Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Am Chem Soc ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622048

RESUMEN

In supramolecular materials, multiple weak binding groups can act as a single collective unit when confined to a localized volume, thereby producing strong but dynamic bonds between material building blocks. This principle of multivalency provides a versatile means of controlling material assembly, as both the number and the type of supramolecular moieties become design handles to modulate the strength of intermolecular interactions. However, in materials with building blocks significantly larger than individual supramolecular moieties (e.g., polymer or nanoparticle scaffolds), the degree of multivalency is difficult to predict or control, as sufficiently large scaffolds inherently preclude separated supramolecular moieties from interacting. Because molecular models commonly used to examine supramolecular interactions are intrinsically unable to examine any trends or emergent behaviors that arise due to nanoscale scaffold geometry, our understanding of the thermodynamics of these massively multivalent systems remains limited. Here we address this challenge via the coassembly of polymer-grafted nanoparticles and multivalent polymers, systematically examining how multivalent scaffold size, shape, and spacing affect their collective thermodynamics. Investigating the interplay of polymer structure and supramolecular group stoichiometry reveals complicated but rationally describable trends that demonstrate how the supramolecular scaffold design can modulate the strength of multivalent interactions. This approach to self-assembled supramolecular materials thus allows for the manipulation of polymer-nanoparticle composites with controlled thermal stability, nanoparticle organization, and tailored meso- to microscopic structures. The sophisticated control of multivalent thermodynamics through precise modulation of the nanoscale scaffold geometry represents a significant advance in the ability to rationally design complex hierarchically structured materials via self-assembly.

2.
Soft Matter ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140263

RESUMEN

DNA-coated nanoparticles, also known as programmable atom equivalents (PAEs), facilitate the construction of materials with nanoscopic precision. Thermal annealing plays a pivotal role by controlling DNA hybridization kinetics and thermodynamics, which ensures the formation of intended structures. While various design handles such as particle size, DNA design, and salt concentration influence the stability of the DNA duplexes linking PAEs in a lattice, their influence on the system's melting temperature (Tm) often follows complicated trends that make rational tuning of self-assembly challenging. In this work, the denaturant formamide is used to precisely tune the thermal response of PAEs. Our results reveal a clear and predictable trend in the PAEs' response to formamide, enabling rational control over the Tm of a diverse set of PAE systems. Unlike adjustments made through alterations to PAE design or solution parameters such as ionic strength, formamide achieves its temperature shift without impacting the kinetics of assembly. As a result, PAEs can be rapidly crystallized at ambient temperatures, producing superlattices with similar quality to PAE crystals assembled through standard protocols that use higher temperatures. This study therefore positions formamide as a useful tool for enhancing the synthesis of complex nanostructures under mild conditions.

3.
Nat Mater ; 23(8): 1023-1024, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39090402
4.
ACS Nano ; 18(24): 15970-15977, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838258

RESUMEN

Nanoparticle assembly is a material synthesis strategy that enables precise control of nanoscale structural features. Concepts from traditional crystal growth research have been tremendously useful in predicting and programming the unit cell symmetries of these assemblies, as their thermodynamically favored structures are often identical to atomic crystal analogues. However, these analogies have not yielded similar levels of influence in programming crystallite shapes, which are a consequence of both the thermodynamics and kinetics of crystal growth. Here, we demonstrate kinetic control of the colloidal crystal shape using nanoparticle building blocks that rapidly assemble over a broad range of concentrations, thereby producing well-defined crystal habits with symmetrically oriented dendritic protrusions and providing insight into the crystals' morphological evolution. Counterintuitively, these nonequilibrium crystal shapes actually become more common for colloidal crystals synthesized closer to equilibrium growth conditions. This deviation from typical crystal growth processes observed in atomic or molecular crystals is shown to be a function of the drastically different time scales of atomic and colloidal mass transport. Moreover, the particles are spherical with isotropic ligand grafts, and these kinetic crystal habits are achieved without the need for specifically shaped particle building blocks or external templating or shape-directing agents. Thus, this work provides generalizable design principles to expand the morphological diversity of nanoparticle superlattice crystal habits beyond the anhedral or equilibrium polyhedral shapes synthesized to date. Finally, we use this insight to synthesize crystallite shapes that have never before been observed, demonstrating the ability to both predict and program kinetically controlled superlattice morphologies.

5.
ACS Nano ; 18(23): 14791-14840, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38814908

RESUMEN

We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda