RESUMEN
A simple and effective pepsin detection assay is reported based on a pepsin-susceptible peptide (PSP) reporter degradation strategy. PSP, which can be specifically cleaved by pepsin, was modified with fluorescein isothiocyanate (FITC) and biotin at the N- and C-terminals to be used as a reporter for colorimetric detection of dipsticks. A universal lateral flow dipstick consisting of a streptavidin test line for biotin binding and a sample pad immobilized with a gold-labeled polyclonal (rabbit) anti-FITC antibody was used to verify PSP-based pepsin detection. When the PSP reporter reacts with pepsin in a tube, it cleaves into two fragments, and the cleaved fragments do not display any color on the test line. Therefore, the higher the concentration of pepsin is, the greater is the decrease in test line intensity (IT-line) and the higher is the control line intensity (IC-line). First, the PSP cleavage and dipstick assay conditions for pepsin detection was optimized. The ratio of color intensity (IT-line/IC-line) of PSP-based dipstick assay showed a linear relationship with log concentration of pepsin ranging between 4 and 500 ng/mL (R2 = 0.98, n = 6), with a limit of detection of 1.4 ng/mL. It also exhibited high specificity and good reproducibility. Finally, pepsin levels were quantified in saliva samples from healthy controls (n = 34) and patients with laryngopharyngeal reflux (LPR, n = 61). Salivary pepsin levels were higher in patients with LPR than in healthy controls. The salivary pepsin levels correlated with those measured using a conventional enzyme-linked immunosorbent assay kit. Therefore, this PSP-based dipstick assay is a convenient tool for assessing salivary pepsin levels.
Asunto(s)
Biotina , Colorimetría , Isotiocianatos , Animales , Humanos , Conejos , Estudios Transversales , Pepsina A , Estudios Prospectivos , Reproducibilidad de los Resultados , Saliva , Fluoresceína , PéptidosRESUMEN
A highly sensitive and facile colorimetric assay is introduced for detecting biogenic gaseous H2S using peroxidase (POD)-like catalytic activity of silver core/gold shell nanoplates (Ag@Au NPls). H2S can react with Ag@Au NPls to form Ag2S or Au2S on their surface, which can reduce POD-like activity of Ag@Au NPls and consequently decrease the absorbance at 650 nm due to oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). For in situ and multiple detection of H2S, we utilized a microplate cover with 24 polydimethylsiloxane inner wells where Ag@Au NPls reacted with H2S gas followed by treatment with TMB/H2O2. As a result, the change in absorbance at 650 nm showed a linear relationship with the H2S concentration in the range 0.33 to 2.96 µM (0.36 absorbance/µM H2S in PBS, R2 = 0.994) with a limit of detection of 263 nM and a relative standard deviation of 4.4%. Finally, this assay could detect H2S released from Eikenella corrodens, used as a model bacterium, in a short time (20 min) or at a low number of bacteria (1 × 104 colony forming units/mL). Therefore, this assay is expected to be applied for the study of H2S signaling in bacterial physiology, as well as measure H2S production released from other oral bacteria that cause halitosis and oral diseases, leading to the subsequent diagnosis.
Asunto(s)
Colorimetría , Peróxido de Hidrógeno , Bencidinas , BioensayoRESUMEN
Hydrogen sulfide (H2S) is known to participate in bacteria-induced inflammatory response in periodontal diseases. Therefore, it is necessary to quantify H2S produced by oral bacteria for diagnosis and treatment of oral diseases including halitosis and periodontal disease. In this study, we introduce a paper-based colorimetric assay for detecting bacterial H2S utilizing silver/Nafion/polyvinylpyrrolidone membrane and a 96-well microplate. This H2S-sensing paper showed a good sensitivity (8.27 blue channel intensity/µM H2S, R2 = 0.9996), which was higher than that of lead acetate paper (6.05 blue channel intensity/µM H2S, R2 = 0.9959). We analyzed the difference in H2S concentration released from four kinds of oral bacteria (Eikenella corrodens, Streptococcus sobrinus, Streptococcus mutans, and Lactobacillus casei). Finally, the H2S level in Eikenella corrodens while varying the concentration of cysteine and treatment time was quantified. This paper-based colorimetric assay can be utilized as a simple and effective tool for in vitro screening of H2S-producing ability of many bacteria as well as salivary H2S analysis.
Asunto(s)
Sulfuro de Hidrógeno , Bacterias , Colorimetría , Hidrógeno , Sulfuro de Hidrógeno/análisis , SulfurosRESUMEN
A fast and sensitive colorimetric paper sensor has been developed using silver nanoprisms (Ag NPRs) with an edge length of ~50 nm for the detection of free H2S gas. We prepared two types of Ag NPRs-coated H2S sensing papers: a multi-zone patterned paper for passive (diffusion mode), and a single-zone patterned paper for pumped mode of H2S gas. The change in color intensity was quantitatively analyzed of Ag NPRs-coated paper after KCl treatment depending on the concentration of H2S gas, from yellow to purplish brown. As a result, Ag NPRs-coated H2S sensing paper showed good sensitivity with a linear range of 1.03 to 32.9 µM H2S, high selectivity, and good reproducibility and stability, together with a fast response time of 1 min. The developed H2S sensing paper was applied to detect the free H2S gas released from three types of garlic including crushed, peeled, and fresh garlic. Therefore, it can be utilized as a simple, fast, and reliable tool for on-site colorimetric detection of free H2S gas for quality control of dietary supplements and exhaled breath analysis.Graphical abstract.
Asunto(s)
Colorimetría/métodos , Sulfuro de Hidrógeno/análisis , Nanopartículas del Metal/química , Colorimetría/instrumentación , Ajo/química , Límite de Detección , Papel , Reproducibilidad de los Resultados , Plata/químicaRESUMEN
Influenza virus-like particles (VLPs) vaccines are highly immunogenic, showing strong protective efficacy against homologous virus infection compared to split vaccine. However, a comparative efficacy study against heterosubtypic virus infection between VLPs and split vaccine has yet to been reported. In this study, we generated VLPs vaccine containing hemagglutinin (HA) and matrix protein (M1) of the 2009 pandemic H1N1, and investigated the protective efficacies induced by VLPs vaccine and commercial monovalent H1N1 pandemic split vaccine from Sanofi-Pasteur. Mice were intramuscularly immunized with either VLPs vaccine or split vaccine and subsequently challenge-infected with homologous virus (A/California/04/2009, H1N1) or heterosubtypic virus (A/Philippines/82, H3N2) after 4.5 months. VLPs vaccination demonstrated a higher level of protective efficacy against homologous viruses compared to split vaccine, as lessened lung viral loads and minuscule levels of proinflammatory lung cytokines IFN-gamma and IL-6 were observed. Protective efficacies were close to non-existent in VLP-immunized mice challenged with heterosubtypic viruses (H3N2). In contrast, split vaccine showed lower vaccine efficacy against homologous virus than VLP vaccine, but conferred better protection against heterosubtypic viruses through lung viral loads reduction and heightened survival rate. These results indicate that influenza VLPs provide better protective efficacy against homologous virus challenge infection, whereas split vaccine shows better protective efficacy against heterosubtypic virus challenge. Findings from the current study contribute to the rational design of vaccines conferring a broad range of protection.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunización , Mediadores de Inflamación/metabolismo , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/epidemiología , Gripe Humana/virología , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Evaluación de Resultado en la Atención de Salud , Pronóstico , Vacunación , Vacunas de Partículas Similares a Virus/administración & dosificación , Carga ViralRESUMEN
Salivary pepsin is a promising marker for the non-invasive diagnosis of laryngopharyngeal reflux (LPR). For reliable results regarding pepsin in saliva, it is critical to standardize the collection, storage, and pre-processing methods. In this study, we optimized the saliva collection protocols, including storage conditions, i.e., solution, temperature, and time, and the pre-processing filter for pepsin. Moreover, we prepared a simple immunochromatographic strip for the rapid detection of pepsin and evaluated its sensing performance. As a result, we selected a polypropylene (PP) filter as the pre-processing filter for salivary pepsin in low resource settings, such as those where point of care testing (POCT) is conducted. This filter showed a similar efficiency to the centrifuge (standard method). Finally, we detected the pepsin using gold nanoparticles conjugated with monoclonal pepsin antibody. Under optimized conditions, the lower limit of detection for pepsin test strips was determined as 0.01 µg/mL. Furthermore, we successfully detected the salivary pepsin in real saliva samples of LPR patients, which were pre-processed by the PP filter. Therefore, we expect that our saliva collection protocol and pepsin immunochromatographic strip can be utilized as useful tools for a non-invasive diagnosis/screening of LPR in POCT.
Asunto(s)
Inmunoensayo/métodos , Reflujo Laringofaríngeo/diagnóstico , Pepsina A/aislamiento & purificación , Técnicas Biosensibles , Humanos , Reflujo Laringofaríngeo/metabolismo , Reflujo Laringofaríngeo/patología , Pepsina A/química , Pruebas en el Punto de Atención , Saliva/químicaRESUMEN
In this study, we characterized the potential H2S-releasing properties of seven different H2S donors, including sodium sulfide (Na2S), sodium hydrosulfide (NaHS), diallyl disulfide (DADS), diallyl trisulfide (DATS), sodium thiosulfate (Na2S2O3), morpholin-4-ium 4-methoxyphenyl-morpholino-phosphinodithioate (GYY4137), and Lawesson's reagent, in three assay solutions, phosphate buffered saline (PBS, pH 7.4), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffered saline (HBS, pH 7.6), and cell growth media (GM), utilizing our microplate cover-based colorimetric assay. For quantitative analyses of H2S-releasing characteristics of the various donors, we evaluated four parameters, maximum concentration of H2S at the steady state (Cmax), the time required to reach half of Cmax (t1/2), maximum releasing rate of H2S (Rmax), and time at H2S (tr-max). The results showed that the H2S-releasing kinetics of each H2S donor were dependent on the type of assay solution. In particular, the addition of GSH to DATS in GM released the fastest and highest amounts of H2S among the four H2S donors in the following order: DATSâ¯>â¯DADSâ¯>â¯Na2Sâ¯~â¯NaHS. The H2S-releasing characteristics of the H2S donors were well-matched with cell viability results of human prostate cancer PC-3â¯cells. Therefore, the microplate cover-based colorimetric assay will be a useful tool for accurate and efficient measurements of H2S-releasing dynamics.
Asunto(s)
Colorimetría/métodos , Sulfuro de Hidrógeno/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Sulfuro de Hidrógeno/farmacología , Cinética , MasculinoRESUMEN
Nasal secretions (NS) reflect inflammatory activity of the nasal mucosa and thus can be utilized for disease diagnosis and determining treatment effects in Allergic rhinitis (AR). However, non-standardized collection of samples can affect the measured concentration of inflammatory biomarker in NS. In this study, we aimed to develop and evaluate new devices capable of standardizing the collection, storage, and preprocessing methods of NS samples. First, we chose the best swab as polyester (PE) and selected a stimulation method, twirling for 10â¯s at 1â¯Hz, to efficiently release AR biomarkers from a PE swab. Storage of sample solutions at -20⯰C was optimal for the stability of biomarkers for the detection of AR. The new swab sample transfer device showed excellent concentration recovery efficiency (90-100%) for tryptase (Trp) and eosinophil cationic protein (ECP) without crosstalk between the two biomarkers. Finally, we compared the concentration of Trp in human NS samples of AR patients (nâ¯=â¯6) pre-processed by the new device with that by centrifuge as a standard method. As a result, the concentrations of Trp in NS were very similar in both groups. Therefore, this device can be utilized as an effective sample transfer and pre-processing device for point-of-care testing of AR.
Asunto(s)
Biomarcadores/análisis , Secreciones Corporales/química , Proteína Catiónica del Eosinófilo/análisis , Mucosa Nasal/química , Rinitis Alérgica/diagnóstico , Triptasas/análisis , Adolescente , Adulto , Anciano , Centrifugación , Diseño de Equipo/instrumentación , Humanos , Masculino , Poliésteres/química , Manejo de Especímenes/instrumentaciónRESUMEN
Nitric oxide (NO) is involved in several physiological processes including vasodilation, angiogenesis, immune response, and wound healing, as well as preventing ischemia/reperfusion injury in many organs such as the heart, liver, lungs, and kidneys. Recently, various NO delivery systems such as nanoparticles, nanorods, and nanofibers have been widely studied as potential therapeutic agents. In particular, NO-releasing nanofibers have been attracting much attention for various medicinal applications including regenerative medicine, wound dressings, and coatings for implantable medical devices, due to their flexible and open architectures. In this study, we prepared biocompatible NO-releasing nanofibers by electrospinning using mixed solutions of polymers and methylaminopropyltrimethoxysilane (MAP3), which was modified with N-diazeniumdiolate as an NO donor. In addition, we evaluated their protective effects on hypoxia/reoxygenation (HR) injury in H9c2 cells. The total NO amount released from the resulting MAP3 nanofibers was 1.26 µmol ·mg-1. From the cytotoxicity evaluation of various weights of NO-releasing nanofibers (0 to 2 mg), we selected 1 mg NO-releasing nanofibers for the subsequent experiments. Pre-treatment with NO-releasing nanofibers before hypoxia induction could provide a cytoprotective effect against HR-induced injury in H9c2 cells. The nanofibers could also effectively inhibit the generation of hydrogen peroxide, which was one major contributor to oxidative damage, as well as 8-hydroxyl-2-deoxyguanosine level as an indicator of oxidative DNA damage. In addition, pre-treatment with NO-releasing nano-fibers in a wound model showed wound healing effects similar to those of normal cells. As a result, N-diazeniumdiolate-modified MAP3 nanofibers might protect H9c2 cells from DNA damage by inhibiting the generation of oxidative stress in HR injury. Therefore, we expect that NO-releasing nanofibers could be utilized as a therapeutic strategy for protecting cardiomyocytes from HR injury.
Asunto(s)
Miocitos Cardíacos , Nanofibras , Apoptosis , Humanos , Hipoxia/metabolismo , Miocitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Estrés OxidativoRESUMEN
Detection of salivary pepsin has been given attention as a new diagnostic tool for laryngopharyngeal reflux (LPR) disease, because saliva collection is non-invasive and relatively comfortable. In this study, we prepared polypyrrole nanocorals (PPNCs) on a screen-printed carbon electrode (SPCE) by a soft template synthesis method, using β-naphthalenesulfonic acid (NSA) (for short, PPNCs/SPCE). Gold nanoparticles (GNPs) were then decorated on PPNCs/SPCE by electrodeposition (for short, GNP/PPNCs/SPCE). To construct the immunosensor, pepsin antibody was immobilized on GNP/PPNCs/SPCE. Next, citric acid was applied to prevent non-specific binding and change the electrode surface charge before pepsin incubation. Electrochemical stepwise characterization was performed using cyclic voltammetry, and immunosensor response toward different pepsin concentrations was measured by differential pulsed voltammetry. As a result, our electrochemical immunosensor showed a sensitive detection performance toward pepsin with a linear range from 6.25 to 100 ng/mL and high specificity toward pepsin, as well as a low limit of detection of 2.2 ng/mL. Finally, we quantified the pepsin levels in saliva samples of LPR patients (n = 2), showing that the results were concordant with those of a conventional ELISA method. Therefore, we expect that this electrochemical immunosensor could be helpful for preliminarily diagnosing LPR through the detection of pepsin in saliva.
Asunto(s)
Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Pepsina A/análisis , Polímeros/química , Pirroles/química , Saliva/química , Técnicas Electroquímicas , Electrodos , Ensayo de Inmunoadsorción Enzimática , Humanos , Límite de DetecciónRESUMEN
We introduce a label-free biosensing cellulose strip sensor with surface-enhanced Raman spectroscopy (SERS)-encoded bimetallic core@shell nanoparticles. Bimetallic nanoparticles consisting of a synthesis of core Ag nanoparticles (AgNP) and a synthesis of shell gold nanoparticles (AuNPs) were fabricated on a cellulose substrate by two-stage successive ionic layer absorption and reaction (SILAR) techniques. The bimetallic nanoparticle-enhanced localized surface plasmon resonance (LSPR) effects were theoretically verified by computational calculations with finite element models of optimized bimetallic nanoparticles interacting with an incident laser source. Well-dispersed raspberry-like bimetallic nanoparticles with highly polycrystalline structure were confirmed through X-ray and electron analyses despite ionic reaction synthesis. The stability against silver oxidation and high sensitivity with superior SERS enhancement factor (EF) of the low-cost SERS-encoded cellulose strip, which achieved 3.98 × 108 SERS-EF, 6.1%-RSD reproducibility, and <10%-degraded sustainability, implicated the possibility of practical applications in high analytical screening methods, such as single-molecule detection. The remarkable sensitivity and selectivity of this bimetallic biosensing strip in determining aquatic toxicities for prohibited drugs, such as aniline, sodium azide, and malachite green, as well as monitoring the breast cancer progression for urine, confirmed its potential as a low-cost label-free point-of-care test chip for the early diagnosis of human diseases.
Asunto(s)
Técnicas Biosensibles , Celulosa/química , Oro/química , Nanopartículas del Metal/química , Plata/química , Iones/química , Estructura Molecular , Tamaño de la Partícula , Espectrometría Raman , Propiedades de SuperficieRESUMEN
BACKGROUND: Exenatide exerts cardioprotective effects by attenuating ischaemic reperfusion (IR) injury, possibly through activating the opening of mitochondrial ATP-sensitive potassium channels. We used atomic force microscopy (AFM) to investigate changes in mitochondrial morphology and properties in order to assess exenatide-mediated cardioprotection in IR injury. METHODS: We used an in vivo Sprague-Dawley rat IR model and ex vivo Langendorff injury model. In the left anterior descending artery (LAD) occlusion model, animals were randomly divided into three groups: sham-operated rats (Sham, n=5), IR-injured rats treated with placebo (IR, n=6), and IR-injured treated with exenatide (IR + EXE, n=6). For the Langendorff model, rats were randomly divided into two groups: IR injury with placebo (IR, n=4) and IR injury with exenatide (IR+EXE, n=4). Morphological and mechanical changes of mitochondria were analysed by AFM. RESULTS: Exenatide pre-treatment improved cardiac function as evidenced by improvement in echocardiographic results. The ratio of infarct area (IA) to risk area (RA) was significantly reduced in exenatide-treated rats. According to AFM, IR significantly increased the area of isolated mitochondria, indicative of mitochondrial swelling. Treatment with exenatide reduced the mitochondrial area and ameliorated the adhesion force of mitochondrial surfaces. CONCLUSIONS: Exenatide pre-treatment improves morphological and mechanical characteristics of mitochondria in response to IR injury in a rat model. These alterations in mitochondrial characteristics appear to play a cardioprotective role against IR injury.
Asunto(s)
Ecocardiografía , Mitocondrias Cardíacas , Daño por Reperfusión Miocárdica , Péptidos/farmacología , Ponzoñas/farmacología , Animales , Modelos Animales de Enfermedad , Exenatida , Masculino , Microscopía de Fuerza Atómica , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ratas Sprague-DawleyRESUMEN
Influenza virus-like particles (VLPs) represent promising alternative vaccines. However, it is necessary to demonstrate that influenza VLPs confer cross-protection against antigenically distinct viruses. In this study, a VLP vaccine comprising hemagglutinin (HA) and M1 from the A/California/04/2009 (H1N1) were used and its ability to induce cross-protective efficacy against heterologous viruses A/PR/8/34 (H1N1) and A/New Caledonia/20/99 (H1N1) in mice was assessed. Vaccination with 2009 H1 VLPs induced significantly higher levels of IgG cross-reactive with these heterologous viruses after the second boost compared to after the prime or first boost. Lung virus titers also decreased significantly and the lung cross-reactive IgG response after lethal virus challenge was significantly greater in immunized mice compared to naïve mice. Vaccinated mice showed 100% protection against A/PR/8/34 and A/Caledonia/20/99 viruses with only moderate body weight loss and induction of cross-reactive recall, IgG antibody-secreting cell responses. The variations in HA amino acid sequences and antigenic sites were determined and correlated with induction of cross-protective immunity. These results indicate that VLPs can be used as an effective vaccine that confers cross-protection against antigenically distinct viruses.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae/prevención & control , Virión/inmunología , Animales , Anticuerpos Antivirales/sangre , Variación Antigénica , Línea Celular , Embrión de Pollo , Reacciones Cruzadas , Perros , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunoglobulina G/sangre , Gripe Humana/inmunología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Proteínas de la Matriz Viral/inmunologíaRESUMEN
Sildenafil exerts cardioprotective effects by activating the opening of mitochondrial ATP-sensitive potassium channels to attenuate ischaemia-reperfusion (IR) injury. In the present study, we used atomic force microscopy (AFM) to investigate changes in mitochondrial morphology and properties to assess sildenafil-mediated cardioprotection in a rat myocardial infarction model. To investigate the cardioprotective effects of sildenafil, we used an in vivo Sprague-Dawley rat model of IR. Rats were randomly divided into three groups: (i) sham-operated rats (control; n = 5); (ii) IR-injured rats treated with vehicle (normal saline; IR; n = 10); and (iii) IR-injured rats treated with 0.75 mg/kg, i.p., sildenafil (IR + Sil; n = 10). Morphological and mechanical changes to mitochondria were analysed by AFM. Infarct areas were significantly reduced in sildenafil-treated rats (7.8 ± 3.9% vs 20.4 ± 7.0% in the sildenafil-treated and untreated IR groups, respectively; relative reduction 62%; P < 0.001). Analysis of mitochondria by AFM showed that IR injury significantly increased the areas of isolated mitochondria compared with control (24 150 ± 18 289 vs 1495 ± 1139 nm(2) , respectively; P < 0.001), indicative of mitochondrial swelling. Pretreatment with sildenafil before IR injury reduced the mitochondrial areas (7428 ± 3682 nm(2) ; P < 0.001; relative reduction 69.2% compared with the IR group) and ameliorated the adhesion force of mitochondrial surfaces. Together, these results suggest that sildenafil has cardioprotective effects against IR injury in a rat model by improving the morphological and mechanical characteristics of mitochondria.
Asunto(s)
Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/ultraestructura , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/ultraestructura , Piperazinas/farmacología , Daño por Reperfusión/tratamiento farmacológico , Sulfonamidas/farmacología , Animales , Mitocondrias Cardíacas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Canales de Potasio/metabolismo , Purinas/farmacología , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Citrato de SildenafilRESUMEN
This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.
Asunto(s)
Microscopía de Fuerza Atómica/métodos , Imagen Molecular/métodos , Terapia Molecular Dirigida/métodos , Nanotecnología/métodos , Espectrometría Raman/métodos , Animales , Humanos , Microscopía de Fuerza Atómica/instrumentación , Imagen Molecular/instrumentación , Terapia Molecular Dirigida/instrumentación , Nanotecnología/instrumentación , Espectrometría Raman/instrumentaciónRESUMEN
Organically modified xerogels have an advantage over gas sensing applications due to their open, rigid structure and hydrophobicity. Here we evaluated the biocompatibility of xerogel-derived nitric oxide (NO) permeable membranes modified with fluorinated functional groups for application in cellular sensing by growing RAW 264.7 macrophages on them. We examined the cell viability, adhesion and growth of RAW 264.7 macrophages on NO permselective membrane and other cell-adhesive matrices, poly L-lysine and collagen. The surface roughness of each membrane was obtained from topographic atomic force microscopy (AFM) images. In addition, we measured the level of NO release of RAW 264.7 macrophages by lipopolysaccharide (LPS) stimulation using a Griess assay to confirm the function of cells. The fluorinated xerogel-derived membrane had a very smooth surface with rms roughness 2.1 Å and did not show cytotoxic effects in RAW 264.7 macrophages. As a result, the morphology and function of adhering RAW 264.7 macrophage showed no differences from those of other cell-adhesive membranes. Finally, we successfully detected NO release in RAW 264.7 macrophages stimulated by LPS, using a planar-type xerogel-derived NO sensor. Therefore, we suggest that fluorinated xerogel-derived membrane could be used as both a NO permeable and cell-adhesive membrane for cellular sensing applications.
Asunto(s)
Materiales Biocompatibles/farmacología , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Flúor/química , Geles/farmacología , Macrófagos/citología , Membranas Artificiales , Óxido Nítrico/metabolismo , Animales , Materiales Biocompatibles/química , Técnicas Biosensibles , Línea Celular , Geles/química , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Nanotecnología , Propiedades de SuperficieRESUMEN
Rheumatoid arthritis (RA) and osteoarthritis (OA) are two different types of arthritis. Within RA, the subsets between seronegative RA (snRA) and seropositive RA (spRA) represent distinct disease entities; however, identifying clear distinguishing markers between them remains a challenge. This study investigated and compared the oral health conditions in patients with RA and OA to clarify the differences from healthy controls. In addition, we investigated the serological characteristics of the patients, the factors that distinguished patients with RA from those with OA, and the main factors that differentiated between snRA and spRA patients. A total of 161 participants (mean age: 52.52 ± 14.57 years, 32 males and 129 females) were enrolled in this study and categorized as: normal (n = 33), OA (n = 31), and RA (n = 97). Patients with RA were divided into the following two subtypes: snRA (n = 18) and spRA (n = 79). Demographics, oral health, and serological characteristics of these patients were compared. The prevalence of periodontal diseases was significantly higher in patients with OA (100%) and RA (92.8%) than in healthy controls (0.0%). However, the presence of periodontal diseases was not utilized as a distinguishing factor between OA and RA. Xerostomia occurred more frequently in patients with RA (84.5%) than in patients with OA (3.2%) and healthy controls (0.0%) (all p < 0.001). ROC analysis revealed that periodontal disease was a very strong predictor in the diagnosis of OA compared to healthy controls, with an AUC value of 1.00 (p < 0.001). Additionally, halitosis (AUC = 0.746, 95% CI 0.621-0.871, p < 0.001) and female sex (AUC = 0.663, 95% CI 0.529-0.797, p < 0.05) were also significant predictors of OA. The strongest predictors of RA diagnosis compared to healthy controls were periodontal diseases (AUC = 0.964), followed by xerostomia (AUC = 0.923), age (AUC = 0.923), female sex (AUC = 0.660), and halitosis (AUC = 0.615) (all p < 0.05). Significant serological predictors of RA were anti-CCP Ab (AUC = 0.808), and RF (AUC = 0.746) (all p < 0.05). In multiple logistic regression analysis, xerostomia (odds ratio, OR: 8124.88, 95% CI 10.37-6368261.97, p-value = 0.008) and Anti-CCP Ab (OR: 671.33, 95% CI 2.18-207,074.02, p = 0.026) were significant predictors for RA compared to OA. When diagnosing spRA compared to snRA, anti-CCP Ab (AUC = 1.000, p < 0.001) and RF (AUC = 0.910, 95%CI 0.854-0.967, p < 0.001) had outstanding predictive performances. Therefore, clinicians and researchers should thoroughly evaluate the oral status of both OA and RA patients, alongside serological factors, and consider these elements as potential predictors.
Asunto(s)
Artritis Reumatoide , Halitosis , Osteoartritis , Enfermedades Periodontales , Periodontitis , Xerostomía , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Anticuerpos Antiproteína Citrulinada , Artritis Reumatoide/complicaciones , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/epidemiología , Osteoartritis/complicaciones , Osteoartritis/diagnóstico , Biomarcadores , Periodontitis/complicaciones , Periodontitis/diagnóstico , Periodontitis/epidemiología , Autoanticuerpos , Péptidos CíclicosRESUMEN
Nitric oxide (NO) promotes angiogenesis via various mechanisms; however, the effective transmission of NO in ischemic diseases is unclear. Herein, we tested whether NO-releasing nanofibers modulate therapeutic angiogenesis in an animal hindlimb ischemia model. Male wild-type C57BL/6 mice with surgically-induced hindlimb ischemia were treated with NO-releasing 3-methylaminopropyltrimethoxysilane (MAP3)-derived or control (i.e., non-NO-releasing) nanofibers, by applying them to the wound for 20 min, three times every two days. The amount of NO from the nanofiber into tissues was assessed by NO fluorometric assay. The activity of cGMP-dependent protein kinase (PKG) was determined by western blot analysis. Perfusion ratios were measured 2, 4, and 14 days after inducing ischemia using laser doppler imaging. On day 4, Immunohistochemistry (IHC) with F4/80 and gelatin zymography were performed. IHC with CD31 was performed on day 14. To determine the angiogenic potential of NO-releasing nanofibers, aorta-ring explants were treated with MAP3 or control fiber for 20 min, and the sprout lengths were examined after 6 days. As per either LDPI (Laser doppler perfusion image) ratio or CD31 capillary density measurement, angiogenesis in the ischemic hindlimb was improved in the MAP3 nanofiber group; further, the total nitrate/nitrite concentration in the adduct muscle increased. The number of macrophage infiltrations and matrix metalloproteinase-9 (MMP-9) activity decreased. Vasodilator-stimulated phosphoprotein (VASP), one of the major substrates for PKG, increased phosphorylation in the MAP3 group. MAP3 nanofiber or NO donor SNAP (s-nitroso-n-acetyl penicillamine)-treated aortic explants showed enhanced sprouting in an ex vivo aortic ring assay, which was partially abrogated by KT5823, a potent inhibitor of PKG. These findings suggest that the novel NO-releasing nanofiber, MAP3 activates PKG and promotes therapeutic angiogenesis in response to hindlimb ischemia.
Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Miembro Posterior , Isquemia , Ratones Endogámicos C57BL , Nanofibras , Neovascularización Fisiológica , Óxido Nítrico , Animales , Nanofibras/química , Masculino , Óxido Nítrico/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Ratones , Miembro Posterior/irrigación sanguínea , Neovascularización Fisiológica/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Microfilamentos/metabolismo , Moléculas de Adhesión CelularRESUMEN
Achilles tendons are vulnerable to acute or chronic injuries that lead to inflammation. We investigated nanostructural and nanomechanical changes in collagen fibrils from rat Achilles tendons over a period of 9 weeks after injury using atomic force microscopy (AFM). To evaluate the nanostructural changes in Achilles tendons, we measured the diameter and D-banding of collagen fibrils by AFM. And the adhesion forces, which were related to cross-linking of collagen, were calculated from the retraction process of a force-distance curve. We successfully observed the time course of changes in collagen fibrils during healing using AFM. The diameters and D-banding in healed tendons were similar to those of uninjured tendons at 9 weeks after injury, but the adhesion forces remained different from those of uninjured tendons. Our AFM results depicted the minute changes in Achilles tendon surface by natural healing quite well, even drawbacks to naturally healed tendon. Understanding changes in collagen cross-linking and structure while healing will lead to better understanding of healing mechanisms and subsequent improvements in treatment. And AFM can be applied as powerful tool to evaluate structural and property changes in collagen fibrils before and after injury and/or treatment in Achilles tendon.
Asunto(s)
Tendón Calcáneo/patología , Tendón Calcáneo/fisiopatología , Colagenasas , Colágenos Fibrilares/química , Colágenos Fibrilares/ultraestructura , Tendinopatía/patología , Tendinopatía/fisiopatología , Tendón Calcáneo/efectos de los fármacos , Animales , Módulo de Elasticidad , Masculino , Mecanotransducción Celular , Ratas , Ratas Sprague-Dawley , Tendinopatía/inducido químicamente , Resistencia a la TracciónRESUMEN
Because oxygen plays a critical role in the pathophysiology of myocardial injury during subsequent reperfusion, as well as ischemia, the accurate measurement of myocardial oxygen tension is crucial for the assessment of myocardial viability by ischemia-reperfusion (IR) injury. Therefore, we utilized a sol-gel derived electrochemical oxygen microsensor to monitor changes in oxygen tension during myocardial ischemia-reperfusion. We also analyzed differences in oxygen tension recovery in post-ischemic myocardium depending on ischemic time to investigate the correlation between recovery parameters for oxygen tension and the severity of IR injury. An oxygen sensor was built using a xerogel-modified platinum microsensor and a coiled Ag/AgCl reference electrode. Rat hearts were randomly divided into 5 groups: control (0 min ischemia), I-10 (10 min ischemia), I-20 (20 min ischemia), I-30 (30 min ischemia), and I-40 (40 min ischemia) groups (n = 3 per group, respectively). After the induction of ischemia, reperfusion was performed for 60 min. As soon as the ischemia was initiated, oxygen tension rapidly declined to near zero levels. When reperfusion was initiated, the changes in oxygen tension depended on ischemic time. The normalized peak level of oxygen tension during the reperfusion episode was 188 ± 27 in group I-10, 120 ± 24 in group I-20, 12.5 ± 10.6 in group I-30, and 1.24 ± 1.09 in group I-40 (p < 0.001, n = 3, respectively). After 60 min of reperfusion, the normalized restoration level was 129 ± 30 in group I-10, 88 ± 4 in group I-20, 3.40 ± 4.82 in group I-30, and 0.99 ± 0.94 in group I-40 (p < 0.001, n = 3, respectively). The maximum and restoration values of oxygen tension in groups I-30 and I-40 after reperfusion were lower than pre-ischemic values. In particular, oxygen tension in the I-40 group was not recovered at all. These results were also demonstrated by TTC staining. We suggest that these recovery parameters could be utilized as an index of tissue injury and severity of ischemia. Therefore, quantitative measurements of oxygen tension dynamics in the myocardium would be helpful for evaluation of the cardioprotective effects of therapeutic treatments such as drug administration.