Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Vox Sang ; 117(5): 715-723, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35138639

RESUMEN

BACKGROUND AND OBJECTIVES: The molecular basis of MNS blood group variants is not fully clear yet. In this study, we have characterized mRNA variants of GYPA and GYPB genes to reveal whether alternative RNA splicing may cause antigenic diversity of the MNS system. MATERIALS AND METHODS: Total RNA was extracted from peripheral blood of Chinese blood donors and full-length cDNA products were generated. A nested polymerase chain reaction (PCR)-based method was established for fragment amplification and Sanger sequencing. Resulted full-length mRNA sequences were aligned with GYPA or GYPB genomic sequences respectively for exon identification. Amino acid (AA) sequences of GPA and GPB proteins were extrapolated and GYPA-EGFP, GYPB-EGFP fusion genes were generated to monitor subcellular distribution of the encoded glycophorin (GP) proteins. RESULTS: Totally 10 blood samples were analysed. GYPB mRNAs of all the subjects demonstrated frequent exon insertion or deletion whereas this kind of variation was only observed in 3 of 10 GYPA mRNA samples. None of the reported Miltenberger hybrids was detected in any of the mRNA samples. The alternative splicing resulted in changes of AA sequences in N-terminal domains where the MNS antigenic motifs resided; however, subcellular localizations of GP-EGFP fusion proteins showed that the above-mentioned AA changes did not affect cell surface distribution of the encoded GP proteins. CONCLUSIONS: Alternative RNA splicing may influence the antigenic features of GP proteins but not their cell surface distribution. Therefore, GYPA and GYPB mRNA characterization might be an invaluable supplement to serological phenotyping and DNA-based genotyping in MNS blood grouping.


Asunto(s)
Donantes de Sangre , Glicoforinas , Sistema del Grupo Sanguíneo MNSs , Empalme Alternativo , China , Glicoforinas/genética , Glicoforinas/metabolismo , Humanos , ARN Mensajero/sangre , ARN Mensajero/genética
2.
Sci Rep ; 14(1): 12270, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806611

RESUMEN

The prognosis for patients with colorectal cancer (CRC) remains worse than expected due to metastasis, recurrence, and resistance to chemotherapy. Colorectal cancer stem cells (CRCSCs) play a vital role in tumor metastasis, recurrence, and chemotherapy resistance. However, there are currently no prognostic markers based on CRCSCs-related genes available for clinical use. In this study, single-cell transcriptome sequencing was employed to distinguish cancer stem cells (CSCs) in the CRC microenvironment and analyze their properties at the single-cell level. Subsequently, data from TCGA and GEO databases were utilized to develop a prognostic risk model for CRCSCs-related genes and validate its diagnostic performance. Additionally, functional enrichment, immune response, and chemotherapeutic drug sensitivity of the relevant genes in the risk model were investigated. Lastly, the key gene RPS17 in the risk model was identified as a potential prognostic marker and therapeutic target for further comprehensive studies. Our findings provide new insights into the prognostic treatment of CRC and offer novel perspectives for a systematic and comprehensive understanding of CRC development.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Células Madre Neoplásicas , RNA-Seq , Análisis de la Célula Individual , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/mortalidad , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Análisis de la Célula Individual/métodos , Pronóstico , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/genética , Transcriptoma , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN/métodos
3.
J Pharm Pharmacol ; 76(3): 269-282, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38241189

RESUMEN

OBJECTIVE: The goal of the study is to examine the impact on the malignant biological behaviors of non-small cell lung cancer (NSCLC) of a novel coumarin derivative, ethyl 2,2-difluoro-2-(2-oxo-2H-chromen-3-yl) acetate (C2F). It also aims to define its underlying mechanism. METHODS: NSCLC cell lines and xenograft nude mice model were conducted to explore the anti-NSCLC effects of C2F in vitro and in vivo. Then, network pharmacology analysis and molecular docking were applied to estimate the possible targets of C2F in NSCLC. Finally, the underlying mechanism of C2F against NSCLC cellular proliferation and tumor development was confirmed using inhibitors or activators of the PI3K/AKT signaling pathway. RESULTS: Our results showed that C2F was able to inhibit proliferation, migration, and invasion of NSCLC cell lines, induce cell cycle arrest and apoptosis in vitro, and prevent tumor growth in vivo. In addition, the estimated glomerular filtration rate and its downstream pathway (PI3K/AKT/mTOR) were found to be critical for the anti-NSCLC activity of C2F. CONCLUSIONS: C2F inhibits malignant biological behaviors of NSCLC by suppressing EGFR/PI3K/AKT/mTOR signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Pulmonares/metabolismo , Ratones Desnudos , Simulación del Acoplamiento Molecular , Proliferación Celular , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Acetatos/farmacología , Línea Celular Tumoral
4.
Iran J Immunol ; 20(1): 129-134, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36934323

RESUMEN

Several cases of the hemolytic disease of the fetus and newborn (HDFN) caused by immunoglobulin G (IgG) anti-M antibodies have been reported, in which almost all the HDFN-associated anti-M were warmly reacting. Here we report two cases of severe HDFN associated with cold-reacting IgG anti-M. In both cases, pregnancy was terminated, in weeks 33 and 23 respectively, due to a diagnosis of fetal growth retardation (FGR). To our knowledge, these are the most severe HDFN cases caused by cold-reacting IgG anti-M.


Asunto(s)
Antígenos de Grupos Sanguíneos , Eritroblastosis Fetal , Embarazo , Femenino , Recién Nacido , Humanos , Inmunoglobulina G , Eritroblastosis Fetal/diagnóstico , Eritroblastosis Fetal/etiología , Feto
5.
Mol Med Rep ; 19(4): 3123-3131, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30816539

RESUMEN

The present study aimed to identify the disease­causing gene of a four­generation Chinese family affected with congenital posterior subcapsular cataracts (CPSC), to additionally investigate the frequency of paired like homeodomain 3 (PITX3) mutations in Chinese patients with autosomal dominant congenital cataract (ADCC) and to analyze the pathogenesis of the mutations identified in the present study. Whole exome sequencing (WES) was utilized to identify the genetic cause of CPSC in the four­generation family. Sanger sequencing was performed to verify the WES results and to screen for mutations of the PITX3 gene in probands of an additional 194 Chinese ADCC families. Co­segregation analysis was performed in the family members with available DNA. Subcellular localization analyses and transactivation assays were performed for the PITX3 mutations identified. From the WES data, the c.608delC (p.A203GfsX106) mutation of PITX3 was identified in the four­generation family with CPSC. A second PITX3 mutation c.640_656del (p.A214RfsX42) was detected in two of the additional 194 ADCC families and one of these two families exhibited incomplete penetrance. Functional studies indicated that these 2 PITX3 mutant proteins retained a nuclear localization pattern, but resulted in decreased transactivation activity, similar to other previously identified PITX3 mutations. In the present study, 2 different mutations (p.A203GfsX106 and p.A214RfsX42) in PITX3 were identified as the causative defect in a four­generation family with CPSC and two ADCC families, respectively. The prevalence of PITX3 gene­associated cataract was 1.54% (3/195) in the Chinese congenital cataract (CC) family cohort. In vitro functional analyses of these 2 PITX3 mutations were performed, in order to enhance understanding of the pathogenesis of CC caused by PITX3 mutations.


Asunto(s)
Pueblo Asiatico/genética , Catarata/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/genética , Mutación , Factores de Transcripción/genética , Catarata/epidemiología , Biología Computacional/métodos , Femenino , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Espacio Intracelular/metabolismo , Masculino , Unión Proteica , Transporte de Proteínas , Factores de Transcripción/metabolismo , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda