Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 575(7783): 473-479, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31748722

RESUMEN

Traditional technologies for virtual reality (VR) and augmented reality (AR) create human experiences through visual and auditory stimuli that replicate sensations associated with the physical world. The most widespread VR and AR systems use head-mounted displays, accelerometers and loudspeakers as the basis for three-dimensional, computer-generated environments that can exist in isolation or as overlays on actual scenery. In comparison to the eyes and the ears, the skin is a relatively underexplored sensory interface for VR and AR technology that could, nevertheless, greatly enhance experiences at a qualitative level, with direct relevance in areas such as communications, entertainment and medicine1,2. Here we present a wireless, battery-free platform of electronic systems and haptic (that is, touch-based) interfaces capable of softly laminating onto the curved surfaces of the skin to communicate information via spatio-temporally programmable patterns of localized mechanical vibrations. We describe the materials, device structures, power delivery strategies and communication schemes that serve as the foundations for such platforms. The resulting technology creates many opportunities for use where the skin provides an electronically programmable communication and sensory input channel to the body, as demonstrated through applications in social media and personal engagement, prosthetic control and feedback, and gaming and entertainment.


Asunto(s)
Realidad Aumentada , Diseño de Equipo , Piel , Tacto , Interfaz Usuario-Computador , Realidad Virtual , Tecnología Inalámbrica/instrumentación , Comunicación , Epidermis , Retroalimentación , Femenino , Humanos , Masculino , Prótesis e Implantes , Robótica , Medios de Comunicación Sociales , Vibración , Juegos de Video
2.
Neuron ; 93(3): 509-521.e3, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28132830

RESUMEN

In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source, limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin, flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable light-emitting diodes (LEDs), with the ability to operate at wavelengths ranging from UV to blue, green-yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications.


Asunto(s)
Encéfalo , Optogenética/instrumentación , Tecnología Inalámbrica/instrumentación , Animales , Ratones , Opsinas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda