): 1075-1083, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37294104

RESUMEN

Biomolecular condensates formed by phase separation are involved in many cellular processes. Dysfunctional or abnormal condensates are closely associated with neurodegenerative diseases, cancer and other diseases. Small molecules can effectively regulate protein phase separation by modulating the formation, dissociation, size and material properties of condensates. Discovery of small molecules to regulate protein phase separation provides chemical probes for deciphering the underlying mechanism and potential novel treatments for condensate-related diseases. Here we review the advances of small molecule regulation of phase separation. The discovery, chemical structures of recently found small molecule phase separation regulators and how they modulate biological condensates are summarized and discussed. Possible strategies to accelerate the discovery of more liquid-liquid phase separation (LLPS)-regulating small molecules are proposed.

8.
Molecules ; 28(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37687259

RESUMEN

Although loop epitopes at protein-protein binding interfaces often play key roles in mediating oligomer formation and interaction specificity, their binding sites are underexplored as drug targets owing to their high flexibility, relatively few hot spots, and solvent accessibility. Prior attempts to develop molecules that mimic loop epitopes to disrupt protein oligomers have had limited success. In this study, we used structure-based approaches to design and optimize cyclic-constrained peptides based on loop epitopes at the human phosphoglycerate dehydrogenase (PHGDH) dimer interface, which is an obligate homo-dimer with activity strongly dependent on the oligomeric state. The experimental validations showed that these cyclic peptides inhibit PHGDH activity by directly binding to the dimer interface and disrupting the obligate homo-oligomer formation. Our results demonstrate that loop epitope derived cyclic peptides with rationally designed affinity-enhancing substitutions can modulate obligate protein homo-oligomers, which can be used to design peptide inhibitors for other seemingly intractable oligomeric proteins.


Asunto(s)
Dermatitis , Fosfoglicerato-Deshidrogenasa , Humanos , Fosfoglicerato-Deshidrogenasa/genética , Péptidos Cíclicos/farmacología , Sitios de Unión , Epítopos , Polímeros
9.
BMC Bioinformatics ; 23(1): 72, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168563

RESUMEN

BACKGROUND: The liquid-liquid phase separation (LLPS) of biomolecules in cell underpins the formation of membraneless organelles, which are the condensates of protein, nucleic acid, or both, and play critical roles in cellular function. Dysregulation of LLPS is implicated in a number of diseases. Although the LLPS of biomolecules has been investigated intensively in recent years, the knowledge of the prevalence and distribution of phase separation proteins (PSPs) is still lag behind. Development of computational methods to predict PSPs is therefore of great importance for comprehensive understanding of the biological function of LLPS. RESULTS: Based on the PSPs collected in LLPSDB, we developed a sequence-based prediction tool for LLPS proteins (PSPredictor), which is an attempt at general purpose of PSP prediction that does not depend on specific protein types. Our method combines the componential and sequential information during the protein embedding stage, and, adopts the machine learning algorithm for final predicting. The proposed method achieves a tenfold cross-validation accuracy of 94.71%, and outperforms previously reported PSPs prediction tools. For further applications, we built a user-friendly PSPredictor web server ( http://www.pkumdl.cn/PSPredictor ), which is accessible for prediction of potential PSPs. CONCLUSIONS: PSPredictor could identifie novel scaffold proteins for stress granules and predict PSPs candidates in the human genome for further study. For further applications, we built a user-friendly PSPredictor web server ( http://www.pkumdl.cn/PSPredictor ), which provides valuable information for potential PSPs recognition.


Asunto(s)
Aprendizaje Automático , Proteínas , Humanos , Orgánulos
10.
J Biol Chem ; 296: 100572, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33753166

RESUMEN

Human D-3-phosphoglycerate dehydrogenase (PHGDH), a key enzyme in de novo serine biosynthesis, is amplified in various cancers and serves as a potential target for anticancer drug development. To facilitate this process, more information is needed on the basic biochemistry of this enzyme. For example, PHGDH was found to form tetramers in solution and the structure of its catalytic unit (sPHGDH) was solved as a dimer. However, how the oligomeric states affect PHGDH enzyme activity remains elusive. We studied the dependence of PHGDH enzymatic activity on its oligomeric states. We found that sPHGDH forms a mixture of monomers and dimers in solution with a dimer dissociation constant of ∼0.58 µM, with the enzyme activity depending on the dimer content. We computationally identified hotspot residues at the sPHGDH dimer interface. Single-point mutants at these sites disrupt dimer formation and abolish enzyme activity. Molecular dynamics simulations showed that dimer formation facilitates substrate binding and maintains the correct conformation required for enzyme catalysis. We further showed that the full-length PHGDH exists as a dynamic mixture of monomers, dimers, and tetramers in solution with enzyme concentration-dependent activity. Mutations that can completely disrupt the sPHGDH dimer show different abilities to interrupt the full-length PHGDH tetramer. Among them, E108A and I121A can also disrupt the oligomeric structures of the full-length PHGDH and abolish its enzyme activity. Our study indicates that disrupting the oligomeric structure of PHGDH serves as a novel strategy for PHGDH drug design and the hotspot residues identified can guide the design process.


Asunto(s)
Biocatálisis , Fosfoglicerato-Deshidrogenasa/química , Fosfoglicerato-Deshidrogenasa/metabolismo , Humanos , Simulación de Dinámica Molecular , Multimerización de Proteína , Estructura Cuaternaria de Proteína
11.
J Chem Inf Model ; 62(10): 2538-2549, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35511068

RESUMEN

Dynamic allostery refers to one important class of allosteric regulation that does not involve noticeable conformational changes upon effector binding. In recent years, many "quasi"-dynamic allosteric proteins have been found to only experience subtle conformational changes during allosteric regulation. However, as enthalpic and entropic contributions are coupled to each other and even tiny conformational changes could bring in noticeable free energy changes, a quantitative description is essential to understand the contribution of pure dynamic allostery. Here, by developing a unified anisotropic elastic network model (uANM) considering both side-chain information and ligand heavy atoms, we quantitatively estimated the contribution of pure dynamic allostery in a dataset of known allosteric proteins by excluding the conformational changes upon ligand binding. We found that the contribution of pure dynamic allostery is generally small (much weaker than previously expected) and robustly exhibits an allosteric activation effect, which exponentially decays with the distance between the substrate and the allosteric ligand. We further constructed toy models to study the determinant factors of dynamic allostery in monomeric and oligomeric proteins using the uANM. Analysis of the toy models revealed that a short distance, a small angle between the two ligands, strong protein-ligand interactions, and weak protein internal interactions lead to strong dynamic allostery. Our study provides a quantitative estimation of pure dynamic allostery and facilitates the understanding of dynamic-allostery-controlled biological processes and the design of allosteric drugs and proteins.


Asunto(s)
Proteínas , Regulación Alostérica , Ligandos , Modelos Moleculares , Proteínas/química , Termodinámica
12.
J Chem Inf Model ; 62(10): 2269-2279, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35544331

RESUMEN

A persistent goal for de novo drug design is to generate novel chemical compounds with desirable properties in a labor-, time-, and cost-efficient manner. Deep generative models provide alternative routes to this goal. Numerous model architectures and optimization strategies have been explored in recent years, most of which have been developed to generate two-dimensional molecular structures. Some generative models aiming at three-dimensional (3D) molecule generation have also been proposed, gaining attention for their unique advantages and potential to directly design drug-like molecules in a target-conditioning manner. This review highlights current developments in 3D molecular generative models combined with deep learning and discusses future directions for de novo drug design.


Asunto(s)
Diseño de Fármacos , Modelos Moleculares , Estructura Molecular
13.
J Chem Inf Model ; 62(1): 187-195, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34964625

RESUMEN

Allostery is an important mechanism that biological systems use to regulate function at a distant site. Allosteric drugs have attracted much attention in recent years due to their high specificity and the possibility of overcoming existing drug-resistant mutations. However, the discovery of allosteric drugs remains challenging as allosteric regulation mechanisms are not clearly understood and allosteric sites cannot be accurately predicted. In this study, we analyzed the dominant modes that determine motion correlations between allosteric and orthosteric sites using the Gaussian network model and found that motion correlations between allosteric and orthosteric sites are dominated by either fast or slow vibrational modes. This dependence of modes results from the relative locations of the two sites and local secondary structures. Based on these analyses, we developed CorrSite2.0 to predict allosteric sites by taking the maximum of the Z-scores calculated from using either slow or fast modes. The prediction accuracy of CorrSite2.0 outperformed other commonly used allosteric site prediction methods with prediction accuracy over 90.0%. Our study uncovers the relationship of protein structure, dynamics, and allosteric regulation and demonstrates that using the dominant motion modes greatly improves allosteric site prediction accuracy. CorrSite2.0 has been integrated into the CavityPlus web server, which can be accessed at http://www.pkumdl.cn/cavityplus. CorrSite2.0 provides a powerful and user-friendly tool for allosteric drug and protein design.


Asunto(s)
Descubrimiento de Drogas , Proteínas , Regulación Alostérica , Sitio Alostérico , Descubrimiento de Drogas/métodos , Distribución Normal , Proteínas/química
14.
J Chem Inf Model ; 62(22): 5321-5328, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36108142

RESUMEN

Molecular structures are commonly depicted in 2D printed forms in scientific documents such as journal papers and patents. However, these 2D depictions are not machine readable. Due to a backlog of decades and an increasing amount of printed literatures, there is a high demand for translating printed depictions into machine-readable formats, which is known as Optical Chemical Structure Recognition (OCSR). Most OCSR systems developed over the last three decades use a rule-based approach, which vectorizes the depiction based on the interpretation of vectors and nodes as bonds and atoms. Here, we present a practical software called MolMiner, which is primarily built using deep neural networks originally developed for semantic segmentation and object detection to recognize atom and bond elements from documents. These recognized elements can be easily connected as a molecular graph with a distance-based construction algorithm. MolMiner gave state-of-the-art performance on four benchmark data sets and a self-collected external data set from scientific papers. As MolMiner performed similarly well in real-world OCSR tasks with a user-friendly interface, it is a useful and valuable tool for daily applications. The free download links of Mac and Windows versions are available at https://github.com/iipharma/pharmamind-molminer.


Asunto(s)
Algoritmos , Programas Informáticos , Estructura Molecular , Redes Neurales de la Computación
15.
Proc Natl Acad Sci U S A ; 116(46): 23264-23273, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31662475

RESUMEN

Glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) plays a critical role in cancer metabolism by coordinating glycolysis and biosynthesis. A well-validated PGAM1 inhibitor, however, has not been reported for treating pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest malignancies worldwide. By uncovering the elevated PGAM1 expressions were statistically related to worse prognosis of PDAC in a cohort of 50 patients, we developed a series of allosteric PGAM1 inhibitors by structure-guided optimization. The compound KH3 significantly suppressed proliferation of various PDAC cells by down-regulating the levels of glycolysis and mitochondrial respiration in correlation with PGAM1 expression. Similar to PGAM1 depletion, KH3 dramatically hampered the canonic pathways highly involved in cancer metabolism and development. Additionally, we observed the shared expression profiles of several signature pathways at 12 h after treatment in multiple PDAC primary cells of which the matched patient-derived xenograft (PDX) models responded similarly to KH3 in the 2 wk treatment. The better responses to KH3 in PDXs were associated with higher expression of PGAM1 and longer/stronger suppressions of cancer metabolic pathways. Taken together, our findings demonstrate a strategy of targeting cancer metabolism by PGAM1 inhibition in PDAC. Also, this work provided "proof of concept" for the potential application of metabolic treatment in clinical practice.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Fosfoglicerato Mutasa/antagonistas & inhibidores , Regulación Alostérica , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones Desnudos , Ratones SCID , Estructura Molecular , Terapia Molecular Dirigida , Trasplante de Neoplasias , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos
16.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35562982

RESUMEN

Biomacromolecules often form condensates to function in cells. VRN1 is a transcriptional repressor that plays a key role in plant vernalization. Containing two DNA-binding domains connected by an intrinsically disordered linker (IDL), VRN1 was shown to undergo liquid-like phase separation with DNA, and the length and charge pattern of IDL play major regulatory roles. However, the underlying mechanism remains elusive. Using a polymer chain model and lattice-based Monte-Carlo simulations, we comprehensively investigated how the IDL regulates VRN1 and DNA phase separation. Using a worm-like chain model, we showed that the IDL controls the binding affinity of VRN1 to DNA, by modulating the effective local concentration of the VRN1 DNA-binding domains. The predicted binding affinities, under different IDL lengths, were in good agreement with previously reported experimental results. Our simulation of the phase diagrams of the VRN1 variants with neutral IDLs and DNA revealed that the ability of phase separation first increased and then decreased, along with the increase in the linker length. The strongest phase separation ability was achieved when the linker length was between 40 and 80 residues long. Adding charged patches to the IDL resulted in robust phase separation that changed little with IDL length variations. Our study provides mechanism insights on how IDL regulates VRN1 and DNA phase separation, and why naturally occurring VRN1-like proteins evolve to contain the charge segregated IDL sequences, which may also shed light on the molecular mechanisms of other IDL-regulated phase separation processes in living cells.


Asunto(s)
ADN , Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Dominios Proteicos , Factores de Transcripción/genética
17.
J Comput Chem ; 42(30): 2181-2195, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34410013

RESUMEN

Pharmacophore-based virtual screening (VS) has emerged as an efficient computer-aided drug design technique when appraising multiple ligands with similar structures or targets with unknown crystal structures. Current pharmacophore modeling and analysis software suffers from inadequate integration of mainstream methods and insufficient user-friendly program interface. In this study, we propose a stand-alone, integrated, graphical software for pharmacophore-based VS, termed ePharmer. Both ligand-based and structure-based pharmacophore generation methods were integrated into a compact architecture. Fine-grained modules were carefully organized into the computing, integration, and visualization layers. Graphical design covered the global user interface and specific user operations including editing, evaluation, and task management. Metabolites prediction analysis with the chosen VS result is provided for preselection of wet experiments. Moreover, the underlying computing units largely adopted the preliminary work of our research team. The presented software is currently in client use and will be released for both professional and nonexpert users. Experimental results verified the favorable computing capability, user convenience, and case performance of the proposed software.


Asunto(s)
Descubrimiento de Drogas , Programas Informáticos , Evaluación Preclínica de Medicamentos , Estructura Molecular , Relación Estructura-Actividad
18.
Nat Chem Biol ; 15(3): 213-216, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30617292

RESUMEN

The identification of host protein substrates is key to understanding effector glycosyltransferases secreted by pathogenic bacteria and to using them for glycoprotein engineering. Here we report a chemical method for tagging, enrichment, and site-specific proteomic profiling of effector-modified proteins in host cells. Using this method, we discover that Legionella effector SetA α-O-glucosylates various eukaryotic proteins by recognizing a S/T-X-L-P/G sequence motif, which can be exploited to site-specifically introduce O-glucose on recombinant proteins.


Asunto(s)
Glicosiltransferasas/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Proteínas Bacterianas , Eucariontes , Glucosiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Legionella/metabolismo , Proteómica , Proteínas Recombinantes
19.
Bioorg Med Chem Lett ; 31: 127711, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246106

RESUMEN

The transcription factor c-Myc is a well-known onco-protein and an intrinsically disordered protein (IDP). As its aberrant expression is frequently observed in various human cancers, c-Myc is considered as a key drug target. However, due to its high conformational flexibility, directly targeting c-Myc remains difficult. Here we explored the structure-activity relationships (SAR) of N-(2,2,2-trichloro-1-(3-phenylthioureido)ethyl)acetamide compounds and reported sixteen novel active compounds. Among them, compound PKUMDL-CLM-32 (hereafter, 32) showed the best anti-proliferation activity in cells with an EC50 of 3.3 µM. We demonstrated that 32 directly disrupts c-Myc/Max interaction and induces the degradation of c-Myc protein in cells. We showed that 32 induces cell cycle arrest at S phase and promotes apoptosis of HL-60 cells. This study provides an example of using ligand-based analysis to optimize IDP ligands.


Asunto(s)
Acetamidas/farmacología , Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Acetamidas/síntesis química , Acetamidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Humanos , Ligandos , Estructura Molecular , Proteínas Proto-Oncogénicas c-myc/metabolismo , Relación Estructura-Actividad
20.
J Enzyme Inhib Med Chem ; 36(1): 497-503, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33491508

RESUMEN

COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50's of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50's of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Flavanonas/farmacología , Extractos Vegetales/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , COVID-19/enzimología , COVID-19/virología , Chlorocebus aethiops , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Humanos , Técnicas In Vitro , Modelos Moleculares , SARS-CoV-2/enzimología , Scutellaria baicalensis , Células Vero
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda