Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.726
Filtrar
Más filtros

Colección SES
Publication year range
1.
Annu Rev Immunol ; 36: 843-864, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29490162

RESUMEN

Recent progress in both conceptual and technological approaches to human immunology have rejuvenated a field that has long been in the shadow of the inbred mouse model. This is a healthy development both for the clinical relevance of immunology and for the fact that it is a way to gain access to the wealth of phenomenology in the many human diseases that involve the immune system. This is where we are likely to discover new immunological mechanisms and principals, especially those involving genetic heterogeneity or environmental influences that are difficult to model effectively in inbred mice. We also suggest that there are likely to be novel immunological mechanisms in long-lived, less fecund mammals such as human beings since they must remain healthy far longer than short-lived rodents in order for the species to survive.


Asunto(s)
Sistema Inmunológico/fisiología , Inmunidad , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Evolución Biológica , Variación Biológica Poblacional , Supresión Clonal/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Memoria Inmunológica , Modelos Animales , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
2.
Cell ; 185(26): 4904-4920.e22, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36516854

RESUMEN

Cells communicate with each other via receptor-ligand interactions. Here, we describe lentiviral-mediated cell entry by engineered receptor-ligand interaction (ENTER) to display ligand proteins, deliver payloads, and record receptor specificity. We optimize ENTER to decode interactions between T cell receptor (TCR)-MHC peptides, antibody-antigen, and other receptor-ligand pairs. A viral presentation strategy allows ENTER to capture interactions between B cell receptor and any antigen. We engineer ENTER to deliver genetic payloads to antigen-specific T or B cells to selectively modulate cellular behavior in mixed populations. Single-cell readout of ENTER by RNA sequencing (ENTER-seq) enables multiplexed enumeration of antigen specificities, TCR clonality, cell type, and states of individual T cells. ENTER-seq of CMV-seropositive patient blood samples reveals the viral epitopes that drive effector memory T cell differentiation and inter-clonal vs. intra-clonal phenotypic diversity targeting the same epitope. ENTER technology enables systematic discovery of receptor specificity, linkage to cell fates, and antigen-specific cargo delivery.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Internalización del Virus , Humanos , Biología , Epítopos , Ligandos , Péptidos , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de la Célula Individual , Genómica
3.
Cell ; 185(6): 1008-1024.e15, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35202565

RESUMEN

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.

4.
Cell ; 185(11): 1875-1887.e8, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35523182

RESUMEN

We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
5.
Cell ; 185(6): 1025-1040.e14, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35148837

RESUMEN

During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.


Asunto(s)
Anticuerpos Antivirales , Vacuna BNT162 , COVID-19 , Centro Germinal , Antígenos Virales , COVID-19/prevención & control , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Vacunación
6.
Nat Immunol ; 25(8): 1411-1421, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38997431

RESUMEN

A subset of individuals exposed to Mycobacterium tuberculosis (Mtb) that we refer to as 'resisters' (RSTR) show evidence of IFN-γ- T cell responses to Mtb-specific antigens despite serially negative results on clinical testing. Here we found that Mtb-specific T cells in RSTR were clonally expanded, confirming the priming of adaptive immune responses following Mtb exposure. RSTR CD4+ T cells showed enrichment of TH17 and regulatory T cell-like functional programs compared to Mtb-specific T cells from individuals with latent Mtb infection. Using public datasets, we showed that these TH17 cell-like functional programs were associated with lack of progression to active tuberculosis among South African adolescents with latent Mtb infection and with bacterial control in nonhuman primates. Our findings suggested that RSTR may successfully control Mtb following exposure and immune priming and established a set of T cell biomarkers to facilitate further study of this clinical phenotype.


Asunto(s)
Linfocitos T CD4-Positivos , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/inmunología , Humanos , Animales , Adolescente , Tuberculosis/inmunología , Tuberculosis/microbiología , Linfocitos T CD4-Positivos/inmunología , Células Th17/inmunología , Femenino , Macaca mulatta , Masculino , Fenotipo , Interferón gamma/metabolismo , Interferón gamma/inmunología , Antígenos Bacterianos/inmunología , Tuberculosis Latente/inmunología , Tuberculosis Latente/microbiología , Sudáfrica , Adulto Joven , Linfocitos T Reguladores/inmunología , Adulto
7.
Nat Immunol ; 24(10): 1616-1627, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37667052

RESUMEN

Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA-potentially capable of being translated to produce viral proteins-persist in tissue as a 'reservoir'. This reservoir could modulate host immune responses or release viral proteins into the circulation. Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated.


Asunto(s)
COVID-19 , Humanos , Síndrome Post Agudo de COVID-19 , ARN Viral/genética , SARS-CoV-2 , Antivirales , Progresión de la Enfermedad
8.
Nat Immunol ; 24(10): 1711-1724, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37735592

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.

9.
Cell ; 183(2): 347-362.e24, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33064988

RESUMEN

Neoantigens arise from mutations in cancer cells and are important targets of T cell-mediated anti-tumor immunity. Here, we report the first open-label, phase Ib clinical trial of a personalized neoantigen-based vaccine, NEO-PV-01, in combination with PD-1 blockade in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. This analysis of 82 patients demonstrated that the regimen was safe, with no treatment-related serious adverse events observed. De novo neoantigen-specific CD4+ and CD8+ T cell responses were observed post-vaccination in all of the patients. The vaccine-induced T cells had a cytotoxic phenotype and were capable of trafficking to the tumor and mediating cell killing. In addition, epitope spread to neoantigens not included in the vaccine was detected post-vaccination. These data support the safety and immunogenicity of this regimen in patients with advanced solid tumors (Clinicaltrials.gov: NCT02897765).


Asunto(s)
Vacunas contra el Cáncer/inmunología , Inmunoterapia/métodos , Medicina de Precisión/métodos , Anciano , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Persona de Mediana Edad , Mutación , Nivolumab/uso terapéutico , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/inmunología
10.
Nat Immunol ; 23(11): 1600-1613, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36271148

RESUMEN

Naïve CD8+ T cells can differentiate into effector (Teff), memory (Tmem) or exhausted (Tex) T cells. These developmental pathways are associated with distinct transcriptional and epigenetic changes that endow cells with different functional capacities and therefore therapeutic potential. The molecular circuitry underlying these developmental trajectories and the extent of heterogeneity within Teff, Tmem and Tex populations remain poorly understood. Here, we used the lymphocytic choriomeningitis virus model of acute-resolving and chronic infection to address these gaps by applying longitudinal single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses. These analyses uncovered new subsets, including a subpopulation of Tex cells expressing natural killer cell-associated genes that is dependent on the transcription factor Zeb2, as well as multiple distinct TCF-1+ stem/progenitor-like subsets in acute and chronic infection. These data also revealed insights into the reshaping of Tex subsets following programmed death 1 (PD-1) pathway blockade and identified a key role for the cell stress regulator, Btg1, in establishing the Tex population. Finally, these results highlighted how the same biological circuits such as cytotoxicity or stem/progenitor pathways can be used by CD8+ T cell subsets with highly divergent underlying chromatin landscapes generated during different infections.


Asunto(s)
Linfocitos T CD8-positivos , Coriomeningitis Linfocítica , Humanos , Linfocitos T CD8-positivos/metabolismo , Transcriptoma , Virus de la Coriomeningitis Linfocítica , Epigénesis Genética , Cromatina/genética , Cromatina/metabolismo , Coriomeningitis Linfocítica/metabolismo
11.
Immunity ; 57(4): 912-925.e4, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38490198

RESUMEN

The spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to accumulate substitutions, leading to breakthrough infections of vaccinated individuals. It remains unclear if exposures to antigenically distant SARS-CoV-2 variants can overcome memory B cell biases established by initial SARS-CoV-2 encounters. We determined the specificity and functionality of antibody and B cell responses following exposure to BA.5 and XBB variants in individuals who received ancestral SARS-CoV-2 mRNA vaccines. BA.5 exposures elicited antibody responses that targeted epitopes conserved between the BA.5 and ancestral spike. XBB exposures also elicited antibody responses that primarily targeted epitopes conserved between the XBB.1.5 and ancestral spike. However, unlike BA.5, a single XBB exposure elicited low frequencies of XBB.1.5-specific antibodies and B cells in some individuals. Pre-existing cross-reactive B cells and antibodies were correlated with stronger overall responses to XBB but weaker XBB-specific responses, suggesting that baseline immunity influences the activation of variant-specific SARS-CoV-2 responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Formación de Anticuerpos , Anticuerpos , Epítopos , Anticuerpos Neutralizantes , Anticuerpos Antivirales
12.
Cell ; 173(6): 1385-1397.e14, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29706550

RESUMEN

Post-translational modifications of histone proteins and exchanges of histone variants of chromatin are central to the regulation of nearly all DNA-templated biological processes. However, the degree and variability of chromatin modifications in specific human immune cells remain largely unknown. Here, we employ a highly multiplexed mass cytometry analysis to profile the global levels of a broad array of chromatin modifications in primary human immune cells at the single-cell level. Our data reveal markedly different cell-type- and hematopoietic-lineage-specific chromatin modification patterns. Differential analysis between younger and older adults shows that aging is associated with increased heterogeneity between individuals and elevated cell-to-cell variability in chromatin modifications. Analysis of a twin cohort unveils heritability of chromatin modifications and demonstrates that aging-related chromatin alterations are predominantly driven by non-heritable influences. Together, we present a powerful platform for chromatin and immunology research. Our discoveries highlight the profound impacts of aging on chromatin modifications.


Asunto(s)
Envejecimiento , Cromatina/química , Epigénesis Genética , Adolescente , Adulto , Anciano , Linaje de la Célula , Separación Celular , Enfermedades en Gemelos , Femenino , Citometría de Flujo , Histonas/metabolismo , Humanos , Sistema Inmunológico , Inmunofenotipificación , Leucocitos Mononucleares/citología , Masculino , Persona de Mediana Edad , Monocitos/citología , Análisis de Componente Principal , Procesamiento Proteico-Postraduccional , Sistema de Registros , Adulto Joven
13.
Cell ; 172(3): 549-563.e16, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29275860

RESUMEN

The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of "orphan" T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile indentification of tumor antigens through unbiased screening.


Asunto(s)
Adenocarcinoma/inmunología , Antígenos de Neoplasias/inmunología , Neoplasias Colorrectales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Anciano , Animales , Antígenos de Neoplasias/química , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Antígenos HLA-A/química , Antígenos HLA-A/inmunología , Humanos , Masculino , Persona de Mediana Edad , Biblioteca de Péptidos , Células Sf9 , Spodoptera
14.
Cell ; 174(3): 672-687.e27, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30053426

RESUMEN

TCR-signaling strength generally correlates with peptide-MHC binding affinity; however, exceptions exist. We find high-affinity, yet non-stimulatory, interactions occur with high frequency in the human T cell repertoire. Here, we studied human TCRs that are refractory to activation by pMHC ligands despite robust binding. Analysis of 3D affinity, 2D dwell time, and crystal structures of stimulatory versus non-stimulatory TCR-pMHC interactions failed to account for their different signaling outcomes. Using yeast pMHC display, we identified peptide agonists of a formerly non-responsive TCR. Single-molecule force measurements demonstrated the emergence of catch bonds in the activating TCR-pMHC interactions, correlating with exclusion of CD45 from the TCR-APC contact site. Molecular dynamics simulations of TCR-pMHC disengagement distinguished agonist from non-agonist ligands based on the acquisition of catch bonds within the TCR-pMHC interface. The isolation of catch bonds as a parameter mediating the coupling of TCR binding and signaling has important implications for TCR and antigen engineering for immunotherapy.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/fisiología , Activación de Linfocitos/fisiología , Adulto , Femenino , Humanos , Cinética , Ligandos , Complejo Mayor de Histocompatibilidad/fisiología , Masculino , Persona de Mediana Edad , Simulación de Dinámica Molecular , Oligopéptidos , Péptidos , Unión Proteica/fisiología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/fisiología , Transducción de Señal , Imagen Individual de Molécula , Linfocitos T/fisiología
15.
Cell ; 174(2): 422-432.e13, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29909987

RESUMEN

Increased androgen receptor (AR) activity drives therapeutic resistance in advanced prostate cancer. The most common resistance mechanism is amplification of this locus presumably targeting the AR gene. Here, we identify and characterize a somatically acquired AR enhancer located 650 kb centromeric to the AR. Systematic perturbation of this enhancer using genome editing decreased proliferation by suppressing AR levels. Insertion of an additional copy of this region sufficed to increase proliferation under low androgen conditions and to decrease sensitivity to enzalutamide. Epigenetic data generated in localized prostate tumors and benign specimens support the notion that this region is a developmental enhancer. Collectively, these observations underscore the importance of epigenomic profiling in primary specimens and the value of deploying genome editing to functionally characterize noncoding elements. More broadly, this work identifies a therapeutic vulnerability for targeting the AR and emphasizes the importance of regulatory elements as highly recurrent oncogenic drivers.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Acetilación , Adulto , Anciano , Antineoplásicos/farmacología , Benzamidas , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Metilación de ADN , Edición Génica , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética
16.
Cell ; 173(7): 1692-1704.e11, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29779949

RESUMEN

Heritability is essential for understanding the biological causes of disease but requires laborious patient recruitment and phenotype ascertainment. Electronic health records (EHRs) passively capture a wide range of clinically relevant data and provide a resource for studying the heritability of traits that are not typically accessible. EHRs contain next-of-kin information collected via patient emergency contact forms, but until now, these data have gone unused in research. We mined emergency contact data at three academic medical centers and identified 7.4 million familial relationships while maintaining patient privacy. Identified relationships were consistent with genetically derived relatedness. We used EHR data to compute heritability estimates for 500 disease phenotypes. Overall, estimates were consistent with the literature and between sites. Inconsistencies were indicative of limitations and opportunities unique to EHR research. These analyses provide a validation of the use of EHRs for genetics and disease research.


Asunto(s)
Registros Electrónicos de Salud , Enfermedades Genéticas Congénitas/genética , Algoritmos , Bases de Datos Factuales , Relaciones Familiares , Enfermedades Genéticas Congénitas/patología , Genotipo , Humanos , Linaje , Fenotipo , Carácter Cuantitativo Heredable
17.
Cell ; 175(7): 1972-1988.e16, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550791

RESUMEN

In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing.


Asunto(s)
Modelos Inmunológicos , Neoplasias Experimentales/inmunología , Organoides/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Animales , Antígeno B7-H1/inmunología , Técnicas de Cocultivo , Femenino , Humanos , Inmunoterapia , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Organoides/patología
18.
Immunity ; 56(4): 864-878.e4, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36996809

RESUMEN

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.


Asunto(s)
COVID-19 , Vacunas , Humanos , Linfocitos T CD8-positivos , Vacuna BNT162 , SARS-CoV-2 , Vacunación , Anticuerpos Antivirales
20.
Immunity ; 55(8): 1343-1353, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947979

RESUMEN

While inbred mice have informed most of what we know about the immune system in the modern era, they have clear limitations with respect to their ability to be informative regarding genetic heterogeneity or microbial influences. They have also not been very predictive as models of human disease or vaccination results. Although there are concerted attempts to compensate for these flaws, the rapid rise of human studies, driven by both technical and conceptual advances, promises to fill in these gaps, as well as provide direct information about human diseases and vaccination responses. Work on human immunity has already provided important additional perspectives on basic immunology such as the importance of clonal deletion to self-tolerance, and while many challenges remain, it seems inevitable that "the human model" will continue to inform us about the immune system and even allow for the discovery of new mechanisms.


Asunto(s)
Supresión Clonal , Sistema Inmunológico , Animales , Humanos , Sistema Inmunológico/fisiología , Ratones , Autotolerancia , Vacunación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda